Pharmacogenomics and Personalized Medicine in Parkinsonism

  • Trevor Archer
  • Anders Fredriksson


Pharmacogenetic-pharmacogenomic development from a single gene approach to incorporate pathway-based and genome-wide approaches has been benefitted from the emergence of several parallel technologies, such as genomics, transcriptomics, metabolomics, and proteomics which have contributed to and enhanced significantly propensities for generation and testing of pharmacogenomic hypotheses both paralleled and followed by associated developments in the clinical practice for treating Parkinson’s disease (PD). The notion of “personalized medicine,” incorporating the customization of healthcare, with decisions and practices that suited to each individual patient through application of genetic, biomarker, gene-environment interactive, or other information, involves principles through which drugs, drug combinations, and drug administration properties are optimized for each individual’s unique genetic makeup. The personalized medication of antiparkinsonian drug therapy; the symptomatic and regional disruptions; genetic, epigenetic, and biomarkers of the disorder; and the pharmacogenomics of neuroleptic drug-induced parkinsonism provide outlets for eventual understanding and management. As a case study in personalized medicine in the laboratory, physical exercise combined with the electromagnetic wavelength treated Saccharomyces cerevisiae yeast, Milmed, was demonstrated to abolish the marked hypokinesia induced by the dopamine (DA) neurotoxin, MPTP, as well as the severe loss of DA in the striatal region of the C57/BL6 mice studied. The Exercise-Milmed coadministration induced also a profound increase in brain-derived neurotrophin levels (BDNF) in the mouse parietal cortex region that included the motor cortex.


Physical Exercise Motor Fluctuation MPTP Treatment Spontaneous Motor Activity Extreme High Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL (1994) [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: Influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 44(7):1325–1329PubMedGoogle Scholar
  2. Al Hadithy AF, Wilffert B, Stewart RE, Looman NM, Bruggeman R, Brouwers JR, Matroos GE, van Os J, van Harten PN (2008) Pharmacogenetics of parkinsonism, rigidity, rest tremor, and bradykinesia in African-Caribbean inpatients: differences in association with dopamine and serotonin receptors. Am J Med Genet B 147B:890–897Google Scholar
  3. Alachkar A, Brotchie JM, Jones OT (2010) Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites. Neurosci Res 68:44–50PubMedGoogle Scholar
  4. Alkelai A, Greenbaum L, Rigbi A, Kanyas K, Lerer B (2009) Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients. Psychopharmacology 206:491–499PubMedGoogle Scholar
  5. Annesi F, De Marco EV, Rocca FE, Nicoletti A, Pugliese P, Nicoletti G, Arabia G, Tarantino P, De Mari M, Lamberti P, Gallerini S, Marconi R, Epifanio A, Morgante L, Cozzolino A, Barone P, Torchia G, Zappia M, Annesi G, Quattrone A (2011) Association study between the LINGO1 gene and Parkinson’s disease in the Italian population. Parkinsonism Relat Disord 17:638–641PubMedGoogle Scholar
  6. Arbouw ME, van Vugt JP, Egberts TC, Guchelaar HJ (2007) Pharmacogenetics of antiparkinsonian drug treatment: a systematic review. Pharmacogenomics 8:159–176PubMedGoogle Scholar
  7. Arbouw ME, Movig KL, Egberts TC, Poels PJ, van Vugt JP, Wessels JA, van der Straaten RJ, Neef C, Guchelaar HJ (2009) Clinical and pharmacogenetic determinants for the discontinuation of non-ergoline dopamine agonists in Parkinson’s disease. Eur J Clin Pharmacol 65:1245–1251PubMedCentralPubMedGoogle Scholar
  8. Arbouw ME, Guchelaar HJ, Egberts TCG (2010) Novel insights in pharmacogenetics of drug response in Parkinson’s disease. Pharmacogenomics 11:127–129PubMedGoogle Scholar
  9. Arbouw ME, Movig KL, Guchelaar HJ, Neef C, Egberts TC (2012) Dopamine agonists and ischemic complications in Parkinson’s disease: a nested case–control study. Eur J Clin Pharmacol 68:83–88PubMedCentralPubMedGoogle Scholar
  10. Archer T (2011) Physical exercise alleviates debilities of normal aging and Alzheimer’s disease. Acta Neurol Scand 123:221–238PubMedGoogle Scholar
  11. Archer T, Fredriksson A (2003) An antihypokinesic action of α2-adrenoceptors upon MPTP-induced behavior deficits in mice. J Neural Transm 110:183–200PubMedGoogle Scholar
  12. Archer T, Fredriksson A (2010) Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res 18:313–327PubMedGoogle Scholar
  13. Archer T, Fredriksson A (2012) Delayed exercise-induced functional and neurochemical partial restoration following MPTP. Neurotox Res 21:210–221PubMedGoogle Scholar
  14. Archer T, Fredriksson A, Jonsson G, Lewander T, Mohammed AK, Söderberg U (1986) Central noradrenaline depletion antagonizes aspects of d-amphetamine-induced hyperactivity in the rat. Psychopharmacology 88:141–146PubMedGoogle Scholar
  15. Archer T, Beninger RJ, Palomo T, Kostrzewa RM (2010) Epigenetics and biomarkers in the staging of neuropsychiatric disorders. Neurotox Res 18:347–366PubMedGoogle Scholar
  16. Archer T, Johansson B, Fredriksson A (2011a) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurolog Scand. doi: 10.1111/j.1600-0404.2010.01360.x Google Scholar
  17. Archer T, Fredriksson A, Schütz E, Kostrzewa R (2011b) Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 20:69–83PubMedGoogle Scholar
  18. Asari S, Fujimoto K, Miyauchi A, Sato T, Nakano I, Muramatsu S (2011) Subregional 6-[18F]fluoro-l-m-tyrosine uptake in the striatum in Parkinson’s disease. BMC Neurol 11:35PubMedCentralPubMedGoogle Scholar
  19. Bakker PR, van Harten PN, van Os J (2006) Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 83:185–192PubMedGoogle Scholar
  20. Bar-Yaacov D, Blumberg A, Mishmar D (2012) Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim Biophys Acta 1819:1107–1111PubMedGoogle Scholar
  21. Becquemont L (2009) Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics 10:961–969PubMedGoogle Scholar
  22. Becquemont L, Alfirevic A, Amstutz U, Brauch H, Jacqz-Aigrain E, Laurent-Puig P, Molina MA, Niemi M, Schwab M, Somogyi AA, Thervet E, Maitland-van der Zee AH, van Kuilenburg AB, van Schaik RH, Verstuyft C, Wadelius M, Daly AK (2011) Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB conference on pharmacogenetics and pharmacogenomics. Pharmacogenomics 12:113–124PubMedGoogle Scholar
  23. Björk L, Lindgren S, Hacksell U, Lewander T (1991) (S)-UH-301 antagonizes ®-8-OH-DPAT-induced cardiovascular effects in the rat. Eur J Pharmacol 199:367–370PubMedGoogle Scholar
  24. Boulanger L, Poo MM (1999) Gating of BDNF-induced synaptic potentiation by cAMP. Science 284:1982–1984PubMedGoogle Scholar
  25. Boyd JD, Jang H, Shepherd KR, Faherty C, Slack S, Jiao Y, Smeyne RJ (2007) Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res 1175:107–116PubMedCentralPubMedGoogle Scholar
  26. Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K (2007) Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 113(4):421–429PubMedGoogle Scholar
  27. Braun RJ, Büttner S, Ring J, Kroemer G, Madeo F (2009) Nervous yeast: modeling neurotoxic cell death. Trends Biochem Sci 35:135–144PubMedGoogle Scholar
  28. Caligiuri MP, Lacro JP, Jeste DV (1999) Incidence and predictors of drug-induced parkinsonism in older psychiatric patients treated with very low doses of neuroleptics. J Clin Psychopharmacol 19:322–328PubMedGoogle Scholar
  29. Caligiuri MP, Jeste DV, Lacro JP (2000) Antipsychotic-induced movement disorders in the elderly: epidemiology and treatment recommendations. Drugs Aging 17:363–384PubMedGoogle Scholar
  30. Carmona-Gutierrez D, Jungwirth H, Eisenberg T, Madeo F (2010) Cell cycle control of cell death in yeast. Cell Cycle 9:4046Google Scholar
  31. Cersosimo MG, Benarroch EE (2012a) Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 313(l–2):57–63. doi: 10.1016/j.jns.2011.09.030 PubMedGoogle Scholar
  32. Cersosimo MG, Benarroch EE (2012b) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46(3):559–564. doi: 10.1016/j.nbd.2011.10.014 PubMedGoogle Scholar
  33. Chaldakov G (2011) The metabotrophic NGF and BDNF: an emerging concept. Arch Ital Biol 149:257–263PubMedGoogle Scholar
  34. Chase TN (2004) Striatal plasticity and extrapyramidal motor dysfunction. Parkinsonism Relat Disord 10:305–313PubMedGoogle Scholar
  35. Chiueh CC, Burns RS, Markey SP, Jacobowitz DM, Kopin IJ (1985) Primate model of parkinsonism: selective lesion of nigrostriatal neurons by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sci 36:213–218PubMedGoogle Scholar
  36. Chong SA, Tan EC, Tan CH, Mythily, Chan YH (2003) Polymorphisms of dopamine receptors and tardive dyskinesia among Chinese patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 116B:51–54PubMedGoogle Scholar
  37. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669PubMedCentralPubMedGoogle Scholar
  38. Clayton TA (2012) Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Lett 586:956–961PubMedGoogle Scholar
  39. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le Net JL, Baker D, Walley RJ, Everett JR, Nicholson JK (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077PubMedGoogle Scholar
  40. Cohen AD, Tillerson JL, Smith AD, Schallert T, Zigmond MJ (2003) Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 85:299–305PubMedGoogle Scholar
  41. Contin M, Riva R, Martinelli P, Cortelli P, Albani F, Baruzzi A (1994) Longitudinal monitoring of the levodopa concentration-effect relationship in Parkinson’s disease. Neurology 44:1287–1292PubMedGoogle Scholar
  42. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8:518–530. doi: 10.1038/nrneurol.2012.156 PubMedGoogle Scholar
  43. Coppedè F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830Google Scholar
  44. Corvol JC, Bonnet C, Charbonnier-Beaupel F, Bonnet AM, Fiévet MH, Bellanger A, Roze E, Meliksetyan G, Ben Djebara M, Hartmann A, Lacomblez L, Vrignaud C, Zahr N, Agid Y, Costentin J, Hulot JS, Vidailhet M (2011) The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: a randomized crossover clinical trial. Ann Neurol 69:111–118. doi: 10.1002/ana.22155 PubMedGoogle Scholar
  45. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301PubMedGoogle Scholar
  46. Cui Q (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33:155–179PubMedGoogle Scholar
  47. Dechamps A, Diolez P, Thiaudière E, Tulon A, Onifade C, Vuong T, Helmer C, Bourdel-Marchasson I (2010) Effects of exercise programs to prevent decline in health related quality of life in highly deconditioned institutionalized elderly persons: a randomized controlled trial. Arch Intern Med 170:162–169PubMedGoogle Scholar
  48. Dettmer K, Hammock BD (2004) Metabolomics – a new exciting field within the “omics” sciences. Environ Health Perspect 112:A396–A397PubMedCentralPubMedGoogle Scholar
  49. Devos D, French DUODOPA Study Group (2009) Patient profile, indications, efficacy and safety of duodenal levodopa infusion in advanced Parkinson’s disease. Mov Disord 24:993–1000PubMedGoogle Scholar
  50. Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D, Miller JP, Vance JM, Foroud T, Beach TG, Myers RH (2012) Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation. PLoS Genet 8(6):e1002794PubMedCentralPubMedGoogle Scholar
  51. Evans WE, McLeod HL (2003) Pharmacogenomics – drug disposition, drug targets, and side effects. N Engl J Med 348:538–549PubMedGoogle Scholar
  52. Fabbrini G, Mouradian MM, Juncos JL, Schlegel J, Mohr E, Chase TN (1988) Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, part I. Ann Neurol 24:366–371PubMedGoogle Scholar
  53. Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ (2005) Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res 134:170–179PubMedGoogle Scholar
  54. Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELL-dopa trial. Earlier vs later L-DOPA. Arch Neurol 56:529–535PubMedGoogle Scholar
  55. Felicio AC, Shih MC, Godeiro-Junior C, Andrade LA, Bressan RA, Ferraz HB (2009) Molecular imaging studies in Parkinson disease: reducing diagnostic uncertainty. Neurologist 15(l):6–16. doi: 10.1097/NRL.0b013e318183fdd8 PubMedGoogle Scholar
  56. Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, Rothwell JC, Barker RA, Bhatia KP (2009) BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 80:141–144PubMedGoogle Scholar
  57. Fredriksson A, Archer T (1994) MPTP-induced behavioral and biochemical deficits: a parametric analysis. J Neural Transm Park Dis Dement Sect 7:123–132PubMedGoogle Scholar
  58. Fredriksson A, Plaznik A, Sundström E, Jonsson G, Archer T (1990) MPTP-induced hypoactivity in mice: reversal by L-dopa. Pharmacol Toxicol 67:295–301PubMedGoogle Scholar
  59. Fredriksson A, Palomo T, Chase TN, Archer T (1999) Tolerance to a suprathreshold dose of L-dopa in MPTP mice: effects of glutamate antagonists. J Neural Transm 106:283–300PubMedGoogle Scholar
  60. Fredriksson A, Stigsdotter IM, Hurtig A, Evalds-Kvist B, Archer T (2011) Running wheel activity restores MPTP-induced functional deficits. J Neural Transm 118:407–420PubMedGoogle Scholar
  61. Friedman JH (2006) Atypical antipsychotics in the elderly with Parkinson disease and the “black box” warning. Neurology 67:564–566PubMedGoogle Scholar
  62. Friedman JH (2010) Recommendations on the drug treatment of psychosis in Parkinson’s disease. Am J Med 123:e19PubMedGoogle Scholar
  63. Fumagalli F, Racagni G, Riva MA (2006) Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. Pharmacogenomics 6:95–104Google Scholar
  64. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044PubMedGoogle Scholar
  65. Gerlach J (1999) The continuing problem of extrapyramidal symptoms: strategies for avoidance and effective treatment. J Clin Psychiatry 60(Suppl 23):20–24PubMedGoogle Scholar
  66. Golant MB (1994) Physical laws of medicine and their use in the realization of living organisms with EHF radiation. Radiophys Quantum Electron 37:45–47Google Scholar
  67. Golant MB, Mudrik DG, Kruglyakova OP, Izvol’skaya VE (1994) Effect of EHF-radiation polarization on yeast cells. Radiophys Quantum Electron 37:82–84. doi: 10.1007/BF01039307 Google Scholar
  68. Graham JM, Grunewald RA, Sagar HJ (1997) Hallucinosis in idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 63:434–440PubMedCentralPubMedGoogle Scholar
  69. Grønbaek K, Treppendahl M, Asmar F, Guldberg P (2008) Epigenetic changes in cancer as potential targets for prophylaxis and maintenance therapy. Basic Clin Pharmacol Toxicol 0020103(5):389–396. doi: 10.1111/j.1742-7843.2008.00325.x Google Scholar
  70. Guillin O, Griffon N, Bezard E, Leriche L, Diaz J, Gross C, Sokoloff P (2003) Brain-derived neurotrophic factor controls dopamine D3 receptor expression: therapeutic implications in Parkinson’s disease. Eur J Pharmacol 480:89–95PubMedGoogle Scholar
  71. Gunes A, Scordo MG, Jaanson P, Dahl ML (2007) Serotonin and dopamine receptor gene polymorphisms and the risk of extrapyramidal side effects in perphenazine-treated schizophrenic patients. Psychopharmacology 190:479–484PubMedGoogle Scholar
  72. Guzey C, Scordo MG, Spina E, Landsem VM, Spigset O (2007) Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and transporter polymorphisms. Eur J Clin Pharmacol 63:233–241PubMedGoogle Scholar
  73. Hamdani M, Bonniere M, Ades J, Hamon M, Boni C, Gorwood P (2005) Negative symptoms of schizophrenia could explain discrepant data on the association between the 5-HT2A receptor gene and response to antipsychotics. Neurosci Lett 377:69–74PubMedGoogle Scholar
  74. Harms AS, Barnum CJ, Ruhn KA, Varghese S, Treviño I, Blesch A, Tansey MG (2011) Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol Ther 19:46–52PubMedCentralPubMedGoogle Scholar
  75. Hattori N, Machida Y, Sato S, Noda K, lijima-Kitami M, Kubo S, Mizuno Y (2006) Molecular mechanisms of nigral neurodegeneration in Park2 and regulation of parkin protein by other proteins. J Neural Transm Suppl (70):205–208Google Scholar
  76. Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33(6):599–614PubMedGoogle Scholar
  77. Heikkila RE, Sieber B-A, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183PubMedGoogle Scholar
  78. Hernán MA, Checkoway H, O’Brien R, Costa-Mallen P, De Vivo I, Colditz GA, Hunter DJ, Kelsey KT, Ascherio A (2002) MAOB intron 13 and COMT codon 158 polymorphisms, cigarette smoking, and the risk of PD. Neurology 58:1381–1387PubMedGoogle Scholar
  79. Hirose G (2006) Drug-induced parkinsonism: a review. J Neurol 253(Suppl 3):22–24Google Scholar
  80. Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK (2009) Genetic association studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharmacogenomics 10:225–233PubMedGoogle Scholar
  81. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482PubMedGoogle Scholar
  82. Huo LR, Liang XB, Li B, Liang JT, He Y, Jia YJ, Jia J, Gong XL, Yu F, Wang XM (2012) The cortical and striatal gene expression profile of 100 Hz electroacupuncture treatment in 6-hydroxydopamine-induced Parkinson’s disease model. Evid Based Complement Altern Med 2012:908439Google Scholar
  83. Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS One 4:e6729PubMedCentralPubMedGoogle Scholar
  84. Jabs BE, Bartsch AJ, Pfuhlmann B (2003) Susceptibility to neuroleptic-induced parkinsonism – age and increased substantia nigra echogenicity as putative risk factors. Eur Psychiatry 18:177–181PubMedGoogle Scholar
  85. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:257–269PubMedGoogle Scholar
  86. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi: 10.1136/jnnp.2007.131045 PubMedGoogle Scholar
  87. Jankovic J, Stacy M (2007) Medical management of levodopa-associated complications in patients with Parkinson’s disease. CNS Drugs 21:677–692PubMedGoogle Scholar
  88. Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV (2010) The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 13:1373–1379PubMedCentralPubMedGoogle Scholar
  89. Jones-Humble SA, Morgan PF, Cooper BR (1994) The novel anticonvulsant lamotrigine prevents dopamine depletion in C57 black mice in the MPTP animal model of Parkinson’s disease. Life Sci 54:245–252PubMedGoogle Scholar
  90. Kaakkola S (2010) Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson’s disease. Int Rev Neurobiol 95:207–225PubMedGoogle Scholar
  91. Kaiser R, Hofer A, Grapengiesser A, Gasser T, Kupsch A, Roots I, Brockmöller J (2003) L-Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 60:1750–1755PubMedGoogle Scholar
  92. Kalinderi K, Fidani L, Katsarou Z, Bostantjopoulou S (2011) Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract 65:1289–1294PubMedGoogle Scholar
  93. Kaplan GB, Vasterling JJ, Vedak PC (2010) Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behav Pharmacol 21:427–437PubMedGoogle Scholar
  94. Kiyohara C, Miyake Y, Koyanagi M, Fujimoto T, Shirasawa S, Tanaka K, Fukushima W, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M, Fukuoka Kinki Parkinson's Disease Study Group (2011) Genetic polymorphisms involved in dopaminergic neurotransmission and risk for Parkinson’s disease in a Japanese population. BMC Neurol 11:89PubMedCentralPubMedGoogle Scholar
  95. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419PubMedGoogle Scholar
  96. Kumar KR, Lohmann K, Klein C (2012) Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol 25:466–474PubMedGoogle Scholar
  97. Kurz MJ, Pothakos K, Jamaluddon S, Scott-Pandorf M, Arellano C, Lau Y-S (2007) A chronic mouse model of Parkinson’s disease has a reduced gait pattern certainty. Neurosci Lett 429:39–42PubMedCentralPubMedGoogle Scholar
  98. Lachenmayer ML, Yue Z (2012) Genetic animal models for evaluating the role of autophagy in etiopathogenesis of Parkinson disease. Autophagy 8(12), PMID: 22931754Google Scholar
  99. Laganiere J, Kells AP, Lai JT, Guschin D, Paschon DE, Meng X, Fong LK, Yu Q, Rebar EJ, Gregory PD, Bankiewicz KS, Forsayeth J, Zhang HS (2010) An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson’s disease. J Neurosci 30:16469–16474PubMedGoogle Scholar
  100. Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36:201–206PubMedGoogle Scholar
  101. Lee J, Poon LY, Chong SA (2008) Spontaneous dyskinesia in first-episode psychosis in a Southeast Asian population. J Clin Psychopharmacol 28:536–539PubMedGoogle Scholar
  102. Lee J, Jiang J, Sim K, Chong SA (2010) The prevalence of tardive dyskinesia in Chinese Singaporean patients with schizophrenia: revisited. J Clin Psychopharmacol 30:333–335PubMedGoogle Scholar
  103. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066. doi: 10.1016/S0140-6736(09)60492-X PubMedGoogle Scholar
  104. Lencer E, Eismann G, Kasten M, Kabakei K, Geithe V, Grimm J, Klein C (2004) Family history of primary movement disorders as a predictor for neuroleptic-induced extrapyramidal symptoms. Br J Psychiatry 185:465–471PubMedGoogle Scholar
  105. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN, Strous R, Chong SA, Heresco-Levy U, Verga M, Scharfetter J, Meltzer HY, Kennedy JL, Macciardi F (2005) Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 8:411–425PubMedGoogle Scholar
  106. Lesko LJ, Woodcock J (2004) Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov 3:763–769PubMedGoogle Scholar
  107. Lewitt PA, Ellenbogen A, Chen D, Lal R, McGuire K, Zomorodi K, Luo W, Huff FJ (2012) Actively transported levodopa prodrug XP21279: a study in patients with Parkinson disease who experience motor fluctuations. Clin Neuropharmacol 35(3):103–110. doi: 10.1097/WNF.0b013e31824e4d7d PubMedGoogle Scholar
  108. Lidow MS (2000) Neurotransmitter receptors in actions of antipsychotic medications. CRC Press, Boca Raton, p 256Google Scholar
  109. Lin JJ, Yueh KC, Lin SZ, Harn HJ, Liu JT (2007) Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. J Neural Sci 252:130–134Google Scholar
  110. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:189–199PubMedGoogle Scholar
  111. Linkis P, Jörgenson LG, Olesen HL, Madsen PL, Lassen NA, Secher NH (1995) Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 78:12–16PubMedGoogle Scholar
  112. Liu Y, Yu H, Mohell N, Nordvall G, Lewander T, Hacksell U (1995) Derivatives of cis-2-amino-8-hydroxy-1-methyltetralin: mixed 5-HT1A-receptor agonists and dopamine D2-receptor antagonists. J Med Chem 38:150–160PubMedGoogle Scholar
  113. Liu X, Robinson ML, Schreiber AM, Wu V, Lavail MM, Cang J, Copenhagen DR (2009a) Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression. J Comp Neurol 514:449–458PubMedCentralPubMedGoogle Scholar
  114. Liu YZ, Tang BS, Yan XX, Liu J, Ouyang DS, Nie LN, Fan L, Li Z, Ji W, Hu DL, Wang D, Zhou HH (2009b) Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. Eur J Clin Pharmacol 65:679–683PubMedGoogle Scholar
  115. Lopez-Gallardo E, Iceta R, Iglesias E, Montoya J, Ruiz-Pesini E (2011) OXPHOS toxigenomics and Parkinson’s disease. Mutat Res 728:98–106PubMedGoogle Scholar
  116. Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19:504–522PubMedCentralPubMedGoogle Scholar
  117. Macias M, Nowicka D, Czupryn Sulejczak D, Skup M, Skangiel-Kramska J, Czarkowska-Bauch J (2009) Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci 10:144PubMedCentralPubMedGoogle Scholar
  118. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176PubMedGoogle Scholar
  119. Marks BL, Katz L, Smith JK (2009) Exercise and the aging mind: buffing the baby boomer’s body and brain. Phys Sports Med 37:119–125Google Scholar
  120. Marks BL, Katz L, Styner M, Smith JK (2010) Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. Br J Sports Med 45(15):1208–1215, PMID: 20558529PubMedGoogle Scholar
  121. Marks BL, Katz LM, Styner M, Smith JK (2011) Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. Br J Sports Med 45(15):1208–1215. doi: 10.1136/bjsm.2009.068114 PubMedGoogle Scholar
  122. Maruyama W, Naoi M (2012) “70th Birthday Professor Riederer” induction of glial cell line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120(1):83–89, PMID: 22892822PubMedGoogle Scholar
  123. Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 18:247–258PubMedGoogle Scholar
  124. McArdle WD, Katch FI, Katch VI (1974) Appendix C. In: Lupash E (ed) Essentials of exercise physiology. Lippincott Williams and Wilkens, Baltimore, p 723Google Scholar
  125. Mendes P (2006) Metabolomics and the challenges ahead. Brief Bioinform 7:127PubMedGoogle Scholar
  126. Menna E, Cenni MC, Naska S, Maffei L (2003) The anterogradely transported BDNF promotes retinal axon remodeling during eye specific segregation within the LGN. Mol Cell Neurosci 24:972–983PubMedGoogle Scholar
  127. Mihara K, Suzuki A, Kondo T, Nagashima U, Ono S, Otani K, Kaneko S (2000) No relationship between Taq1 a polymorphism of dopamine D(2) receptor gene and extrapyramidal adverse effects of selective dopamine D(2) antagonists, bromperidol and nemonapride in schizophrenia: a preliminary study. Am J Med Genet 96:422–424PubMedGoogle Scholar
  128. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381PubMedGoogle Scholar
  129. Momose Y, Murata M, Kobayashi K, Tachikawa M, Nakabayashi Y, Kanazawa I, Toda T (2002) Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Ann Neurol 51:133–136PubMedGoogle Scholar
  130. Morishima M, Harada N, Hara S, Sano A, Takahashi A, Marita Y, Nakaya Y (2006) Monoamine oxidase A activity and norepinephrine level in hippocampus determine hyperwheel running in SPORTS rats. Neuropsychopharmacology 31:2627–2638PubMedGoogle Scholar
  131. Morris M, Schoo A (2004) Optimizing exercise and physical activity in older adults. Butterworth Heinemann, EdinburghGoogle Scholar
  132. Mougios V (2010) Exercise metabolism. In: Bahrke MS (ed) Exercise biochemistry. Human Kinetics, Champaign, p 122Google Scholar
  133. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735PubMedCentralPubMedGoogle Scholar
  134. Nakazono Y, Abe H, Murakami H, Koyabu N, Isaka Y, Nemoto Y, Murata S, Tsutsumi Y, Ohtani H, Sawada Y (2005) Association between neuroleptic drug-induced extrapyramidal symptoms and dopamine D2-receptor polymorphisms in Japanese schizophrenic patients. Int J Clin Pharmacol Ther 43:163–171PubMedGoogle Scholar
  135. Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Exercise and brain neurotrophins. Nature 373:109Google Scholar
  136. Nicoletti A, Nicoletti G, Arabia G, Annesi G, De Mari M, Lamberti P, Grasso L, Marconi R, Epifanio A, Morgante L, Cozzolino A, Barone P, Quattrone A, Zappia M (2011) Reproductive factors and Parkinson’s disease: a multicenter case–control study. Mov Disord 26:2563–2566. doi: 10.1002/mds.23951 PubMedGoogle Scholar
  137. Nielsen J, Jewett MC (2008) Impact systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8:122–131PubMedGoogle Scholar
  138. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunagi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258PubMedGoogle Scholar
  139. Oliff HS, Berchtold NC, Isackson P, Cotman CW (1998) Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res 61:147–153PubMedGoogle Scholar
  140. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36PubMedGoogle Scholar
  141. Oscarson S, Archer T, Fredriksson A (2009) Physical exercise and Milmed: synergism and neuroreparation in antiparkinsonian effects. In: Abstracts of staging neuropsychiatric disorders: implications for etiopathogenesis and treatment, Fundation Cerebro y Mente, Mojacar, p 88Google Scholar
  142. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775PubMedCentralPubMedGoogle Scholar
  143. Pahwa R, Lyons KE (2009) Levo-dopa-related wearing-off in Parkinson’s disease: identification and management. Curr Med Res Opin 25:841–849PubMedGoogle Scholar
  144. Paus S, Grünewald A, Klein C, Knapp M, Zimprich A, Janetzky B, Möller JC, Klockgether T, Wüllner U (2008) The DRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Mov Disord 23:599–602PubMedGoogle Scholar
  145. Paus S, Gadow F, Knapp M, Klein C, Klockgether T, Wüllner U (2009) Motor complications in patients form the German competence network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Mov Disord 24:1080–1084PubMedGoogle Scholar
  146. Paus S, Gadow F, Kaut O, Knapp M, Klein C, Klockgether T, Wüllner U (2010) Tremor in Parkinson’s disease is not associated with the DRD3 Ser9Gly polymorphism. Parkinsonism Relat Disord 16:381–383PubMedGoogle Scholar
  147. Pennington K, Peng J, Hung CC, Banks RE, Robinson PA (2010) Differential effects of wild-type and A53T mutant isoform of alpha-synuclein on the mitochondrial proteome of differentiated SH-SY5Y cells. J Proteome Res 9:2390–2401PubMedGoogle Scholar
  148. Petranovic D, Tyo K, Vemuri GN, Nielsen J (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10:1046–1059PubMedGoogle Scholar
  149. Ragimov CR, Ter-Asaturov GP, Golant MB, Rogov KA, Balakireva LZ (1991) Stimulation of reparative osteogenesis by millimeter band electromagnetic radiation in experimental traumatic defects of the mandible. Bull Exp Biol Med 111:562–565Google Scholar
  150. Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zwcckstetter M, Griesinger C, Jovin TM, Fernández CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci USA 102(12):4294–4299PubMedCentralPubMedGoogle Scholar
  151. Reynolds GP (2004) Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol 18:340–345PubMedGoogle Scholar
  152. Rinne UK, Larsen JP, Siden A, Worm-Petersen J (1998) Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group. Neurology 51:1309–1314PubMedGoogle Scholar
  153. Ruottinen HM, Rinne UK (1996a) A double-blind pharmacokinetic and clinical dose–response study of entacapone as an adjuvant to levodopa therapy in advanced Parkinson’s disease. Clin Neuropharmacol 19:283–296PubMedGoogle Scholar
  154. Ruottinen HM, Rinne UK (1996b) Effect of one month’s treatment with peripherally acting catechol-O-methyl transferase inhibitor, entacapone, on pharmacokinetics and motor response to levodopa in advanced parkinsonian patients. Clin Neuropharmacol 19:222–233PubMedGoogle Scholar
  155. Sallert M, Rantamäki T, Vesikansa A, Anthoni H, Harju K, Ylikauhaluoma J, Taira T, Castren E, Lauri SE (2009) Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors. J Neurosci 29:11294–11303PubMedGoogle Scholar
  156. Schenkman M, Hall DA, Barón AE, Schwartz RS, Mettler P, Kohrt WM (2012) Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther 92(11):1395–1410, PMID: 22822237PubMedCentralPubMedGoogle Scholar
  157. Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251PubMedGoogle Scholar
  158. Schultz W, Scarnati E, Sundström E, Romo R (1989) Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism by the catecholamine uptake inhibitor nomifensine: behavioral analysis in monkeys with partial striatal dopamine depletions. Neuroscience 31:219–230PubMedGoogle Scholar
  159. Schwarting RK, Sedelis M et al (1999) Strain-dependent recovery of open-field behavior and striatal dopamine deficiency in the mouse MPTP model of Parkinson’s disease. Neurotox Res 1:41–56PubMedGoogle Scholar
  160. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000a) Evidence for resistance to MPTP in C57BL/6 mice × BALB/c F1 hybrids as compared to their progenitor strains. Neuroreport 11:1093–1096PubMedGoogle Scholar
  161. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000b) MPTP susceptibility in the mouse: behavioural, neurochemical and histological analysis of gender and strain differences. Behav Genet 30:171–182PubMedGoogle Scholar
  162. Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125PubMedGoogle Scholar
  163. Sedelis M, Hofele K, Schwarting RK, Huston JP, Belknap JK (2003) Chromosomal loci influencing the susceptibility to the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 23:8247–8253PubMedGoogle Scholar
  164. Sharma M, Ioannidis JP, Aasly JO, Annesi G, Brice A, Van Broeckhoven C, Bertram L, Bozi M, Crosiers D, Clarke C, Facheris M, Farrer M, Garraux G, Gispert S, Auburger G, Vilariño-Güell C, Hadjigeorgiou GM, Hicks AA, Hattori N, Jeon B, Lesage S, Lill CM, Lin JJ, Lynch T, Lichtner P, Lang AE, Mok V, Jasinska-Myga B, Mellick GD, Morrison KE, Opala G, Pramstaller PP, Pichler I, Park SS, Quattrone A, Rogaeva E, Ross OA, Stefanis L, Stockton JD, Satake W, Silburn PA, Theuns J, Tan EK, Toda T, Tomiyama H, Uitti RJ, Wirdefeldt K, Wszolek Z, Xiromerisiou G, Yueh KC, Zhao Y, Gasser T, Maraganore D, Krüger R, On behalf of the GEO-PD Consortium (2012) Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79:659–667PubMedCentralPubMedGoogle Scholar
  165. Shastry BS (2005) Genetic diversity and new therapeutic concepts. J Hum Genet 50:321–328PubMedGoogle Scholar
  166. Shastry BS (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J 6:16–21PubMedGoogle Scholar
  167. Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345PubMedGoogle Scholar
  168. Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP (2010) Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics 11:1149–1167PubMedGoogle Scholar
  169. Stranahan AM, Zhou Y, Martin B, Maudsley S (2009) Pharmacomimetics of exercise: novel approaches for hippocampally-targeted neuroprotective agents. Curr Med Chem 16:4668–4678PubMedCentralPubMedGoogle Scholar
  170. Streffer JR, Grachev ID, Fitzer-Attas C, Gomez-Mancilla B, Boroojerdi B, Bronzova J, Ostrowitzki S, Victor SJ, Fontoura P, Alexander R (2012) Prerequisites to launch neuroprotective trials in Parkinson’s disease: an industry perspective. Mov Disord 27:651–655. doi: 10.1002/mds.25017 PubMedGoogle Scholar
  171. Sundström E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson’s disease. Brain Res 528:181–188PubMedGoogle Scholar
  172. Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft WJ, Kirchheiner J, Guchelaar HJ (2007) Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med 4:E209PubMedCentralPubMedGoogle Scholar
  173. Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207PubMedGoogle Scholar
  174. Tan EC, Chong SA, Mahendran R, Tan CH, Teo YY (2003) Mu opioid receptor gene polymorphism and neuroleptic-induced tardive dyskinesia in patients with schizophrenia. Schizophr Res 65:61–63PubMedGoogle Scholar
  175. Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y (2009) Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 18:787–798PubMedGoogle Scholar
  176. Teneiro S, Outeiro TF (2010) Simple is good: yeast models of neurodegeneration. FEMS Yeast Res 10:970–979Google Scholar
  177. Thomas AA, Friedman JH (2010) Current use of clozapine in Parkinson disease and related disorders. Clin Neuropharmacol 33:14–16PubMedGoogle Scholar
  178. Tillerson JL, Cohen AD, Philpower J, Miller GW, Zigmond MJ (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435PubMedGoogle Scholar
  179. Tillerson JL, Cohen AD, Philpower J, Miller GW, Zigmond MJ (2002) Forced nonuse in unilateral Parkinsonian rats exacerbates injury. J Neurosci 22:6790–6799PubMedGoogle Scholar
  180. Vallelunga A, Flaibani R, Formento-Dojot P, Biundo R, Facchini S, Antonini A (2012) Role of genetic polymorphisms of the dopaminergic system in Parkinson’s disease patients with impulse control disorders. Parkinsonism Relat Disord 18:397–399PubMedGoogle Scholar
  181. van Hilten JJ, Ramaker C, Van de Beek WJ, Finken MJ (2000) Bromocriptine for levodopa-induced motor complications in Parkinson’s disease. Cochrane Database Syst Rev 2000(2), CD001203Google Scholar
  182. Viberg H, Mundy W, Eriksson P (2008) Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes inBDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159PubMedGoogle Scholar
  183. Wagle Shukla A, Okun MS (2012) Personalized medicine in deep brain stimulation through utilization of neural oscillations. Neurology 78:1900–1901PubMedGoogle Scholar
  184. Wang L (2009) Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med 2(1):3–22. doi: 10.1002/wsbm.42 Google Scholar
  185. Wang L (2010) Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med 2:3–22PubMedGoogle Scholar
  186. Wang GJ, Volkow ND, Fowler JS, Franceschi D, Logan J, Pappas NR, Wong CT, Netusil N (2000) PET studies of the effects of aerobic exercise on brain striatal dopamine release. J Nucl Med 41:1352–1356PubMedGoogle Scholar
  187. Wang L, Weinshilboum RM (2006) Thiopurine S-methyltransferase (TPMT) pharmacogenetics: insights, challenges and future directions. Oncogene Res 25:1629–1638Google Scholar
  188. Wang L, Weinshilboum RM (2008) Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum Mol Genet 17:R174–R179PubMedCentralPubMedGoogle Scholar
  189. Wang L, McLeod HL, Weinshilboum RM, Feero WG, Guttmacher AE (2011) Genomics and drug response. N Engl J Med 364:1144–1153PubMedCentralPubMedGoogle Scholar
  190. Waters RP, Renner KJ, Pringle RB, Summers CH, Britton SL, Koch LG, Swallow JG (2008) Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiol Behav 18:1044–1054Google Scholar
  191. Weinshilboum RM (2003) Inheritance and drug response. N Engl J Med 348:529–537PubMedGoogle Scholar
  192. Weinshilboum RM, Wang L (2006) Pharmacogenetics and pharmacogenomics: development, science and translation. Ann Rev Genomics Hum Genet 7:223–245Google Scholar
  193. Williams-Gray CH, Hampshire A, Barker RA, Owen AM (2008) Attentional control in Parkinson’s disease is dependent on COMT VAL158Met genotype. Brain 131:397–408PubMedGoogle Scholar
  194. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077PubMedGoogle Scholar
  195. Woodcock J (2010) Assessing the clinical utility of diagnostics used in drug therapy. Clin Pharmacol Ther 88:765–773PubMedGoogle Scholar
  196. Wu K, O’Keeffe D, Politis M, O’Keeffe GC, Robbins TW, Bose SK, Brooks DJ, Piccini P, Barker RA (2012) The catechol-O-methyltransferase Val158Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson’s disease: a PET study. Brain 135(Pt 8):2449–2457PubMedGoogle Scholar
  197. Yang ML, Hasadsri L, Woods WS, George JM (2010) Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. Mol Neurodegener 5(1):9. doi: 10.1186/1750-1326-5-9 PubMedCentralPubMedGoogle Scholar
  198. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, Pugliese P, Spadafora P, Tarantino P, Carrideo S, Civitelli D, De Marco EV, Cirò-Candiano IC, Gambardella A, Quattrone A (2005) Sex differences in clinical and genetic determinants of L-dopa peak-dose dyskinesias in Parkinson’s disease: an exploratory study. Arch Neurol 62:601–605PubMedGoogle Scholar
  199. Zhang J, Vemuri G, Nielsen J (2010) Systems biology of energy homeostasis in yeast. Curr Opin Microbiol 13:382–388PubMedGoogle Scholar
  200. Zhou XP, Wu KY, Liang B, Fu XQ, Luo ZG (2008) TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci USA 105:17181–17186PubMedCentralPubMedGoogle Scholar
  201. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR (2011) Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 286:14941–14951PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GothenburgGothenburgSweden
  2. 2.Department of Neuroscience PsychiatryUppsala UniversityUppsalaSweden

Personalised recommendations