Pharmacogenomics in the Era of Personal Genomics: A Quick Guide to Online Resources and Tools

  • Ayesha Pasha
  • Vinod Scaria


The post-HapMap era has seen a spurt in the resources available for genome analysis and their interpretation along with databases and consortiums working on personal genomes. The advent of next-generation sequencing has provided an impetus to personal genomics while at the same time giving an indirect boost to concepts such as pharmacogenomics. Modern-day pharmacogenomics (or PGx) has evolved from the mundane – highlighting variations in common genes for drugs used the most, to the correlative study of the influence of a single gene on multiple drugs or combinatorial drugs on other drugs used concomitantly and so on. The vast outburst in data has led to a simultaneous growth in the databases and consortiums working on PGx as well as curating the data generated. This review covers those online resources and tools which are instrumental to the interpretation of personal genomes and contain pharmacogenetically relevant data. Further, it has been divided into five main categories depending upon the content and utility of the resource into (1) pharmacogenomics databases, (2) variation databases, (3) tools/resources for analysing PGx data, (4) community efforts and consortia and (5) standards for data representation.


Personal Genome System Biology Markup Language Comparative Toxicogenomics Database Patient Health Care Drug Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073CrossRefGoogle Scholar
  2. 1Malaysia Human Genome Variation Consortium.
  3. Cano FG, Rozenfeld S (2009) Adverse drug events in hospitals: a systematic review. Cad Saude Publica 25:S360–S372PubMedGoogle Scholar
  4. Cariaso M, Lennon G (2012) SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res 40(Database issue):D1308–D1312PubMedCentralPubMedCrossRefGoogle Scholar
  5. Church GM (2005) The personal genome project. Mol Syst Biol 1:2005.0030PubMedCentralPubMedGoogle Scholar
  6. Consortium on Breast Cancer Pharmacogenomics (COBRA).
  7. Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ (2009) Comparative toxicogenomics database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res 37(Database issue):D786–D792PubMedCentralPubMedCrossRefGoogle Scholar
  8. Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, Wiegers T, Mattingly CJ (2011a) The comparative toxicogenomics database: update 2011. Nucleic Acids Res 39(Database issue):D1067–D1072PubMedCentralPubMedCrossRefGoogle Scholar
  9. Davis AP, Wiegers TC, Murphy CG, Mattingly CJ (2011b) The curation paradigm and application tool used for manual curation of the scientific literature at the Comparative Toxicogenomics Database. Database (Oxford). 2011:bar034.Google Scholar
  10. de Vries EN, Ramrattan MA, Smorenburg SM, Gouma DJ, Boermeester MA (2008) The incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care 17(3):216–223PubMedCentralPubMedCrossRefGoogle Scholar
  11. Deloukas P, Bentley D (2004) The HapMap project and its application to genetic studies of drug response. Pharmacogenomics J 4(2):88–90PubMedCrossRefGoogle Scholar
  12. Deverka PA, Vernon J, McLeod HL (2010) Economic opportunities and challenges for pharmacogenomics. Annu Rev Pharmacol Toxicol 50(1):423–437PubMedCrossRefGoogle Scholar
  13. Flynn AA (2011) Pharmacogenetics: practices and opportunities for study design and data analysis. Drug Discov Today 16(19–20):862–866PubMedCrossRefGoogle Scholar
  14. Gamazon ER, Duan S, Zhang W, Huang RS, Kistner EO, Dolan ME, Cox NJ (2010) PACdb: a database for cell-based pharmacogenomics. Pharmacogenet Genomics 20(4):269–273PubMedCentralPubMedGoogle Scholar
  15. Genome Database of Latvian Population [LGDB].
  16. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA et al (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 81(3):328–345PubMedCrossRefGoogle Scholar
  17. Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R, Gong M, Gor W, Liu F, Truong C, Whaley R, Woon M, Zhou T, Altman RB, Klein TE (2008) The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge. Nucleic Acids Res 36(Database issue):D913–D918PubMedCentralPubMedGoogle Scholar
  19. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedCrossRefGoogle Scholar
  20. Indian Genome Variation Consortium (2005) The Indian Genome Variation database (IGVdb): a project overview. Hum Genet 118(1):1–11CrossRefGoogle Scholar
  21. Indian Genome Variation Database (IGVdb).
  22. International Consortium on Lithium Genetics (ConLiGen).
  23. International HapMap Project.
  24. International Serious Adverse Effects Consortium (iSAEC).
  25. Interpretome.
  26. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109–D114PubMedCentralPubMedCrossRefGoogle Scholar
  28. Karczewski KJ, Tirrell RP, Cordero P, Tatonetti NP, Dudley JT, Salari K, Snyder M, Altman RB, Kim SK (2012) Interpretome: a freely available, modular, and secure personal genome interpretation engine. Pac Symp Biocomput 2012:339–350Google Scholar
  29. Kawamoto K, Orlando LA, Voora D, Lobach DF, Joy S, Cho A, Ginsburg GS (2009) Evaluation of the PharmGKB knowledge base as a resource for efficiently assessing the clinical validity and utility of pharmacogenetic assays. AMIA Annu Symp Proc 2009:307–311PubMedCentralPubMedGoogle Scholar
  30. Kitzmiller JP, Groen DK, Phelps MA, Sadee W (2011) Pharmacogenomic testing: relevance in medical practice: why drugs work in some patients but not in others. Cleve Clin J Med 78(4):243–257PubMedCentralPubMedCrossRefGoogle Scholar
  31. Klein TE, Altman RB (2004) PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Pharmacogenomics J 4(1):1PubMedCrossRefGoogle Scholar
  32. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041PubMedCentralPubMedCrossRefGoogle Scholar
  33. Korean Genome Project (KPGP).
  34. Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, Beyer A, Bork P (2010) STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 38(Database issue):D552–D556PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40(Database issue):D876–D880PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kyoto Encyclopedia of Genes and Genomes (KEGG).
  37. Lee KC, Ma JD, Kuo GM (2009) Pharmacogenomics: bridging the gap between science and practice. J Am Pharm Assoc (2003). 50(1):e1–e14; quiz e15-7Google Scholar
  38. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L, Kiang A, Paschall J, Phan L, Popova N, Pretel S, Ziyabari L, Lee M, Shao Y, Wang ZY, Sirotkin K, Ward M, Kholodov M, Zbicz K, Beck J, Kimelman M, Shevelev S, Preuss D, Yaschenko E, Graeff A, Ostell J, Sherry ST (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39(10):1181–1186PubMedCentralPubMedGoogle Scholar
  39. Marsh S, McLeod HL (2006) Pharmacogenomics: from bedside to clinical practice. Hum Mol Genet. 15 Spec No. 1:R89–R93Google Scholar
  40. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res D619(Database issue)Google Scholar
  41. Mattingly CJ, Colby GT, Rosenstein MC, Forrest JN, Boyer JL (2004) Promoting comparative molecular studies in environmental health research: an overview of the comparative toxicogenomics database (CTD). Pharmacogenomics J 4(1):5–8PubMedCrossRefGoogle Scholar
  42. McLeod HL, Isaacs KL (2011) Preemptive pharmacogenetic testing: insufficient data equal unsatisfactory guidance. Ann Intern Med 154(12):842–844PubMedCrossRefGoogle Scholar
  43. Molokhia M, McKeigue P (2006) EUDRAGENE: European collaboration to establish a case-control DNA collection for studying the genetic basis of adverse drug reactions. Pharmacogenomics 7(4):633–638PubMedCrossRefGoogle Scholar
  44. Nakaya J, Kimura M, Hiroi K, Ido K, Yang W, Tanaka H (2010) Genomic sequence variation markup language (GSVML). Int J Med Inform 79(2):130–142PubMedCrossRefGoogle Scholar
  45. Nelson MR, Bryc K, King KS, Indap A, Boyko AR, Novembre J, Briley LP et al (2008) The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am J Hum Genet 83(3):347–358PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ngamphiw C, Assawamakin A, Xu S, Shaw PJ, Yang JO, Ghang H, Bhak J, Liu E, Tongsima S, Pan-Asian HUGO, Consortium SNP (2011) PanSNPdb: the Pan-Asian SNP genotyping database. PLoS One 6(6):e21451PubMedCentralPubMedCrossRefGoogle Scholar
  47. O’Shaughnessy KM (2006) HapMap, pharmacogenomics, and the goal of personalized prescribing. Br J Clin Pharmacol 61(6):783–786PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34PubMedCentralPubMedCrossRefGoogle Scholar
  49. Open Personal Genomics Consortium (OpenPGx).
  50. Owen RP, Altman RB, Klein TE (2008) PharmGKB and the International Warfarin Pharmacogenetics Consortium: the changing role for pharmacogenomic databases and single-drug pharmacogenetics. Hum Mutat 29(4):456–460PubMedCrossRefGoogle Scholar
  51. Pan-Asian SNP Database.
  52. Personal Genome Project.
  53. Pharmacogenomics and Cell Database.
  54. Pharmacogenomics Education Program (PharmGenEd).
  55. Pharmacogenomics for Every Nation Initiative (PGENi).
  56. Pharmacogenomics Research Network (PGRN).
  57. Pirmohamed M (2011) Pharmacogenetics: past, present and future. Drug Discov Today 16(19–20):852–861PubMedCrossRefGoogle Scholar
  58. Samarakoon PS, Jayasekara RW, Dissanayake VHW (2011) The Sri Lankan genome variation database. Sri Lanka J Biomed Inform 2(1):9–20Google Scholar
  59. Schulze TG, Alda M, Adli M, Akula N, Ardau R, Bui E, Chillotti C et al (2010) The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. Neuropsychobiology 62(1):72–78PubMedCentralPubMedCrossRefGoogle Scholar
  60. Search Tool for Interacting Chemicals (STITCH).
  61. SNPedia and Promethease.
  62. Sri Lankan Genome Variation Database (SLGVD).
  63. Systems Biology Markup Language (SBML).
  64. Teo YY, Sim X, Ong RT, Tan AK, Chen J, Tantoso E, Small KS, Ku CS, Lee EJ, Seielstad M, Chia KS (2009) Singapore genome variation project: a haplotype map of three Southeast Asian populations. Genome Res 19(11):2154–2162PubMedCentralPubMedCrossRefGoogle Scholar
  65. The Biomarkers Consortium.
  66. Thorn CF, Klein TE, Altman RB (2005) PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol 311:179–191PubMedGoogle Scholar
  67. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8(3):R39PubMedCentralPubMedCrossRefGoogle Scholar
  68. Via M, Gignoux C, Burchard EG (2010) The 1000 Genomes Project: new opportunities for research and social challenges. Genome Med 2(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  69. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164PubMedCentralPubMedCrossRefGoogle Scholar
  70. Wise J (2008) Consortium hopes to sequence genome of 1000 volunteers. BMJ 336(7638):237PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672PubMedCentralPubMedCrossRefGoogle Scholar
  72. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906PubMedCentralPubMedGoogle Scholar
  73. Yang YT, Wiley E, Leppard J (2011) Individualized medicine and pharmacogenomics: ethical, legal and policy challenges. J Med Pers 9:48–57CrossRefGoogle Scholar
  74. Zhang W, Ratain MJ, Dolan ME (2008) The HapMap resource is providing new insights into ourselves and its application to pharmacogenomics. Bioinform Biol Insight 2:15–23Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Open Source Drug Discovery UnitCouncil of Scientific and Industrial ResearchNew DelhiIndia
  2. 2.GN Ramachandran Knowledge Center for Genome InformaticsCSIR Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations