Advertisement

Pharmacogenomics, Pharmacoproteomics, and Pharmacometabolomics and Personalized Medicine: An Overview

  • Nalini Raghavachari
  • Marjan Gucek
Chapter

Abstract

The mapping of the human genome has been an important milestone in understanding the interindividual differences in genetic predisposition to diseases and individuals’ responsiveness to drugs. These factors have now begun to revolutionize the clinical landscape with new therapeutic strategies defined as “personalized medicine.” Personalized medicine is believed to transform the traditional “one size fits all” model of medicine by applying individual gene-based information to better manage a patient’s disease or predisposition toward a disease and to tailor strategies for the prevention and treatment of diseases. In this context, recent explosion in the omics tools and technologies is believed to generate valuable pharmacogenomic, proteomic, and metabolic information of patients which would serve as potential accelerating factors for the development of personalized medicine. Personalized medicine has the ability to change the overall landscape of medicine from diagnosis and treatment to prevention. The success of personalized therapy in the future will depend on scientific advances in pharmacogenomics, proteomics, and metabolics and on a systems biology approach in the diagnosis and treatment of complex diseases. This chapter discusses the basic concepts and advancements in the fields of pharmacogenomics, pharmacoproteomics, and pharmacometabolomics and their applications in personalized medicine.

Keywords

Single Nucleotide Polymorphism Personalized Medicine Immobilize Metal Affinity Chromatography System Biology Approach Omics Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the support from the Intramural Research Program of NHLBI/NIH.

References

  1. Addona TA, Shi X et al (2011) A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol 29(7):635–643PubMedCentralPubMedCrossRefGoogle Scholar
  2. An HJ, Froehlich JW et al (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 13(4):421–426PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56(2):177–185PubMedCrossRefGoogle Scholar
  4. Awada A, Vandone AM et al (2012) Personalized management of patients with solid cancers: moving from patient characteristics to tumor biology. Curr Opin Oncol 24(3):297–304PubMedCrossRefGoogle Scholar
  5. Beck M, Schmidt A et al (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549PubMedCentralPubMedGoogle Scholar
  6. Bencharit S (2012) Progresses and challenges of omics studies and their impacts in personalized medicine. J Pharmacogenomics Pharmacoproteomics 3(1):e105Google Scholar
  7. Beverage JN, Sissung TM et al (2007) CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 96(9):2224–2231PubMedCrossRefGoogle Scholar
  8. Bhartiya D, Kapoor S et al (2012) Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discov 7(6):503–513PubMedCrossRefGoogle Scholar
  9. Bhasker CR, Hardiman G (2010) Advances in pharmacogenomics technologies. Pharmacogenomics 11(4):481–485PubMedCrossRefGoogle Scholar
  10. Blum HE (2011) Personalized medicine. Praxis 100(3):159–166PubMedCrossRefGoogle Scholar
  11. Bochud M, Burnier M et al (2011) Top three pharmacogenomics and personalized medicine applications at the nexus of renal pathophysiology and cardiovascular medicine. Curr Pharmacogenomics Person Med 9(4):299–322PubMedCentralPubMedCrossRefGoogle Scholar
  12. Boja ES, Rodriguez H (2012) Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 12(8):1093–1110PubMedCrossRefGoogle Scholar
  13. Chan SY, White K et al (2012) Deciphering the molecular basis of human cardiovascular disease through network biology. Curr Opin Cardiol 27(3):202–209PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chen R, Mias GI et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cho A, Normile D (2002) Nobel Prize in chemistry. Mastering macromolecules. Science 298(5593):527–528PubMedCrossRefGoogle Scholar
  16. Chouchane L, Mamtani R et al (2011) Personalized medicine: a patient-centered paradigm. J Transl Med 9:206PubMedCentralPubMedCrossRefGoogle Scholar
  17. Choudhary C, Kumar C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840PubMedCrossRefGoogle Scholar
  18. Clayton TA, Lindon JC et al (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440(7087):1073–1077PubMedCrossRefGoogle Scholar
  19. Costa FF (2009) Non-coding RNAs and new opportunities for the private sector. Drug Discov Today 14(9–10):446–452PubMedCrossRefGoogle Scholar
  20. Davis JC, Furstenthal L et al (2009) The microeconomics of personalized medicine: today’s challenge and tomorrow’s promise. Nat Rev Drug Discov 8(4):279–286PubMedCrossRefGoogle Scholar
  21. Donnelly LA, Doney AS et al (2011) Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther 89(2):210–216PubMedCentralPubMedCrossRefGoogle Scholar
  22. Downard KM (2007) Historical account: Francis William Aston: the man behind the mass spectrograph. Eur J Mass Spectrom (Chichester, Eng) 13(3):177–190CrossRefGoogle Scholar
  23. Farooqi AA, Rana A et al (2012) NutriTRAILomics in prostate cancer: time to have two strings to one’s bow. Mol Biol Rep 39(4):4909–4914PubMedCrossRefGoogle Scholar
  24. Fenn JB, Mann M et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71PubMedCrossRefGoogle Scholar
  25. Grimsrud PA, Swaney DL et al (2010) Phosphoproteomics for the masses. ACS Chem Biol 5(1):105–119PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gucek M, Murphy E (2010) What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 88(2):211–218PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hall AM, Wilkins MR (2005) Warfarin: a case history in pharmacogenetics. Heart 91(5):563–564PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hardiman G (2008) Applications of microarrays and biochips in pharmacogenomics. Methods Mol Biol 448:21–30PubMedCrossRefGoogle Scholar
  29. Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 75(7):1699–1705PubMedCrossRefGoogle Scholar
  30. Hippocrates C (1993) The sources of medical ethics: Hippocrates and his disciples. Rev Infirm 43(8):12–14PubMedGoogle Scholar
  31. Hochholzer W, Morrow DA et al (2010) Novel biomarkers in cardiovascular disease: update 2010. Am Heart J 160(4):583–594PubMedCrossRefGoogle Scholar
  32. Hong KW, Oh B (2010) Overview of personalized medicine in the disease genomic era. BMB Rep 43(10):643–648PubMedCrossRefGoogle Scholar
  33. Huttlin EL, Jedrychowski MP et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189PubMedCentralPubMedCrossRefGoogle Scholar
  34. Jaffe AS (2012) Troponin – past, present, and future. Curr Probl Cardiol 37(6):209–228PubMedCrossRefGoogle Scholar
  35. Jain KK (2004) Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics 5(3):331–336PubMedCrossRefGoogle Scholar
  36. Joffe HV, Xu R et al (2004) Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost 91(6):1123–1128PubMedGoogle Scholar
  37. Kaddurah-Daouk R, Kristal BS et al (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683PubMedCrossRefGoogle Scholar
  38. Kim SC, Sprung R et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618PubMedCrossRefGoogle Scholar
  39. Klawitter J, Haschke M et al (2010) Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br J Clin Pharmacol 70(2):241–251PubMedCentralPubMedCrossRefGoogle Scholar
  40. Korman A, Oh A et al (2012) Statistical methods in metabolomics. Methods Mol Biol 856:381–413PubMedCrossRefGoogle Scholar
  41. Kuhn E, Whiteaker JR et al (2012) Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol Cell Proteomics 11(6):M111 013854PubMedCentralPubMedGoogle Scholar
  42. Longo R, D’Andrea M et al (2010) Pharmacogenetics in breast cancer: focus on hormone therapy, taxanes, trastuzumab and bevacizumab. Expert Opin Investig Drugs 19(Suppl 1):S41–S50PubMedCrossRefGoogle Scholar
  43. Loscalzo J (2011) Systems biology and personalized medicine: a network approach to human disease. Proc Am Thorac Soc 8(2):196–198PubMedCrossRefGoogle Scholar
  44. Ma JD, Lee KC et al (2012) Clinical application of pharmacogenomics. J Pharm Pract 25(4):417–427PubMedCrossRefGoogle Scholar
  45. Macek B, Mann M et al (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221PubMedCrossRefGoogle Scholar
  46. Madian AG, Wheeler HE et al (2012) Relating human genetic variation to variation in drug responses. Trends Genet 28(10):487–495PubMedCentralPubMedCrossRefGoogle Scholar
  47. Malki K, Campbell J et al (2012) Pharmacoproteomic investigation into antidepressant response in two mouse inbred strains. Proteomics 12(14):2355–2365PubMedCrossRefGoogle Scholar
  48. Manavalan A, Feng L et al (2012) New insights into the brain protein metabolism of Gastrodia elata-treated rats by quantitative proteomics. J Proteomics 75(8):2468–2479PubMedCrossRefGoogle Scholar
  49. Mangravite LM, Wilke RA et al (2008) Pharmacogenomics of statin response. Curr Opin Mol Ther 10(6):555–561PubMedGoogle Scholar
  50. Matkovich SJ, Zhang Y et al (2010) Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq. Circ Res 106(9):1459–1467PubMedCentralPubMedCrossRefGoogle Scholar
  51. McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8(3):371–382PubMedCrossRefGoogle Scholar
  52. Mehta R, Jain RK et al (2011) Personalized medicine: the road ahead. Clin Breast Cancer 11(1):20–26PubMedCrossRefGoogle Scholar
  53. Mini E, Nobili S (2009) Pharmacogenetics: implementing personalized medicine. Clin Cases Miner Bone Metab 6(1):17–24PubMedCentralPubMedGoogle Scholar
  54. Mocellin S, Shrager J et al (2010) Targeted Therapy Database (TTD): a model to match patient’s molecular profile with current knowledge on cancer biology. PLoS One 5(8):e11965PubMedCentralPubMedCrossRefGoogle Scholar
  55. Murphy E, Kohr M et al (2012) S-nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol 52(3):568–577PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nagaraj N, Wisniewski JR et al (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548PubMedCentralPubMedGoogle Scholar
  57. Newman WG (2012) Pharmacogenetics: transforming clinical medicine. J R Coll Physicians Edinb 42(3):244–247PubMedCrossRefGoogle Scholar
  58. Nicholson JK, Wilson ID et al (2011) Pharmacometabonomics as an effector for personalized medicine. Pharma-cogenomics 12(1):103–111CrossRefGoogle Scholar
  59. Nielsen FC, Borregaard N (2009) Pharmacogenetics and tailored drug therapy. Ugeskr Laeger 171(10):790–794PubMedGoogle Scholar
  60. Nita-Lazar A (2011) Quantitative analysis of phosphorylation-based protein signaling networks in the immune system by mass spectrometry. Wiley Interdiscip Rev Syst Biol Med 3(3):368–376PubMedCrossRefGoogle Scholar
  61. Pan C, Olsen JV et al (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8(12):2796–2808PubMedCentralPubMedCrossRefGoogle Scholar
  62. Panareo S, Rossi R et al (2011) A practical method for the estimation of therapeutic activity in the treatment of Graves’ hyperthyroidism. Q J Nucl Med Mol Imaging 55(5):576–585PubMedGoogle Scholar
  63. Pareek CS, Smoczynski R et al (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435PubMedCentralPubMedCrossRefGoogle Scholar
  64. Patti GJ, Yanes O et al (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269PubMedCentralPubMedCrossRefGoogle Scholar
  65. Paulo JA, Kadiyala V et al (2012) Mass spectrometry-based proteomics for translational research: a technical overview. Yale J Biol Med 85(1):59–73PubMedCentralPubMedGoogle Scholar
  66. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566PubMedCrossRefGoogle Scholar
  67. Prensner JR, Rubin MA et al (2012) Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 4(127):127rv123Google Scholar
  68. Qattan M, Demonacos C et al (2012) Roadmap to personalized medicine. Croat Med J 53(4):294–297PubMedCentralPubMedCrossRefGoogle Scholar
  69. Ram PT, Mendelsohn J et al (2012) Bioinformatics and systems biology. Mol Oncol 6(2):147–154PubMedCentralPubMedCrossRefGoogle Scholar
  70. Rio J, Comabella M et al (2009) Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 5(10):553–560PubMedCrossRefGoogle Scholar
  71. Roden DM, Altman RB et al (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145(10):749–757PubMedCrossRefGoogle Scholar
  72. Roederer MW, McLeod HL (2010) Applying the genome to national drug formulary policy in the developing world. Pharmacogenomics 11(5):633–636PubMedCrossRefGoogle Scholar
  73. Sadee W (2011) Genomics and personalized medicine. Int J Pharm 415(1–2):2–4PubMedCrossRefGoogle Scholar
  74. Serkova NJ, Brown MS (2012) Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 4(3):321–341PubMedCrossRefGoogle Scholar
  75. Shi Y, Xu P et al (2011) Ubiquitinated proteome: ready for global? Mol Cell Proteomics 10(5):R110 006882PubMedCentralPubMedGoogle Scholar
  76. Sreekumar A, Poisson LM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231):910–914PubMedCentralPubMedCrossRefGoogle Scholar
  77. Stastna M, Van Eyk JE (2012) Secreted proteins as a fundamental source for biomarker discovery. Proteomics 12(4–5):722–735PubMedCentralPubMedCrossRefGoogle Scholar
  78. Sudhindra A, Ochoa R et al (2011) Biomarkers, prediction, and prognosis in non-small-cell lung cancer: a platform for personalized treatment. Clin Lung Cancer 12(6):360–368PubMedCrossRefGoogle Scholar
  79. Superko HR, Momary KM et al (2012) Statins personalized. Med Clin North Am 96(1):123–139PubMedCrossRefGoogle Scholar
  80. van Rooij T, Wilson DM et al (2012) Personalized medicine policy challenges: measuring clinical utility at point of care. Expert Rev Pharmacoecon Outcomes Res 12(3):289–295PubMedCrossRefGoogle Scholar
  81. Vermeire S, Van Assche G et al (2010) Role of genetics in prediction of disease course and response to therapy. World J Gastroenterol 16(21):2609–2615PubMedCentralPubMedCrossRefGoogle Scholar
  82. Vertegaal AC (2011) Uncovering ubiquitin and ubiquitin-like signaling networks. Chem Rev 111(12):7923–7940PubMedCentralPubMedCrossRefGoogle Scholar
  83. Whirl-Carrillo M, McDonagh EM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417PubMedCentralPubMedCrossRefGoogle Scholar
  84. Winnike JH, Li Z et al (2010) Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin Pharmacol Ther 88(1):45–51PubMedCrossRefGoogle Scholar
  85. Witzmann FA, Grant RA (2003) Pharmacoproteomics in drug development. Pharmacogenomics J 3(2):69–76PubMedCrossRefGoogle Scholar
  86. Yu LR (2011) Pharmacoproteomics and toxicoproteomics: the field of dreams. J Proteomics 74(12):2549–2553PubMedCrossRefGoogle Scholar
  87. Zhang A, Sun H et al (2012a) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300PubMedCrossRefGoogle Scholar
  88. Zhang A, Sun H et al (2012b) Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal Bioanal Chem 404(4):1239–1245PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Division of Geriatrics & Clinical GerontologyNational Institute of Aging, NIHBethesdaUSA
  2. 2.DNA Sequencing and Genomics Core Facility – Genetics and Developmental Biology CenterNational Heart Lung and Blood Institute, National Institutes of HealthBethesdaUSA
  3. 3.Proteomics Core Facility – Systems Biology CenterNational Heart Lung and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations