Skip to main content

Petrology of Lamproites from the Nuapada Lamproite Field, Bastar Craton, India

  • Conference paper
  • First Online:
Proceedings of 10th International Kimberlite Conference

Abstract

This work presents the first mineralogical, geochemical and 40Ar/39Ar geochronological data on hypabyssal facies lamproites near Kalmidadar and Darlimunda in the Nuapada Lamproite Field of the Bastar Craton. The Kalmidadar lamproite is a diamondiferous intrusion with surface dimension of ~320 m × 160 m, whereas the Darlimunda lamproite is a dyke swarm comprising clusters of several narrow (<5 m wide) and elongated bodies. Indicator mineral suite around the Kalmidadar lamproite is marked by abundance of Cr-spinel, rarity of garnet and absence of Cr-diopside and picroilmenite. Mineralogically, the Kalmidadar lamproite comprises phenocrysts of olivine (pseudomorphed by calcite and talc) and microphenocrysts of phlogopite set in a groundmass of chlorite and calcite. The phlogopite is Ti rich (5.4–7.4 wt % TiO2), and the relationship between its Ti content and octahedral site deficiency indicates two substitution mechanisms, viz. Ti + ▭ ↔ 2 Mg and Ti + 2Al ↔ Mg + 2Si. The Darlimunda lamproites have undergone pervasive hydrothermal and/or deuteric alteration, which has resulted in complete chloritisation of phlogopite and extensive silicification of the rocks. Tiny grains of rutile and apatite are commonly scattered in the groundmass of both Kalmidadar and Darlimunda lamproites. The Nuapada lamproites have high contents of compatible elements such as V, Cr and Ni and of incompatible elements such as Ba, Zr, Nb and Hf. They also show high abundance of REE and enrichment in LREE relative to HREE. The incompatible element distribution patterns of the lamproites are marked by Nb, Sr, P, Hf and Zr anomalies relative to REE. The observed petrological and geochemical characteristics of the Nuapada lamproites are consistent with the derivation of the magma from a metasomatised subcontinental lithospheric mantle source. Whole-rock 40Ar/39Ar isotopic data yields an age of 1055 ± 10 Ma for the Nuapada lamproites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akal C (2008) K-richterite-olivine-phlogopite-diopside-sanidine lamproites from the Afyon volcanic province. Turkey Geol Mag 145:570–585

    Google Scholar 

  • Atkinson WJ, Smith CB, Boxer GL (1984) A review of the kimberlitic rocks of Western Australia. In: Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Elsevier, Amsterdam, pp 195–224

    Chapter  Google Scholar 

  • Babu EVSSK, Bhaskar Rao YJ, Mainkar D, Pashine JK, Shrikant Rao R (2009) Mantle xenoliths from the Kodomali kimberlite pipe, Bastar Craton, central India: Evidence for decompression melting and crustal contamination in the mantle source. Geochim. Cosmochim. Acta Goldschmidt Abstracts, vol 73, p A66

    Google Scholar 

  • Barnes SJ, Roedder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Bickford ME, Basu A, Mukherjee A, Hietpas J, Schieber J, Patranabis-Deb S, Ray RK, Guhey R, Bhattacharya P, Dhang PC (2011) New U-Pb SHRIMP zircon ages of the Dhamda tuff in the Mesoproterozoic Chhattisgarh basin, peninsular India: stratigraphic implications and significance of a 1-Ga thermal-magmatic event. J Geol 119:535–548

    Article  Google Scholar 

  • Biswal TK, Sinha S, Mandal A, Ahuja H, Das MK (2003) Deformation pattern of Bastar Craton adjoining Eastern Ghat Mobile Belt, NW Orissa. Gondwana Geol Mag Spl Publ 7:101–108

    Google Scholar 

  • Biswal TK, De Waele B, Ahuja H (2007) Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara Craton, India: a structural and zircon U-Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons. Tectonics, vol 26, TC4006, doi:10.1029/2006TC002005

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar Craton, southern India. J Petrol 45:907–948

    Google Scholar 

  • Chalapathi Rao NV, Kamde G, Kale HS, Dongre A (2010) Petrogenesis of the mesoproterozoic lamproites from the Krishna valley, Eastern Dharwar Craton, Southern India. Precambr Res 177:103–130

    Google Scholar 

  • Chalapathi Rao NV, Lehmann B, Mainkar D, Belyatsky B (2011) Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume lithosphere interaction in the Bastar Craton, Central India. Contrib Miner Petrol 161:721–742

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999) Precise 40Ar/39Ar age determinations of the Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm emplacement in the eastern Dharwar Craton. J Geol Soc India 53:425–432

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Pyle DM, Madhavan V (1996) New proterozoic K–Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar Craton, South India: evidence for non-contemporaneous emplacement. Precambr Res 79:363–369

    Google Scholar 

  • Chaudhuri AK, Mukhopadhyay J, Patranabis-Deb S, Mukherjee MK, Ghosh G (2002) The Purana basins of southern cratonic province of India—a case for Mesoproterozoic fossil rifts. Gond Res 5:23–33

    Article  Google Scholar 

  • Choukroun M, O’reilly SY, Griffin WL, Pearson NJ, Dawson JB (2005) Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 33:45–48

    Article  Google Scholar 

  • Coe N, Le Roex A, Gurney JJ, Pearson GD, Nowell G (2008) Petrogenesis of Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contrib Miner Petrol 156:627–652

    Article  Google Scholar 

  • Das DP, Kundu A, Das N, Dutta DR, Kumaran K, Ramamurthy S, Thanavelu C, Rajaiya V (1992) Lithostratigraphy and sedimentation of Chhattisgarh basin. Indian Minerals 46:271–288

    Google Scholar 

  • Das K, Yokoyama K, Chakraborty PP, Sarkar A (2009) Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry. J Geol 117:88–102

    Article  Google Scholar 

  • Das N, Dutta DR, Das DP (2001) Proterozoic cover sediments of southeastern Chhattisgarh state and adjoining parts of Orissa. Geol Surv India Spec Publ 55(2):237–262

    Google Scholar 

  • Das S, Nasipuri P, Bhattacharya A, Swaminathan S (2008) The thrust-contact between the Eastern Ghats belt and the adjoining Bastar Craton (Eastern India): evidence from mafic granulites and tectonic implications. Precambr Res 162:70–85

    Article  Google Scholar 

  • Davies GR, Stolz AZ, Mahotkin IL, Mowell GM, Pearson DG (2006) Trace element and Sr-Pb-Nd-Hf evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol 47:1119–1146

    Article  Google Scholar 

  • Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J Geol 83:589–607

    Article  Google Scholar 

  • Egorov KN, Solov’eva LV, Kovach VP, Men’shagin YuV, Maslovskaya MN, Sekerin AP, Bankovskaya EV (2006) Petrological features of olivine–phlogopite lamproites of the Sayan region: evidence from Sr–Nd isotope and ICP-MS trace-element data. Geochem Int 44:729–735

    Google Scholar 

  • Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasizing indicator mineral geochemistry and Canadian examples. Geol Surv Canada Bull 423

    Google Scholar 

  • Foley SF (1992a) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204

    Article  Google Scholar 

  • Foley SF (1992b) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic magmas. Lithos 28:435–453

    Article  Google Scholar 

  • Foley SF (1993) An experimental study of olivine lamproite: first results from the diamond stability field. Geochim Cosmochim Acta 57:483–489

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultra-potassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Google Scholar 

  • Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite. Lithos 75:19–38

    Article  Google Scholar 

  • Fraser KJ (1987) Petrogenesis of kimberlites from South Africa and lamproites from Western Australia and North America. Ph.D. thesis, The Open University, Milton Keynes, UK

    Google Scholar 

  • Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70

    Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambr Res 160:308–322

    Article  Google Scholar 

  • Ghosh JG (2004) 3.56 Ga tonalite in the central part of the Bastar Craton, India: oldest Indian date. J Asian Earth Sci 23:359–364

    Google Scholar 

  • Gregory LC, Meert JG, Pradhan V, Pandit M, Tamrat E, Malone SJ (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the upper Vindhyan supergroup. Precambr Res 149:65–75

    Article  Google Scholar 

  • Griffin WL, Fisher NI, Friedman JH, Ryan CG (1997) Statistical techniques for the classification of chromites in diamond exploration samples. J Geochem Explor 59:233–249

    Article  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Grütter HS, Latti D, Menzies A (2006) Cr-Saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820

    Article  Google Scholar 

  • Hussain MF, Ahmad T, Mondal MEA (2008) Geochemistry of the Precambrian mafic dyke swarms of the central and northeastern parts of Bastar Craton, central India: constraints of their enrichment processes. In: Srivastava RK, Sivaji Ch, Chalapathi Rao NV (eds) Indian dykes: geochemistry, geophysics and geochronology. Narosa Publishing House, New Delhi, pp 397–412

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geol Surv Western Australia Bull 132:268p

    Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modeling. Lithos 77:639–646

    Article  Google Scholar 

  • Kumar A, Gopalan K, Rao KRP, Nayak SS (2001) Rb–Sr Age of kimberlites and lamproites from Eastern Dharwar Craton, South India. J Geol Soc India 58:135–141

    Google Scholar 

  • Kumar A, Padmakumari VM, Dayal AM, Murthy DSN, Gopalan K (1993) Rb–Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacement. Precambr Res 62:227–232

    Article  Google Scholar 

  • Kumar A, Heaman LM, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: A possible link to ~1.1 Ga global magmatism. Precambr Res 154:192–204

    Google Scholar 

  • le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I Kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathi Rao NV, Heaman LM (2010) Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet Sci Lett 290:142–149

    Google Scholar 

  • Lewis JD (1987) The geology and geochemistry of the West Kimberly lamproite province, Western Australia. M.Sc. thesis, University of Western Australia, Perth

    Google Scholar 

  • Lucas H, Ramsay R, Hall AE, Smith CB, Sobolev NV (1989) Garnets from Western Australian kimberlites and related rocks. In: Ross J, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Geol Soc Australia Spec Publ 14(2):809–819

    Google Scholar 

  • Ludwig KR (2001) ISOPLOT 2.49: a geochronological toolkit for microsoft excel, Berkeley Geochronology Center, Berkeley, CA

    Google Scholar 

  • Mainkar D (2011) Petrological and geochemical investigation of the Behradih kimberlite from the Bastar Craton, central India, with special reference to its diamond potential. Unpublished Ph.D. thesis, Pt. R.S. University, Raipur (Chhattisgarh), 175p

    Google Scholar 

  • Masun K, Sthapak AV, Singh A, Vaidya A, Krishna C (2009) Exploration history and geology of the diamondiferous ultramafic Saptarshi intrusions, Madhya Pradesh, India. Lithos 112:142–154

    Google Scholar 

  • Mathur SM, Singh HN (1971) Petrology of the Majhgawan pipe rock. Geol Surv India Misc Publ 19:78–85

    Google Scholar 

  • Mc Donough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Kamenov G (2011) Preliminary report on the paleomagnetism of 1.8 Ga dykes from the Bastar and Dharwar cratons, Peninsular India. Gond Res 20:335–343

    Google Scholar 

  • Menzies MA, Hawkesworth CJ (eds) (1987) Mantle metasomatism. Academic Press, London

    Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47:2463–2489

    Article  Google Scholar 

  • Mitchell RH (1995) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas. J Petrol 36:1455–1474

    Article  Google Scholar 

  • Mitchell RH (2006) Potassic magmas derived from metasomatised lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. Geol J Soc India 67:317–327

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York 447p

    Book  Google Scholar 

  • Mitchell RH, Edgar AD (2002) Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Miner Petrol 74:115–128

    Article  Google Scholar 

  • Mukherjee A, Ray RK (2010) An alternate view on the stratigraphic position of the ~1-Ga Sukhda tuff vis-a`-vis chronostratigraphy of the Precambrians of the Central Indian Craton. J Geol 118:325–332

    Article  Google Scholar 

  • Mukhopadhyay PK, Ghosh S, Rath SC, Swain RB, Shome S (2004) New finds of lamproite dykes in Nawapara district, Orissa. Indian Minerals 58:183–196

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43:981–1001

    Article  Google Scholar 

  • Nanda JK, Rath SC, Behera SN (2000) Alkaline and ultramafic magmatism in the contact zone between high and low grade terrains: Example from northwestern Orissa, India. Geol Surv India Spec Publ 57:122–130

    Google Scholar 

  • Nixon PH, Thirwall MF, Buckley F, Davis CJ (1984) Spanish and Western Australian lamproites: Aspects of whole rock chemistry. In: Kornprobst J (ed) Kimberlites and related rocks. Proceedings of the Third International Kimberlite Conference, vol 1. pp. 285–296

    Google Scholar 

  • Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambr Res 189:91–103

    Article  Google Scholar 

  • Patel SC, Ravi S, Anilkumar Y, Naik A, Thakur SS, Pati JK, Nayak SS (2009) Mafic xenoliths in Proterozoic kimberlites from Eastern Dharwar Craton, India: mineralogy and P–T regime. J Asian Earth Sci 34:336–346

    Google Scholar 

  • Patel SC, Ravi S, Anilkumar Y, Pati JK (2010) Major element composition of concentrate garnets in Proterozoic kimberlites from the Eastern Dharwar Craton, India: implications on sub-continental lithospheric mantle. J Asian Earth Sci 39:578–588

    Google Scholar 

  • Patnaik BC, Sahu N, Mishra BP, Maharana RC (2004) Discovery of a diamondiferous olivine-lamproite pipe in Orissa. Bull Soc Geoscientists Allied Technol 5:34–38

    Google Scholar 

  • Patranabis-Deb S, Bickford ME, Hill B, Chaudhury AK, Basu A (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ~500-Ma adjustment in Indian Proterozoic stratigraphy. J Geol 115:407–415

    Article  Google Scholar 

  • Patranabis-Deb S, Chaudhury AK (2007) A retreating fan-delta system in the Neoproterozoic Chhattisgarh rift basin; central India: major controls on its evolution. AAPG Bull 91:785–808

    Google Scholar 

  • Phillips D (2012) Comment on “New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution” by Osborne et al. [Precambrian Res. 189 (2011) 91–103]. Precambr Res 208–211:49–52

    Google Scholar 

  • Pisarevsky SA, Biswal TK, Wang X, De Waele B, Ernst R, Söderlund U, Tait JA, Ratre K, Singh YK, Cleve M (2012) Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.07.015

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal MEA (2012) Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambr Res 198–199:51–76

    Article  Google Scholar 

  • Prelevic D, Foley SF, Cvetkovic V (2007) A review of petrogenesis of Mediterranean Tertiary lamproites: a perspective from the Serbian ultrapotassic province In: Beccaluva L, Banchini G, Wilson M (eds) Cenozoic Volcanism in the Mediterranean area. Geol Soc Amer Spec Paper 418:113–129

    Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar Craton. India J Geol Soc 166:193–196

    Article  Google Scholar 

  • Ramakrishnan M, vaidyanadhan R (2008) Geology of India, vol 1. Geological Society of India, Bangalore, pp 556p

    Google Scholar 

  • Ratre K, De Waele B, Biswal TK, Sinha S (2010) SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450–517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula. J Asian Earth Sci 39:565–577

    Google Scholar 

  • Reddy TAK, Sridhar M, Ravi S, Chakravarthi V, Neelakantam S (2003) Petrography and geochemistry of the Krishna Lamproite field, Andhra Pradesh. J Geol Soc India 61:131–146

    Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, De Paolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Palacz ZA (1992) Phlogopite in the generation of olivine-melilitites from Namaqualand, South Africa, and its implications for element fractionation processes in the upper mantle. Lithos 28:347–365

    Article  Google Scholar 

  • Roy P, Balaram V, Kumar A (2007) New REE and trace element data on two kimberlite reference materials by ICP-MS. Geostand Geoanal Res 31:261–273

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul DK, Mc Naughton NJ, Gupta SN, Bishui PK (1993) Early Archean crust in Bastar Craton, central India—a geochemical and isotopic study. Precambr Res 62:127–137

    Google Scholar 

  • Sarkar SK, Shashidharan K, Mohanty AK, Mishra BK, Patel MK, Datta B, Ganvir DV (2001) Exploration for diamond and KCR in the Bastar Craton. Geol Surv India Spec Publ 64:425–434

    Google Scholar 

  • Schmidt KH, Bottazzi PR, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–299

    Google Scholar 

  • Smith CB (1992) The age of the Majhgawan Pipe, India. Scott Smith Petrology, p 9

    Google Scholar 

  • Smith CB, Atkinson WJ, Tyler EWJ (1991) Diamond exploration in Western Australia, Northern Territory and South Australia. In: Glasson KR, Rattigan JH (eds) Geological aspects of the discovery of important minerals in Australia. Australas Inst Mineral Metall, Melbourne, pp 429–453

    Google Scholar 

  • Späth A, Le Roex AP, Opiyo-Akech N (2001) Plume–lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills Volcanic Province, southern Kenya. J Petrol 42:765–787

    Article  Google Scholar 

  • Srivastava RK, Singh RK (2004) Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: evidence for mantle metasomatism. J Asian Earth Sci 23:373–389

    Google Scholar 

  • Srivastava RK, Gautam GC (2009) Precambrian mafic magmatism in the Bastar Craton, central India. J Geol Soc India 73:52–72

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2012) Early Precambrian mafic dyke swarms from the central Archaean Bastar Craton, India: geochemistry, petrogenesis and tectonic implications. J Geol 47:144–160

    Article  Google Scholar 

  • Stein HJ, Hannah JL, Zimmerman A, Markey RJ, Sarkar SC, Pal AB (2004) A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambr Res 134:189–226

    Google Scholar 

  • Subba Rao DV, Sridhar DN, Balara V, Nagaraju K, Rao TG, Keshavakrishna A, Singh UP (2008) Proterozoic mafic-ultramafic dyke swarms in the vicinity of Chhattisgarh–Khariar–Singhora basins in northern Bastar Craton, India. In: Srivastava RK, Sivaji CH, Chalapathi Rao NV (eds) Indian dykes: geochemistry, geophysics and geochronology. Narosa Publishing House, New Delhi, pp 377–396

    Google Scholar 

  • Tainton KM, Mc Kenzie D (1994) The generation of kimberlites, lamproites and their source rocks. J Petrol 35:787–817

    Article  Google Scholar 

  • Vijesh VK (2010) Petrology of lamproites from the Krishna Lamproite field, Andhra Pradesh. Unpublished M.Tech (Geoexploration) thesis, IIT Bombay, 65p

    Google Scholar 

  • Yellappa T, Chalapathi Rao NV, Chetty TRK (2010) Occurrence of lamproitic dykes at the northern margin of the Indravati Basin, Bastar Craton, central India. J Geol Soc India 75:632–643

    Google Scholar 

Download references

Acknowledgments

The paper is a contribution to the IGCP–557. Thanks are due to John Garlick of M/s Mackay and Schnellmann Pty. Ltd., Australia, who, as UNDP consultant, helped in diamond exploration in Odisha. B.C. Patnaik (Retd.) of the Directorate of Geology, Government of Odisha, is thanked for help in different stages of field work. Dr. L. S. Mombasawala and Mrs. Y. Y. Durve of the SAIF, IIT Bombay, are thanked for help in ED–XRF analysis. Dr. V. Balaram of NGRI, Hyderabad, is thanked for providing the MY-4 and SARM-39 standards. The FIST grant from the Department of Science and Technology (DST), Government of India, is acknowledged for funding the ICP-AES facility at IIT Bombay. Grant no. IR/S4/ESF-04/2003 from the DST for setting up of National Facility for 40Ar/39Ar Geothermochronology at IIT Bombay is gratefully acknowledged. Constructive comments from two anonymous reviewers significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Sahu, N. et al. (2013). Petrology of Lamproites from the Nuapada Lamproite Field, Bastar Craton, India. In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_9

Download citation

Publish with us

Policies and ethics