Skip to main content

Nd–Hf Isotope Systematics of Megacrysts from the Mbuji-Mayi Kimberlites, D. R. Congo: Evidence for a Metasomatic Origin Related to Kimberlite Interaction with the Cratonic Lithospheric Mantle

  • Conference paper
  • First Online:

Abstract

Garnet and clinopyroxene megacrysts from the Cretaceous (70 Ma) Mbuji-Mayi kimberlites and one garnet megacryst from the lower Oligocene (32 Ma) Kundelungu kimberlites in Democratic Republic of Congo have been investigated for combined Nd and Hf isotope compositions. These megacrysts are thought to result from the metasomatic (re)crystallization of lithospheric mantle peridotites during the infiltration of a proto-kimberlitic melt/fluid. In addition, zircon and baddeleyite megacrysts from the Mbuji-Mayi kimberlites have been investigated for Hf isotope composition. Although baddeleyites are uncommon in kimberlite megacryst suites, their origin is most probably related to that of zircon megacrysts from Mbuji-Mayi. Mbuji-Mayi garnet megacrysts display ranges of εNd(t) from −0.6 to +6.1 and εHf(t) from +6.6 to +12.1; the Kundelungu garnet megacryst has overlapping isotopic compositions (+0.8 and +6.0, respectively). By contrast, Mbuji-Mayi clinopyroxene megacrysts display a more restricted range of εNd(t) values (+2.7 to +4.6) and extend toward lower εHf(t) compositions (+3.0 to +9.1). Mbuji-Mayi zircon and baddeleyite megacrysts have similar εHf(t) values (+6.5 to +7.1 and +6.0 to +8.4, respectively). Differences in initial isotopic composition between garnets on the one hand and clinopyroxenes, zircons, and baddeleyites on the other have been confirmed by various Hf and Nd model ages calculations. Clinopyroxene, zircon, and baddeleyite megacrysts plot close to the worldwide kimberlite field in a combined εHf(t)-εNd(t) plot, which favors recent (i.e. at or shortly before the time of kimberlite eruption) crystallization through interaction between the infiltrating proto-kimberlite melt/fluid and peridotite wall rocks. On the other hand, the wide range of εNd(t) values and the higher εHf(t) values for garnet megacrysts suggest that they have been formed through recrystallization of old garnet-bearing peridotitic protoliths in the subcontinental lithospheric mantle. Calculated rare earth element patterns of liquids in equilibrium with clinopyroxene megacrysts confirm the direct relationship to Group I kimberlites, while those in equilibrium with garnet megacrysts show more variability, which could also reflect that their formation results from more complex processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ballentine CJ, Lee D-C, Halliday AN (1997) Hafnium isotopic studies of the Cameroon line and new HIMU paradoxes. Chem Geol 139:111–124

    Article  Google Scholar 

  • Batumike JM, O’Reilly SY, Griffin WL, Belousova EA (2007) U-Pb and Hf-isotopes analyses of zircon from the Kundelungu kimberlites, DR Congo: implications for crustal evolution. Prec Res 156:195–225

    Article  Google Scholar 

  • Batumike JM, Griffin WL, Belousova EA, Pearson NJ, O’Reilly SY, Shee SR (2008) LAM-ICPMS U-Pb dating of kimberlitic perovskite: Eocene-Oligocene kimberlites from the Kundelungu Plateau, DR Congo. Earth Planet Sci Lett 267:609–619

    Article  Google Scholar 

  • Becker M, le Roex AP (2006) Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution. J Petrol 47:673–703

    Article  Google Scholar 

  • Bedini R-M, Blichert-Toft J, Boyet M, Albarède F (2004) Isotopic constraints on the cooling of the continental lithosphere. Earth Planet Sci Lett 223:99–111

    Article  Google Scholar 

  • Begemann F, Ludwig KR, Lugmair GW, Min K, Nyquist LE, Patchett PJ, Renne PR, Shih C-Y, Villa IM, Walker RJ (2001) Call for an improved set of decay constants for geochronological use. Geochim Cosmochim Acta 65:111–121

    Article  Google Scholar 

  • Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Min Mag 62:355–366

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821

    Article  Google Scholar 

  • Chakhmouradian AR, Williams CT (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 10. Mineralogical Society of Great Britain, London, pp 293–340

    Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Coussaert N (2005) Evaluation du degré d’équilibre dans les péridotites mantéliques du Lesotho. PhD Thesis, ULB, Université de la Rochelle, p 321

    Google Scholar 

  • Davies GR, Spriggs AJ, Nixon PH (2001) A non cognate origin for the Gibeon kimberlite megacryst suite, Namibia: implications for the origin of Namibian kimberlites. J Petrol 42:159–172

    Article  Google Scholar 

  • Dawson JB, Hill PG, Kinny PD (2001) Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib Miner Petrol 140:720–733

    Article  Google Scholar 

  • Debaille V, Yin Q-Z, Brandon AD, Jacobsen B (2008) Martian mantle mineralogy investigated by the 176Lu−176Hf and 147Sm−143Nd systematics of shergottites. Earth Planet Sci Lett 269:186–199

    Article  Google Scholar 

  • Demaiffe D, Fieremans M (1981) Strontium isotopic geochemistry of the Mbuji-Mayi and Kundelungu kimberlites (Zaire, Central Africa). Chem Geol 31:311–323

    Article  Google Scholar 

  • Demaiffe D, Fieremans M, Fieremans C (1991) The kimberlites of Central Africa: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. The Phanerozoic African Plate. Springer, New York, pp 537–559

    Google Scholar 

  • Eggler DH, Mccallum ME, Smith CB (1979) Megacryst assemblage in kimberlite from Northern Colorado and Southern Wyoming: petrology, geothermometry-barometry and a real distribution. In: Boyd FR, Meyer HOA (eds) Proceedings of the 2nd international kimberlite conference, AGU, pp 213–226

    Google Scholar 

  • El Fadili S, Demaiffe D (1999) Petrology of eclogite and granulite nodules from the Mbuji-Mayi kimberlites (Kasai, Congo): the significance of kyanite-omphacite intergrowths. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, National Book Printer, Cape Town. Goodwood, South Africa, pp 205–213

    Google Scholar 

  • Fieremans M, Ottenburgs R (1979) The occurrence of zircon and baddeleyite crystals in the kimberlites formations at Mbuji-Mayi (Bakwanga, Zaïre). Bull Soc Belge Geol:25–31

    Google Scholar 

  • Fieremans M, Hertogen J, Demaiffe D (1984) Petrography, geochemistry and strontium isotopic composition of the Mbuji-Mayi and Kundelungu kimberlites (Zaire). In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp 107–120

    Google Scholar 

  • Foster RP, Leahy K, Hunns SR, Pelham DA, Lawrence SR, Harrison AE (2001) Pan-African terranes: realizing the metal potential. Trans Instn Min Metall (Sect B: Appl Earth Sci) 110:B15–B23

    Google Scholar 

  • Garrison JR, Taylor LA (1980) Megacryst and xenoliths in kimberlite, Elliott County, Kentucky: a mantle sample from beneath the Permian Appalachian Plateau. Contrib Miner Petrol 75:27–42

    Article  Google Scholar 

  • Goolaerts A, Mattielli N, de Jong J, Weis D, Scoates JS (2004) Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chem Geol 206:1–9

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53:165–187

    Article  Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2003) Garnet lherzolites from the Kaapvaal craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analyses of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Phil Trans Roy Soc London 342:1–21

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Heaman LM, Lecheminant AN (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126

    Article  Google Scholar 

  • Hops JJ, Gurney JJ, Harte B (1992) The Jagersfontein Cr-poor megacryst suite: towards a model for megacryst petrogenesis. J Volc Geotherm Res 50:143–160

    Article  Google Scholar 

  • Ionov D, Blichert-Toft J, Weis D (2005) Hf isotope compositions and HREE variations in off-craton garnet and spinel peridotite xenoliths from central Asia. Geochim Cosmochim Acta 69:2399–2418

    Article  Google Scholar 

  • Janney PE, le Roex AP, Carlson RW, Viljoen KS (2002) A chemical and multi-isotope study of the Western Cape olivine Melilite Province, South Africa: implications for the sources of kimberlites and the origin of the HIMU signature in Africa. J Petrol 43:2339–2370

    Article  Google Scholar 

  • Jones RA (1987) Strontium and neodymium isotope and rare earth element evidence for the genesis of megacrysts in kimberlites of Southern Africa. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 711–724

    Google Scholar 

  • Kampata MD (1993) Minéralogie et géochimie des kimberlites du Haut plateau du Kundelungu (Shaba, Zaïre). PhD Thesis, Université Catholique de Louvain-La-Neuve, p 248

    Google Scholar 

  • Kampata MD, Moreau J, Hertogen J, Demaiffe D, Condliffe E, Mvuemba NF (1995) Megacrysts and ultramafic xenoliths from Kundelungu kimberlites (Shaba, Zaire). Miner Mag 59:661–676

    Article  Google Scholar 

  • Kapustin YL (1980) Mineralogy of carbonatites. Amerind Publishing Co. Pvt. Ltd., New Delhi, p 259

    Google Scholar 

  • Keshav S, Corgne A, Gudfinnsson GH, Bizimis M, McDonough WF, Fei Y (2005) Kimberlite petrogenesis: insights from clinopyroxene-melt partitioning experiments at 6 GPa in the CaO-MgO-Al2O3-SiO2-CO2 system. Geochim Cosmochim Acta 69:2829–2845

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Gunther D (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib Miner Petrol 139:704–719

    Article  Google Scholar 

  • Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112S:284–295

    Article  Google Scholar 

  • Kostrovitsky SI, Mitchell RH, Ivanova RN, Suvorova LF (1997) Trends of variability of garnet megacryst composition from diamond-bearing and diamond-free kimberlite pipes (Yakutia, Russia). Russ Geol Geophys 38:444–453

    Google Scholar 

  • Kostrovitsky SI, Morikiyo T, Serov IV, Yakovlev DA, Amirzhanov AA (2007) Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russ Geol Geophys 48:272–290

    Article  Google Scholar 

  • Kresten P, Fels P, Berggren G (1975) Kimberlitic zircons: a possible aid in prospecting for kimberlites. Miner Deposita 10:47–56

    Article  Google Scholar 

  • le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Lumpkin GR (1999) Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: an overview and case study. J Nuclear Materials 274:206–217

    Article  Google Scholar 

  • Malarkey J, Pearson DG, Kjarsgaard BA, Davidson JP, Nowell GM, Ottley CJ, Stammer J (2010) From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth Planet Sci Lett 299:80–90

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–254

    Article  Google Scholar 

  • Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Academic Press, London, p 472

    Google Scholar 

  • Moore A, Belousova E (2005) Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas. Contrib Miner Petrol 149:462–481

    Article  Google Scholar 

  • Moore RO, Griffin WL, Gurney JJ, Ryan CG, Cousens DR, Sie SH, Suter GF (1992) Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa. Lithos 29:1–18

    Article  Google Scholar 

  • Nixon PH, Boyd FR (1973) The discrete nodule (megacryst) association in kimberlites from Northern Lesotho. In: Nixon PH (ed) Lesotho kimberlites. Lesotho National Development Corporation, Maseru, pp 67–76

    Google Scholar 

  • Nowell GM, Pearson DG, Kempton PD, Noble SR, Smith CB (1999) Origins of kimberlites: a Hf isotope perspective. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, National Book Printer, Cape Town. Goodwood, South Africa, pp 616–624

    Google Scholar 

  • Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45:1583–1612

    Article  Google Scholar 

  • Odling NWA (1995) An experimental replication of upper-mantle metasomatism. Nature 373:58–60

    Article  Google Scholar 

  • Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW (2007) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903

    Article  Google Scholar 

  • Paton C, Hergt JM, Woodhead JD, Phillips D, Shee SR (2009) Identifying the asthenospheric component of kimberlite magmas from the Dharwar Craton, India. Lithos 112S:296–310

    Article  Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–977

    Google Scholar 

  • Pearson DG, Nowell GM, Kjarsgaard BA, Dowall DP (2008) The genesis of kimberlite: geochemical constraints. In: Extended abstract from the 9th international kimberlite conference, 9IKC-A-00149

    Google Scholar 

  • Pivin M, Féménias O, Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112S:951–960

    Article  Google Scholar 

  • Pivin M, Berger J, Demaiffe D (2011) Nature and origin of an exceptional Cr-rich kyanite-bearing clinopyroxenite xenolith from Mbuji-Mayi kimberlite (DRC). Eur J Miner 23:257–268

    Article  Google Scholar 

  • Pokhilenko NP (2009) Polymict breccia xenoliths: evidence for the complex character of kimberlite formation. Lithos 112S:934–941

    Article  Google Scholar 

  • Raber E, Haggerty SE (1979) Zircon-oxide reactions in diamond-bearing kimberlites. In: Boyd FR, Meyer HOA (eds) Proceedings of the 2nd international kimberlite conference, AGU, pp 229–240

    Google Scholar 

  • Rehfeldt T, Foley SF, Jacob DE, Carlson RW, Lowry D (2008) Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim Cosmochim Acta 72:5722–5756

    Article  Google Scholar 

  • Reischmann T, Brügmann GE, Jochum KP, Todt WA (1995) Trace element and isotopic composition of baddeleyite. Miner Petrol 53:155–164

    Article  Google Scholar 

  • Richardson SH, Erlank AJ, Hart S (1985) Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett 75:116–128

    Article  Google Scholar 

  • Rubatto D, Scambelluri M (2003) U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib Miner Petrol 146:341–355

    Article  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145:447–460

    Article  Google Scholar 

  • Scatena-Wachel DE, Jones AP (1984) Primary baddeleyite (ZrO2) in kimberlite from Bentfontein, South Africa. Miner Mag 48:257–261

    Article  Google Scholar 

  • Schärer U, Corfu F, Demaiffe D (1997) U-Pb and Lu-Hf isotopes in baddeleyite and zircon megacrysts from the Mbuji-Mayi kimberlite: constraints on the subcontinental mantle. Chem Geol 143:1–16

    Article  Google Scholar 

  • Schärer U, Berndt J, Deutsch A (2011) The genesis of deep-mantle xenocrystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite): trace-element patterns. Eur J Miner 23:241–255

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Francis D (2001) Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: evidence for lithosphere stratification beneath Arctic Canada. Geochim Cosmochim Acta 65:4243–4255

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Francis D, Gariépy C (2002) Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada. Earth Planet Sci Lett 197:245–259

    Article  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71:289–322

    Article  Google Scholar 

  • Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48:589–625

    Article  Google Scholar 

  • Spetsius ZV, Belousova EA, Griffin WL, O’Reilly SY, Pearson NJ (2002) Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth Planet Sci Lett 199:111–126

    Article  Google Scholar 

  • Tappe S, Steenfelt A, Heaman LM, Simonetti A (2009) The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships. Lithos 112S:385–399

    Article  Google Scholar 

  • Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305:235–248

    Article  Google Scholar 

  • Tappe S, Steenfelt A, Nielsen T (2012) Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: new high-precision U-Pb and Sr-Nd isotope data on perovskite. Chem Geol 320–321:113–127

    Article  Google Scholar 

  • van Achterbergh E, Griffin WL, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Miner Petrol 141:397–414

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53:1583–1595

    Article  Google Scholar 

  • Weis D, Demaiffe D (1985) A depleted mantle source for kimberlites from Zaire: Nd, Sr and Pb isotopic evidence. Earth Planet Sci Lett 73:269–277

    Article  Google Scholar 

  • Williams CT (1996) The occurrence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatites complex, Kola Peninsula, Russia. Miner Mag 60:639–646

    Article  Google Scholar 

  • Woodhead J, Hergt J, Phillips D, Paton C (2009) African kimberlites revisited: in situ Sr-isotope analysis of groundmass perovskite. Lithos 112S:311–317

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the late Dr Carlos Fieremans (former executive officer of the MIBA) and to Dr Mark Fieremans, who generously provided the exceptional collection of megacrysts from Mbuji-Mayi. MP is supported by a FRIA-FNRS grant and Van Buuren funding. Ivan Petrov and Claude Maerschalk are thanked for helping on the Nu Plasma and in the clean laboratory, respectively. The detailed and constructive review of Dr S. Tappe is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pivin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Pivin, M., Debaille, V., Mattielli, N., Demaiffe, D. (2013). Nd–Hf Isotope Systematics of Megacrysts from the Mbuji-Mayi Kimberlites, D. R. Congo: Evidence for a Metasomatic Origin Related to Kimberlite Interaction with the Cratonic Lithospheric Mantle . In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_8

Download citation

Publish with us

Policies and ethics