Pharmacogenomics and Personalized Medicine in Alzheimer’s Disease



Alzheimer’s disease (AD) and related dementias, neurodegenerative disorders accompanied by progressive deterioration of cognitive capacity, every-day behavior abilities, and integrity of brain tissue, present an ever-growing, worldwide dilemma due to aging populations confronted by a related neuropathology. The “amyloid cascade hypothesis,” that pathophysiology is driven by the ever-increasing burden of β-amyloid in the brains of afflicted patients, involves a poorly understood orchestration encompassing multitudes of enzymes and signaling pathways arranged in vast and diverse arrays of cellular processes, and vascular considerations all of which are under the control of predictive genes and susceptibility genes that describe genetic and genes x environmental epigenetic interactions. Genetic aspects of these disorders and the intricacies of pharmacogenomics implicated several neurotransmitter pathways, circuits and regional brain developments, and metabolism that reinforce the growing requirements for personalized medicine. The search for individual-based medication, in addition to genomic assay and biomarker identity, seeks to establish a “reregulation” of destructive β-amyloid pathways, an understanding and application of Aβ-linked immunotherapy, the initiation and formulation of pharmacogenetic/pharmacogenomics principles and methodologies, the emergence of the role of apolipoprotein (APOE) in therapeutic endeavor, the assessment and treatment of behavioral and psychological symptoms, the therapies focused upon frontotemporal dementia, and the interventions centered around instrumental activities of daily activities.


Mild Cognitive Impairment Cerebral Amyloid Angiopathy ApoE Epsilon4 IADL Impairment PON1 L55M 


  1. Alagiakrishnan K, Gill SS, Fagarasanu A (2012) Genetics and epigenetics of Alzheimer’s disease. Postgrad Med J 88:522–529. doi: 10.1136/postgradmedj-2011-130363 PubMedGoogle Scholar
  2. Albani D, Martinelli Boneschi F, Biella G, Giacalone G, Lupoli S, Clerici F, Benussi L, Ghidoni R, Galimberti D, Squitti R, Mariani S, Confaloni A, Bruno G, Mariani C, Scarpini E, Binetti G, Magnani G, Franceschi M, Forloni G (2012) Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer’s disease patients. J Alzheimers Dis 30:745–749PubMedGoogle Scholar
  3. Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN, Nair AA, Middha S, Maharjan S, Nguyen T, Ma L, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Schultz D, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Schultz D, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Alzheimer’s Disease Genetics Consortium, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79:221–228PubMedCentralPubMedGoogle Scholar
  4. Alzheimer’s disease International Consortium (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124Google Scholar
  5. Alzenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid disposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517Google Scholar
  6. Ambegaokar SS, Jackson GR (2012) The downward spiral of tau and autolysosomes: a new hypothesis in neurodegeneration. Autophagy 8:7, PMID: 22635052Google Scholar
  7. Angelucci F, Bernardini S, Gravina P, Bellincampi L, Trequattrini A, Di Iulio F, Vanni D, Federici G, Caltagirone C, Bossù P, Spalletta G (2009) Delusion symptoms and response to antipsychotic treatment are associates with the 5-HT2A receptor polymorphism (102T/C) in Alzheimer’s disease: a 3-year follow-up longitudinal study. J Alzheimer Dis 17:203–211Google Scholar
  8. Archer T (2011) Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand 123:221–238PubMedGoogle Scholar
  9. Archer T (2012) Influence of physical exercise on traumatic brain injury deficits: scaffolding effects. Neurotox Res. doi: 10-1007/s12640-011-9297-0 Google Scholar
  10. Archer T, Fredriksson A, Johansson B (2011a) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurol Scand 123:73–84PubMedGoogle Scholar
  11. Archer T, Fredriksson A, Schϋtz E, Kostrzewa RM (2011b) Influence of exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 20:69–83PubMedGoogle Scholar
  12. Archer T, Kostrzewa RM, Beninger RJ, Palomo T (2011c) Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions. Neurotox Res 19:211–234PubMedGoogle Scholar
  13. Arendt T (1994) Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm Suppl 44:173–187PubMedGoogle Scholar
  14. Arendt T, Bibl V, Arendt A (1984) Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob disease. Acta Neuropathol 65:85–88PubMedGoogle Scholar
  15. Ariga T, Yanagisawa M, Wakade C, Ando S, Buccafusco JJ, McDonald MP, Yu RK (2010) Ganglioside metabolism in a transgenic mouse model of Alzheimer’s disease: expression of Chol-1α antigens in the brain. ASN Neuro 2:e00044PubMedCentralPubMedGoogle Scholar
  16. Ballard C, Margallo-Lana M, O’Brien JT, James I, Howard R, Fossey J (2009) Top cited papers in International Psychogeriatrics: 6a. Quality of life for people with dementia living in residential and nursing home care: the impact of performance on activities of daily living, behavioral and psychological symptoms, language skills, and psychotropic drugs. Int Psychogeriatr 21:1026–1030PubMedGoogle Scholar
  17. Ballard C, Creese B, Corbett A, Aarsland D (2011) Atypical antipsychotics for the treatment of behavioral and psychological symptoms in dementia, with a particular focus on longer term outcomes and mortality. Expert Opin Drug Saf 10:35–43. doi: 10.1517/14740338.2010.506711 PubMedGoogle Scholar
  18. Barabash A, Marcos A, Ancin I et al (2009) APOE, ACT and CHRNA 7 genes in the conversion from amnestic mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 30:1254–1264PubMedGoogle Scholar
  19. Barthel H, Luthardt J, Becker G, Patt M, Hammerstein E, Hartwig K, Eggers B, Sattler B, Schildan A, Hesse S, Meyer PM, Wolf H, Zimmermann T, Reischl J, Rohde B, Gertz HJ, Reininger C, Sabri O (2012) Individualized quantification of brain β-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer’s disease and healthy controls. Eur J Nucl Med Mol Imaging 38:1702–1714Google Scholar
  20. Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Neuchterlein KH, Mintz J (2003) White matter structural integrity in healthy aging adults and patients with Alzheimer’s disease: a magnetic resonance imaging study. Arch Neurol 60:393–398PubMedGoogle Scholar
  21. Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Götz M, Dimou L (2012) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia. doi: 10.1002/glia.22432 PubMedGoogle Scholar
  22. Belbin O, Carrasquillo MM, Crump M et al (2011) Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease. Hum Genet 129:273–282PubMedCentralPubMedGoogle Scholar
  23. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115:1449–1457PubMedCentralPubMedGoogle Scholar
  24. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: systematic meta-analysis herald a new era. Nat Rev Neurosci 9:768–778PubMedGoogle Scholar
  25. Bertram L, Tanzi RE (2009) Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 18:R137–R145PubMedCentralPubMedGoogle Scholar
  26. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100PubMedGoogle Scholar
  27. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23PubMedGoogle Scholar
  28. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BM, Hooli B, Divito J, Ionita I, Jiang H, Laird N, Moscarillo T, Ohlsen KL, Elliott K, Wang X, Hu-Lince D, Ryder M, Murphy A, Wagner SL, Blacker D, Becker KD, Tanzi RE (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632PubMedCentralPubMedGoogle Scholar
  29. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281PubMedGoogle Scholar
  30. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (2005) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760Google Scholar
  31. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403PubMedGoogle Scholar
  32. Bonner-Jackson A, Okonkwo O, Tremont G, Alzheimerʼs Disease Neuroimaging Initiative (2012) Apolipoprotein E ε2 and functional decline in amnestic mild cognitive impairment and Alzheimer disease. Am J Geriatr Psychiatry 20:584–593PubMedCentralPubMedGoogle Scholar
  33. Borowczyk K, Shih DM, Jakubowski H (2012) Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis 30:225–231PubMedCentralPubMedGoogle Scholar
  34. Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30:16559–16566PubMedCentralPubMedGoogle Scholar
  35. Bowling CB, Fonarow GC, Patel K, Zhang Y, Feller MA, Sui X, Blair SN, Alagiakrishnan K, Aban IB, Love TE, Allman RM, Ahmed A (2012) Impairment of activities of daily living and incident heart failure in community-dwelling older adults. Eur J Heart Fail 14:581–587PubMedCentralPubMedGoogle Scholar
  36. Burns A, Jacoby R, Levy R (1990) Psychiatric phenomena in Alzheimer’s disease. IV. Disorders of behavior. Br J Psychiatry 157:86–94PubMedGoogle Scholar
  37. Cacabelos R (2005) Pharmacogenomics and therapeutic prospects in Alzheimer’s disease. Expert Opin Pharmacother 6:1967–1987PubMedGoogle Scholar
  38. Cacabelos R (2008) Pharmacogenomics and therapeutic prospects in dementia. Eur Arch Psychiatry Clin Neurosci 258(Suppl 1):28–47PubMedGoogle Scholar
  39. Cacabelos R (2009) Pharmacogenomics and therapeutic strategies for dementia. Expert Rev Mol Diagn 9:567–611PubMedGoogle Scholar
  40. Cacabelos R (2010) Pharmacogenomic protocols in CNS disorders and dementia. Neurodegener Dis 7:167–169PubMedGoogle Scholar
  41. Cacabelos R, Martinez-Bouza R, Carril JC, Fernandez-Novoa L, Lombardi V, Carrera I, Corzo L, McKay A (2012) Genomics and pharmacogenomics of brain disorders. Curr Pharm Biotechnol 13:674–725PubMedGoogle Scholar
  42. Cameron B, Tse W, Lamb BT, Li X, Lamb BT, Landreth GE (2012) Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer’s disease. J Neurosci 32:15112–15123. doi: 10.1523/JNEUROSCI.1729-12.2012 PubMedCentralPubMedGoogle Scholar
  43. Candore G, Bulati M, Caruso C, Castiglia L, Colonna-Romano G, Di Bona D, Duro G, Lio D, Matranga D, Pellicano M, Rizzo C, Scapagnini G, Vasto S (2010) Inflammation, cytokines, immune response, apolipoptotein E, cholesterol and, oxidative stress in Alzheimer disease: therapeutic implications. Rejuvenation Res 13:301–313PubMedGoogle Scholar
  44. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG (2010) Replication of CLU, CR1 and PICALM associations with Alzheimer’s disease. Arch Neurol 67:961–964PubMedCentralPubMedGoogle Scholar
  45. Carrera I, Etcheverria I, Fernandez-Novoa L, Lombardi V, Cacabelos R, Vigo C (2012) Vaccine development to treat Alzheimer’s disease neuropathology in APP/PS1 transgenic mice. Int J Alz Dis Article ID 376138, 17. doi:  10.1155/2012/376138
  46. Cellini E, Tedde A, Bagnoli S, Nacmias B, Piacentini S, Bessi V, Bracco L, Sorbi S (2006) Association analysis of the paraoxonase-1 gene with Alzheimer’s disease. Neurosci Lett 408:199–202PubMedGoogle Scholar
  47. Chandra V, Pandav R (1998) Gene-environment interaction in Alzheimer’s disease: a potential role for cholesterol. Neuroepidemiology 17:225–232PubMedGoogle Scholar
  48. Chianella C, Gragnaniello D, Maisano Delser P, Visentini MF, Sette E, Tola MR, Barbujani G, Fuselli S (2011) BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol 67:1147–1157PubMedGoogle Scholar
  49. Chouliaras L, Rutten BP, Kenis G et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510PubMedGoogle Scholar
  50. Ciaramella A, Bizzoni F, Salani F, Vanni D, Spaletta G, Sanarico N, Vendetti S, Caltagirone C, Bossu P (2010) Increased pro-inflammatory response by dendritic cells from patients with Alzheimer’s disease. J Alzheimers Dis 19:559–572PubMedGoogle Scholar
  51. Craig D, Donnelly C, Hart D, Carson R, Passmore P (2007) Analysis of the 5HT-2A T102C receptor polymorphism and psychotic symptoms in Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 144B:126–128PubMedGoogle Scholar
  52. Crentsil V (2004) The pharmacogenomics of Alzheimer’s disease. Ageing Res Rev 3:153–169PubMedGoogle Scholar
  53. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67PubMedGoogle Scholar
  54. Curtis R, Cohen J, Fok-Seang J, Hanley MR, Gregson NA, Reynolds R, Wilkin GP (1988) Development of macroglial cells in rat cerebellum. I. Use of antibodies to follow early in vivo development and migration of oligodendrocytes. J Neurocytol 17:43–54PubMedGoogle Scholar
  55. Darreh-Shori T, Siawesh M, Mousavi M, Andreassen N, Nordberg A (2012)Google Scholar
  56. Darreh-Shori T, Vijayaraghavan S, Aeinehband S, Piehl F, Lindblom RP, Nilsson B, Ekdahl KN, Långström B, Almkvist O, Nordberg A (2013) Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2013.04.027. pii: S0l97-4580(13)00195-4
  57. DeMattos RB, Cirrito JR, Parsadanian M et al (2004) ApoE and clusterin cooperatively suppress A beta levels and deposition: evidence that ApoE regulates extracellular A beta metabolism in vivo. Neuron 41:193–2002PubMedGoogle Scholar
  58. Deramecourt V, Slade JY, Oakley AE, Perry RH, Ince PG, Maurage CA, Kalaria RN (2012) Staging and natural history of cerebrovascular pathology in dementia. Neurology 78:1043–1050PubMedCentralPubMedGoogle Scholar
  59. Dergunov AD (2011) Apolipoprotein E genotype as a most significant predictor of lipid response at lipid-lowering therapy: mechanistic and clinical studies. Biomed Pharmacother 65:597–603PubMedGoogle Scholar
  60. Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ (2009) Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57:54–65PubMedCentralPubMedGoogle Scholar
  61. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ (2010) Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am J Pathol 177:1422–1435PubMedCentralPubMedGoogle Scholar
  62. Desai MK, Guercio BJ, Narrow WC, Bowers WJ (2011) An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia 59:627–640PubMedCentralPubMedGoogle Scholar
  63. Devanand DP, Mintzer J, Schultz SK, Andrews HF, Sultzer DL, de la Pena D, Gupta S, Colon S, Schimming C, Pelton GH, Levin B (2012) Relapse risk after discontinuation of risperidone in Alzheimer’s disease. N Engl J Med 367:1497–1507PubMedCentralPubMedGoogle Scholar
  64. Di Carlo M, Giacomazza D, San Biagio PL (2012) Alzheimer’s disease: biological aspects, therapeutic perspectives and diagnostic tools. J Phys Condens Matter 24:244102PubMedGoogle Scholar
  65. Dimou L, Götz M (2012) Shaping barrels: activity moves NG2+ glia. Nat Neurosci 15:1176–1178PubMedGoogle Scholar
  66. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the grey and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442PubMedGoogle Scholar
  67. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5:452–457PubMedGoogle Scholar
  68. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2012) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127Google Scholar
  69. Duering M, Zieren N, Herve D, Jouvent E, Reyes S, Peters N, Pachai C, Opherk C, Chabriat H, Dichgans M (2011) Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain 134:2366–2375PubMedGoogle Scholar
  70. Duykaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer’s disease. Acta Neuropathol 118:5–36Google Scholar
  71. Elias-Sonnenschein LS, Bertram L, Visser PJ (2012) Relationship between genetic risk factors and markers for Alzheimer’s disease pathology. Biomark Med 6:477–495. doi: 10.2217/bmm.12.56 PubMedGoogle Scholar
  72. Ellis JM (2005) Cholinesterase inhibitors in the treatment of dementia. J Am Osteopath Assoc 105:145–158PubMedGoogle Scholar
  73. Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Ann Rev Neurosci 34:21–43PubMedGoogle Scholar
  74. Ferris S, Nordberg A, Soininen H, Darreh-Shori T, Lane R (2009) Progression from mild cognitive impairment to Alzheimer’s disease: effects of sex, butyrylcholinesterase genotype, and rivastigmine treatment. Pharmacogenet Genomics 19:635–646PubMedGoogle Scholar
  75. Fodale V, Mafrica F, Caminiti V, Grasso G (2006) The cholinergic system in Down’s Syndrome. J Intellect Disabil 10(3):261–274PubMedGoogle Scholar
  76. Friedman A, Behrens CJ, Heineman U (2007) Cholinergic dysfunction in temporal lobe epilepsy. Epilepsia 48(s5):126–130PubMedGoogle Scholar
  77. Fu HJ, Liu B, Frost JL, Lemere CA (2010) Amyloid-β immunotherapy for Alzheimer’s disease. CNS Neurol Drug Targ 9:197–206Google Scholar
  78. Gandy S (2012) Vascular burden and Alzheimer disease pathologic progression. Neurology 79:1349–1355Google Scholar
  79. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174PubMedGoogle Scholar
  80. Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P (2010) NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20:399–411PubMedGoogle Scholar
  81. Graff J, Mansuy IM (2008) Epigenetic codes in cognition and behaviour. Behav Brain Res 192:70–87PubMedGoogle Scholar
  82. Gsell W, Jungkunz G, Riederer P (2004) Functional neurochemistry of Alzheimer’s disease. Curr Pharm Des 10(3):265–293PubMedGoogle Scholar
  83. Hampel H, Teipel SJ, Alexander GE, Horwitz B, Teichberg D, Schapiro MB, Rapoport SI (1998) Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 55:193–198PubMedGoogle Scholar
  84. Hatanaka Y, Kamino K, Fukuo K et al (2000) Low density lipoprotein receptor-related protein gene polymorphisms and risk for late-onset Alzheimer’s disease in a Japanese population. Clin Genet 58:319–323PubMedGoogle Scholar
  85. Herrmann N, Chau SA, Kircanski I, Lanctôt KL (2011) Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs 71:2031–2065. doi: 10.2165/11595870-000000000-00000 PubMedGoogle Scholar
  86. Holmes C, Smith H, Ganderton R, Arranz M, Collier D, Powell J, Lovestone S (2001) Psychosis and aggression in Alzheimer’s disease: the effect of dopamine receptor gene variation. J Neurol Neurosurg Psychiatry 71:777–779PubMedCentralPubMedGoogle Scholar
  87. Honig LS, Tang MX, Albert S, Costa R, Luchsinger J, Manly J, Stern Y, Mayeux R (2003) Stroke and the risk of Alzheimer disease. Arch Neurol 60:1707–1712PubMedGoogle Scholar
  88. Horiuchi M, Maezawa I, Itoh A, Wakayama K, Jin LW, Itoh T, Decarli C (2012) Amyloid beta1-42 oligomer inhibits myelin sheet formation in vitro. Neurobiol Aging 33:499–509PubMedCentralPubMedGoogle Scholar
  89. Hornberger M, Yew B, Gilardoni S, Mioshi E, Gleichgerrcht E, Manes F, Hodges JR (2012) Ventromedial-frontopolar prefrontal cortex atrophy correlates with insight loss in frontotemporal dementia and Alzheimer’s disease. Hum Brain Mapp. doi: 10.1002/hbm.22200 PubMedGoogle Scholar
  90. Isaac M, Vamvakas S, Abadie E, Jonsson B, Gispen C, Pani L (2011) Qualification opinion of novel methodologies in the predementia stage of Alzheimer’s disease: cerebro-spinal-fluid related biomarkers for drugs affecting amyloid burden–regulatory considerations by European Medicines Agency focusing in improving benefit/risk in regulatory trials. Eur Neuropsychopharmacol 21:781–788PubMedGoogle Scholar
  91. Islam MS, Tatsumi K, Okuda H, Shiosaka S, Wanaka A (2009) Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int 54:192–198PubMedGoogle Scholar
  92. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170PubMedGoogle Scholar
  93. Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739PubMedGoogle Scholar
  94. Jun G, Naj AC, Beecham GW et al (2010) Meta-analysis confirms CR1, CLU and PICALM as Alzheimer disease risk loci and reveals interaction with APOE genotypes. Arch Neurol 67:1473–1484PubMedCentralPubMedGoogle Scholar
  95. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–681PubMedCentralPubMedGoogle Scholar
  96. Kerchner GA, Tartaglia MC, Boxer AL (2011) Abhorring the vacuum: use of Alzheimer’s disease medications in frontotemporal dementia. Expert Rev Neurother 11:709–717PubMedCentralPubMedGoogle Scholar
  97. Kim W, Lee D, Choi J, Kim A, Han S, Park K, Choi J, Kim J, Choi Y, Lee SH, Koh YH (2011) Pharmacogenetic regulation of acetylcholinesterase activity in Drosophila reveals the regulatory mechanisms of AChE inhibitors in synaptic plasticity. Neurochem Res 36:879–893PubMedGoogle Scholar
  98. Klimkowicz-Mrowiec A, Marona M, Spisak K, Jagiella J, Wolkow P, Szczudlik A, Slowik A (2011) Paraoxonase 1 gene polymorphisms do not influence the response to treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord 32:26–31PubMedGoogle Scholar
  99. Kolsch H, Jessen F, Wiltfang J et al (2009) Association of SORL 1 gene variants with Alzheimer’s disease. Brain Res 1264:1–6PubMedGoogle Scholar
  100. Kotze MJ, van Rensburg SJ (2012) Pathology supported genetic testing and treatment of cardiovascular disease in middle age for prevention of Alzheimer’s disease. Metab Brain Dis 27:255–266PubMedCentralPubMedGoogle Scholar
  101. Kounnas MZ, Danks AM, Cheng S, Tyree C, Ackerman E, Zhang X, Ahn K, Nguyen P, Comer P, Mao L, Yu C, Pleynet D, Digregorio PJ, Velicelebi G, Stauderman KA, Comer WT, Mobley WC, Li YM, Sisodia SS, Tanzi RE, Wagner SL (2010) Modulation of ɣ-secretase reduces β-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. Neuron 67:769–780PubMedCentralPubMedGoogle Scholar
  102. Landes AM, Sperry SD, Strauss ME, Geldmacher DS (2001) Apathy in Alzheimer’s disease. J Am Geriatr Soc 49:1700–1707. doi: 10.1046/j.1532-5415.2001.49282.x PubMedGoogle Scholar
  103. Lane RM, He Y (2013) Butyrylcholinesterasegenotype and gender influence Alzheimer’s disease phenotype. Alzheimers Dement. PMID: 22402324. 9(2):e1–73. doi:  10.1016/j.jalz.2010.12.005
  104. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41PubMedGoogle Scholar
  105. Leduc V, Poirier J (2008) Polymorphisms at the paraoxonase 1 L55M and Q192R loci affect the pathophysiology of Alzheimer’s disease: emphasis on the cholinergic system and beta-amyloid levels. Neurodegener Dis 5:225–227PubMedGoogle Scholar
  106. Leduc V, Théroux L, Dea D, Robitaille Y, Poirier J (2009) Involvement of paraoxonase 1 genetic variants in Alzheimer’s disease neuropathology. Eur J Neurosci 30:1823–1830PubMedGoogle Scholar
  107. Leduc V, Legault V, Dea D, Poirier J (2011) Normalization of gene expression using SYBR green qPCR: a case for paraoxonase 1 and 2 in Alzheimer’s disease brains. J Neurosci Methods 200:14–19PubMedGoogle Scholar
  108. Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 6:108–119PubMedCentralPubMedGoogle Scholar
  109. Letts L, Edwards M, Berenyi J, Moros K, O’Neill C, O’Toole C, McGrath C (2012) Using occupations to improve quality of life, health and wellness, and client and caregiver satisfaction for people with Alzheimer’s disease and related dementias. Am J Occup Ther 65:497–504Google Scholar
  110. Levy K, Lanctôt KL, Farber SB, Li A, Herrmann N (2011) Does pharmacological treatment of neuropsychiatric symptoms in Alzheimer’s disease relieve caregiver burden? Drugs Aging 29:167–179. doi: 10.2165/11599140-000000000-00000 Google Scholar
  111. Li Y, Ma Y, Zong LX, Xing XN, Guo R, Jiang TZ, Sha S, Liu L, Cao YP (2012) Intranasal inoculation with an adenovirus vaccine encoding ten repeats of Aβ3-10 reduces AD-like pathology and cognitive impairment in Tg-APPswe/PSEN1dE9 mice. J Neuroimmunol 249:16–26PubMedGoogle Scholar
  112. Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ (2012) Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol 8:465–469PubMedGoogle Scholar
  113. Lo RY, Jagust WJ, For the Alzheimer’s Disease Neuroimaging Initiative (2012) Vascular burden and Alzheimer disease pathologic progression. Neurology 79:1349–1355PubMedCentralPubMedGoogle Scholar
  114. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, Copeland JR, Dartigues JF, Jagger C, Martinez-Lage J, Soininen H, Hofman A (2000) Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurological Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5):S4–S9PubMedGoogle Scholar
  115. Lukiw WJ (2013) Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD). Expert Opin Emerg Drugs PMID: 22439907. 4:77. doi:  10.3389/fgene.2013.00077
  116. Luttenberger K, Donath C, Uter W, Graessel E (2012) Effects of multimodal nondrug therapy on dementia symptoms and need for care in nursing home residents with degenerative dementia: a randomized-controlled study with 6-month follow-up. J Am Geriatr Soc 60(5):830–840PubMedGoogle Scholar
  117. Lyketsos CG, Steinberg M, Tschanz JT, Norton MC, Steffens DC, Breitner JC (2000) Mental and behavioral disturbances in dementia: findings from the Cache County Study on Memory in Aging. Am J Psychiatry 157:708–714PubMedGoogle Scholar
  118. Lyketsos CG, Toone L, Tschanz J, Rabins PV, Steinberg M, Onyike CU, Corcoran C, Norton M, Zandi P, Breitner JC, Welsh-Bohmer K, Anthony J, Østbye T, Bigler E, Pieper C, Burke J, Plassman B, Green RC, Steffens DC, Klein L, Leslie C, Townsend JJ, Wyse BW, Munger R, Williams M, Cache County Study Group (2005) Population-based study of medical comorbidity in early dementia and “cognitive impairment, no dementia (CIND)”: association with functional and cognitive impairment: The Cache County Study. Am J Geriatr Psychiatry 13:656–664PubMedGoogle Scholar
  119. Mahley RW, Huang Y (1999) Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr Opin Lipidol 10:207–217PubMedGoogle Scholar
  120. Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16PubMedGoogle Scholar
  121. Maier M, Seabrook TJ, Lazo ND, Jiang L, Das P, Janus C, Lemere CA (2006) Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 26:4717–4728PubMedGoogle Scholar
  122. Malm T, Koistinaho J, Kanninen K (2011) Utilization of APPswe/PS1dE9 transgenic mice in research of Alzheimer’s disease: focus on gene therapy and cell-based therapy applications. Int J Alz Dis Article ID 517160, 8Google Scholar
  123. Mangialasche F, Solomon A, Winblad B et al (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716PubMedGoogle Scholar
  124. Marcone A, Garibotto V, Moresco RM, Florea I, Panzacchi A, Carpinelli A, Virta JR, Tettamanti M, Borroni B, Padovani A, Bertoldo A, Herholz K, Rinne JO, Cappa SF, Perani D (2012) [(11)C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer’s disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimers Dis 31:387–399PubMedGoogle Scholar
  125. Margallo-Lana M, Swann A, O’Brien J, Fairbairn A, Reichelt K, Potkins D, Mynt P, Ballard C (2001) Prevalence and pharmacological management of behavioral and psychological symptoms amongst dementia sufferers living in care environments. Int J Geriatr Psychiatry 16:39–44PubMedGoogle Scholar
  126. Masdeu JC, Kreisl WC, Berman KF (2012) The neurobiology of Alzheimer disease defined by neuroimaging. Curr Opin Neurol 25(4):410–420. doi: 10.1097/WCO.0b013e3283557b36 PubMedGoogle Scholar
  127. Mastroeni D, McKee A, Grover J et al (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617PubMedCentralPubMedGoogle Scholar
  128. Mastroeni D, Grover J, Delvaux E et al (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31:2025–2037PubMedCentralPubMedGoogle Scholar
  129. Matsui T, Nemoto M, Maruyama M, Yuzuriha T, Yao H, Tanji H, Ootsuki M, Tomita N, Matsushita S, Higuchi S, Yoshida Y, Seki T, Iwasaki K, Furukawa K, Arai H (2005) Plasma homocysteine and risk of coexisting silent brain infarction in Alzheimer’s disease. Neurodegener Dis 2:299–304PubMedGoogle Scholar
  130. McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244PubMedGoogle Scholar
  131. Meda SA, Koran ME, Pryweller JR, Vega JN, Thornton-Wells TA, Alzheimer’s Disease Neuroimaging Initiative (2012) Genetic interactions associated with 12-month atrophy in hippocampus and entorhinal cortex in Alzheimer’s Disease Neuroimaging Initiative. Neurobiol Aging. pii: S0197-4580(12)00490-3. doi:  10.1016/j.neurobiolaging.2012.09.020
  132. Migliore L, Coppede F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97PubMedGoogle Scholar
  133. Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF (2000) Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 30:547–564PubMedGoogle Scholar
  134. Mioshi E, Kipps CM, Dawson K, Mitchell J, Graham A, Hodges JR (2007) Activities of daily living in frontotemporal dementia and Alzheimer disease. Neurology 68:2077–2084PubMedGoogle Scholar
  135. Mohamed AD, Sahakian BJ (2012) The ethics of elective psychopharmacology. Int J Neuropsychopharmacol 15:559–571. doi: 10.1017/S146114571100037 PubMedCentralPubMedGoogle Scholar
  136. Mölsä PK, Marttila RJ, Rinne UK (1986) Survival and cause of death in Alzheimer’s disease and multi-infarct dementia. Acta Neurol Scand 74:103–107. doi: 10.1111/j.1600-0404.1986.tb04634.x PubMedGoogle Scholar
  137. Monaci L, Morris RG (2012) Neuropsychological screening performance and the association with activities of daily living and instrumentalactivities of daily living in dementia: baseline and 18- to 24-month follow-up. Int J Geriatr Psychiatry 27:197–204PubMedGoogle Scholar
  138. Morgan D (2006) Immunotherapy for Alzheimer’s disease. J Alzheimer Dis 9(Suppl 3):425–432Google Scholar
  139. Muresan V, Muresan Z (2012) A persistent stress response to impeded axonal transport leads to accumulation of amyloid-β in the endoplasmic reticulum, and is a probable cause of sporadic Alzheimer’s disease. Neurodegener Dis 10:60–63PubMedCentralPubMedGoogle Scholar
  140. Mustafiz T, Portelius E, Gustavsson MK, Hölttä M, Zetterberg H, Blennow K, Nordberg A, Lithner CU (2011) Characterization of the brain β-amyloid isoform pattern at different ages of Tg2576 mice. Neurodegen Dis 8:352–363Google Scholar
  141. Nardone R, Golaszewski S, Ladurner G, Tezzon F, Trinka E (2011) A review of transcranial magnetic stimulation in the in vivo functional evaluation of central cholinergic circuits in dementia. Dement Geriatr Cogn Disord 32:18–25PubMedGoogle Scholar
  142. Nee LE, Lippa CF (1999) Alzheimer’s disease in 22 twin pairs – 13-years follow-up: hormonal, infectious and traumatic factors. Dement Geriatr Cogn Disord 10:148–151PubMedGoogle Scholar
  143. Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118:151–166PubMedGoogle Scholar
  144. Nygård L (2003) Instrumental activities of daily living: a stepping-stone towards Alzheimer’s disease diagnosis in subjects with mild cognitive impairment? Acta Neurol Scand Suppl 107(179):42–46. doi: 10.1034/j.1600-0404.107.s179.8.x Google Scholar
  145. Patterson CE, Todd SA, Passmore AP (2011) Effect of apolipoprotein E and butyrylcholinesterase genotypes on cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Pharmacogenomics J 11:444–450PubMedGoogle Scholar
  146. Pedersen NL (2010) Reaching the limits of genome-wide significance in Alzheimer’s disease: back to the environment. JAMA 303:1864–1865PubMedGoogle Scholar
  147. Pimentel-Coelho PM, Rivest S (2012) The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Euro J Neurosci 35:1917–1937Google Scholar
  148. Pola R, Flex A, Ciaburri M et al (2005) Responsiveness to cholinesterase inhibitors in Alzheimer’s disease: a possible role for the 192 Q/R polymorphism of the PON-1 gene. Neurosci Lett 382:338–341PubMedGoogle Scholar
  149. Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:525–533PubMedGoogle Scholar
  150. Pritchard AL, Pritchard CW, Bentham P, Lendon CL (2007) Role of serotonin transporter mechanisms in the behavioral and psychological symptoms in probable Alzheimer disease patients. Dement Geriatr Cogn Disord 24:201–206PubMedGoogle Scholar
  151. Pritchard AL, Harris J, Pritchard CW, Coates J, Haque S, Holder R, Bentham P, Lendon CL (2008) Role of 5HT 2A and 5HT 2C polymorphisms in behavioural and psychological symptoms of Alzheimer’s disease. Neurobiol Aging 29:341–347PubMedGoogle Scholar
  152. Pritchard AL, Ratcliffe L, Sorour E, Haque S, Holder R, Bentham P, Lendon CL (2009) Investigation of dopamine receptors in susceptibility to behavioural and psychological symptoms in Alzheimer’s disease. Int J Geriatr Psychiatry 24:1020–1025PubMedGoogle Scholar
  153. Querfurth HW, LaFerld FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344PubMedGoogle Scholar
  154. Rabinovici GD, Miller BL (2010) Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 24:375–398PubMedCentralPubMedGoogle Scholar
  155. Rangani RJ, Upadhya MA, Nakhate KT, Kokare DM, Subhedar NK (2012) Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer’s disease. Peptides 33:317–328PubMedGoogle Scholar
  156. Rascovsky KP, Hodges JR, Kipps CM et al (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disorders 21:S14–S18Google Scholar
  157. Reiman EM, Webster JA, Myers AJ et al (2007) GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 54:713–720PubMedCentralPubMedGoogle Scholar
  158. Rogers J, Li R, Mastroenui D et al (2010) Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging 27:1733–1739Google Scholar
  159. Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T (2002) Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41:11080–11090PubMedGoogle Scholar
  160. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, Huentelman MJ, Welsh-Bohmer KA, Reiman EM (2010) A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenom J 10:375–384Google Scholar
  161. Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol 93:99–110PubMedGoogle Scholar
  162. Santibez M, Bolumar F, Garca AM (2007) Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64:723–732Google Scholar
  163. Saragat B, Buffa R, Mereu E, Succa V, Cabras S, Mereu RM, Viale D, Putzu PF, Marini E (2012) Nutritional and psycho-functional status in elderly patients with Alzheimer’s disease. J Nutr Health Aging 16:231–236PubMedGoogle Scholar
  164. Sato N, Ueki A, Ueno H, Shinjo H, Morita Y (2009) Dopamine D3 receptor gene polymorphism influences on behavioral and psychological symptoms of dementia (BPSD) in mild dementia of Alzheimer’s type. J Alzheimers Dis 17:441–448PubMedGoogle Scholar
  165. Savino M, Seripa D, Gallo AP, Garrubba M, D’Onofrio G, Bizzarro A, Paroni G, Paris F, Mecocci P, Masullo C, Pilotto A, Santini SA (2011) Effectiveness of a high-throughput genetic analysis in the identification of responders/non-responders to CYP2D6-metabolized drugs. Clin Lab 57:887–893PubMedGoogle Scholar
  166. Schenk D (2002) Amyloid-β immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 3:824–828PubMedGoogle Scholar
  167. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm Suppl 113:1625–1644Google Scholar
  168. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by cerebral accumulation and cytotoxicity of amyloid β-protein. Ann NJ Acad Sci 924:17–25Google Scholar
  169. Silveyra M-X, Evin G, Montenegro M-F, Vidal CJ, Martinez S, Culvenor JG, Saez-Valero J (2008) Presenilin 1 interacts with acetylcholinesterase and alters its enzymatic activity and glycosylation. Mol Cell Biol 28:2908–2919PubMedCentralPubMedGoogle Scholar
  170. Simon C, Götz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–881PubMedGoogle Scholar
  171. Sköldunger A, Johnell K, Winblad B, Wimo A (2013) Mortality and treatment costs have a great impact on the cost-effectiveness of disease modifying drugs in Alzheimer’s disease. Curr Alzheimer Res PMID: 23036018. 10(2): 207–216Google Scholar
  172. Song IU, Kim JS, Kim YI, Eah KY, Lee KS (2007) Clinical significance of silent cerebral infarctions in patients with Alzheimer disease. Cogn Behav Neurol 20:93–98PubMedGoogle Scholar
  173. Steinberg M, Shao H, Zandi P, Lyketsos CG, Welsh-Bohmer KA, Norton MC, Breitner JC, Steffens DC, Tschanz JT, Cache County Investigators (2008) Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: the Cache County Study. Int J Geriatr Psychiatry 23(2):170–177PubMedCentralPubMedGoogle Scholar
  174. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCentralPubMedGoogle Scholar
  175. Strozyk D, Dickson DW, Lipton RB, Katz M, Derby CA, Lee S, Wang C, Verghese J (2010) Contribution of vascular pathology to the clinical expression of dementia. Neurobiol Aging 31:1710–1720PubMedCentralPubMedGoogle Scholar
  176. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292PubMedCentralPubMedGoogle Scholar
  177. Tan AM, Zhang W, Levine JM (2005) NG2: a component of the glial scar that inhibits axon growth. J Anat 207:717–725PubMedCentralPubMedGoogle Scholar
  178. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555PubMedGoogle Scholar
  179. Tanzi RE (2012) The genetics of Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006296. doi: 10.1101/cshperspect.a006296 PubMedGoogle Scholar
  180. Teich AF, Arancio O (2012) Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 446:165–177PubMedCentralPubMedGoogle Scholar
  181. Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55:801–814PubMedGoogle Scholar
  182. Troyer AK, Murphy KJ, Anderson ND, Craik FI, Moscovitch M, Maione A, Gao F (2012) Associative recognition in mild cognitive impairment: relationship to hippocampal volume and apolipoprotein E. Neuropsychologia. pii: S0028-3932(12)00456-3. doi:  10.1016/j.neuropsychologia.2012.10.018
  183. Tschanz JT, Corcoran CD, Schwartz S, Treiber K, Green RC, Norton MC, Mielke MM, Piercy K, Steinberg M, Rabins PV, Leoutsakos JM, Welsh-Bohmer KA, Breitner JC, Lyketsos CG (2011) Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with Alzheimerdementia: the Cache County Dementia Progression Study. Am J Geriatr Psychiatry 19:532–542PubMedCentralPubMedGoogle Scholar
  184. Urdinquio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes and therapies. Lancet Neurol 8:1056–1072Google Scholar
  185. Vance JM, Tekin D (2011) Genomic medicine and neurology. Continuum (Minneap Minn) 17 (2 Neurogenetics):249–267Google Scholar
  186. Vanitallie TB (2012) Preclinical sporadic Alzheimer’s disease: target for personalized diagnosis and preventive intervention. Metabolism. pii: S0026-0495(12)00328-9. doi:  10.1016/j.metabol.2012.08.024
  187. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222PubMedGoogle Scholar
  188. Vermeer SE, Longstreth WT, Koudstaal PJ (2007) Silent brain infarcts: a systematic review. Lancet Neurol 6:611–619PubMedGoogle Scholar
  189. Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2’,3’-cyclic nucleotide-3’-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553PubMedGoogle Scholar
  190. Voigt-Radloff S, Leonhart R, Schützwohl M, Jurjanz L, Reuster T, Gerner A, Marschner K, van Nes F, Graff M, Vernooij-Dassen M, Rikkert MO, Holthoff V, Hüll M (2012) Interview for Deterioration in DailyLivingActivities in Dementia: construct and concurrent validity in patients with mild to moderate dementia. Int Psychogeriatr 24:382–390PubMedGoogle Scholar
  191. Waldemar G (2007) Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 14:e1–e26. doi: 10.1111/j.1468-1331.2006.01605.x PubMedGoogle Scholar
  192. Wang L, Roe CM, Snyder AZ, Brier MR, Thomas JB, Xiong C, Benzinger TL, Morris JC, Ances BM (2012) Alzheimer disease family history impacts resting state functional connectivity. Ann Neurol 72:571–577PubMedCentralPubMedGoogle Scholar
  193. Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP, Colton CA (2009) Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J Neurosci 29:7957–7965PubMedCentralPubMedGoogle Scholar
  194. Wilcock DM, Zhao Q, Morgan D, Gordon MN, Everhart A, Wilson JG, Lee JE, Colton CA (2011) Diverse inflammatory responses in transgenic mouse models of Alzheimer’s disease and the effect of immunotherapy on these responses. ASN Neuro 3:249–258. doi: 10.1042/AN20110018 PubMedGoogle Scholar
  195. Williams AB, Li L, Nguyen B, Brown P, Levis M, Small D (2012) Fluvastatin inhibits FLT3 glycosylation in human and murine cells and prolongs survival of mice with FLT3/ITD leukemia. Blood 120(15):3069–3079. doi: 10.1182/blood-2012-01-403493 PubMedCentralPubMedGoogle Scholar
  196. Xia W, Zhang J, Perez R, Koo EH, Selkoe DJ (1997) Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer’s disease. Proc Natl Acad Sci USA 94:8208–8213PubMedCentralPubMedGoogle Scholar
  197. Xia W, Ray WJ, Ostaszewski BL, Rahmati T, Kimberly WT, Wolfe MS, Zhand J, Goate AM, Selkoe DJ (2000) Presenilin complexes with the C-terminal fragments of amyloid precursor protein at sites of amyloid β-protein generation. Proc Natl Acad Sci USA 97:9299–9304PubMedCentralPubMedGoogle Scholar
  198. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590PubMedGoogle Scholar
  199. Zekry D, Duychaerts C, Moulias R, Belmin J, Geoffre C, Herrmann F, Hauw JJ (2002) Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol 103:481–487PubMedGoogle Scholar
  200. Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 132:2579–2592PubMedCentralPubMedGoogle Scholar
  201. Zhong Y, Zheng X, Miao Y, Wan L, Yan H, Wang B (2013) Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheime’s disease. Am J Med Sci PMID: 22986607. 345(3): 222–226. doi:  10.1097/MAJ.0b013e318255a8f9 Google Scholar
  202. Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138:745–753PubMedCentralPubMedGoogle Scholar
  203. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 28:977–986PubMedGoogle Scholar
  204. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738PubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GothenburgGothenburgSweden

Personalised recommendations