Skip to main content

Petrology, Bulk-Rock Geochemistry, Indicator Mineral Composition and Zircon U–Pb Geochronology of the End-Cretaceous Diamondiferous Mainpur Orangeites, Bastar Craton, Central India

  • Conference paper
  • First Online:
Proceedings of 10th International Kimberlite Conference

Abstract

The end-Cretaceous diamondiferous Mainpur orangeite field comprises six pipes (Behradih, Kodomali, Payalikhand, Jangara, Kosambura and Bajaghati) located at the NE margin of the Bastar craton, central India. The preservation of both diatreme (Behradih) and hypabyssal facies (Kodomali) in this domain implies differential erosion. The Behradih samples are pelletal and tuffisitic in their textural habit, whereas those of the Kodomali pipe have inequigranular texture and comprise aggregates of two generations of relatively fresh olivines. The Kosambura pipe displays high degrees of alteration and contamination with silicified macrocrysts and carbonated groundmass. Olivine, spinel and clinopyroxene in the Behradih and the Kodomali pipes share overlapping compositions, whereas the groundmass phlogopite and perovskite show conspicuous compositional differences. The bulk-rock geochemistry of both the Behradih and Kodomali pipes has a more fractionated nature compared to southern African orangeites. Incompatible trace elements and their ratios readily distinguish them from the Mesoproterozoic Wajrakarur (WKF) and the Narayanpet kimberlites (NKF) from the eastern Dharwar craton, southern India, and bring out their similarity in petrogenesis to southern African orangeites. The pyrope population in the Mainpur orangeites is dominated by the calcic-lherzolitic variety, with sub-calcic harzburgitic and eclogitic garnets in far lesser proportion. Garnet REE distribution patterns from the Behradih and Payalikhand pipes display “smooth” as well as “sinusoidal” chondrite-normalised patterns. They provide evidence for the presence of a compositionally layered end-Cretaceous sub-Bastar craton mantle, similar to that reported from many other cratons worldwide. The high logfO2 of the Mainpur orangeite magma (ΔNNO (nickel-nickel oxide) of +0.48 to +4.46 indicates that the redox state of the lithospheric mantle cannot be of first-order control for diamond potential and highlights the dominant role of other factors such as rapid magma transport. The highly diamondiferous nature, the abundance of calcic-lherzolitic garnets and highly oxidising conditions prevailing at the time of eruption make the Mainpur orangeites clearly “anomalous” compared to several other kimberlite pipes worldwide. U–Pb dating of zircon xenocrysts from the Behradih pipe yielded distinct Palaeoproterozoic ages with a predominant age around 2,450 Ma. The lack of Archean-aged zircons, in spite of the fact that the Bastar craton is the oldest continental nuclei in the Indian shield with an Eoarchaean crust of 3.5–3.6 Ga, could either be a reflection of the sampling process or of the modification of the sub-Bastar lithosphere by the invading Deccan plume-derived melts during the Late Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashchepkov IV, Pokhilenko NP, Vladykin NV, Logvinova AM, Afanasiev VP, Pokhilenko LN, Kuligin S, Malygina EV, Alymova NA, Kostrovitsky SI, Rotman AY, Mityukhin SI, Karpenko MA, Stegnitsky YB, Khemelnikova OS (2010) Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophys 485:17–41

    Article  Google Scholar 

  • Balaram V, Gnaneswar Rao T (2003) Rapid determination of REE’s and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atom Spectros 24:206–212

    Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African on- and off-craton Group I and II kimberlites: petrogenesis and source region evaluation. J Petrol 47:673–703

    Article  Google Scholar 

  • Becker M, Le Roex AP, Class C (2007) Geochemistry and petrogenesis of South African transition kimberlites located on and off the Kaapvaal Craton. S. Afr. J Geol 110:631–646

    Article  Google Scholar 

  • Bellis AJ, Canil D (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberltic magmas I: experimental calibration. J Petrol 48:219–230

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous Zircon: trace element composition as an indicator of host rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Burgess SR, Harte B (2004) Tracing Lithosphere Evolution through the Analysis of Heterogeneous G9, and G10 Garnets in Peridotite Xenoliths, II: REE Chemistry. J Petrol 45:609–633

    Article  Google Scholar 

  • Canil D, Bellis AJ (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas II. Applications. J Petrol 48:231–252

    Article  Google Scholar 

  • Chalapathi Rao NV, Dongre A (2009) Mineralogy and geochemistry of kimberlites NK-2 and KK-6, Narayanpet kimberlite field, Eastern Dharwar craton, southern India: evidence for a transitional (South African) kimberlite signature. Can Mineral 47:855–873

    Google Scholar 

  • Chalapathi Rao NV, Lehmann B (2011) Kimberlites, flood basalts and mantle plumes: new insights from the Deccan Large Igneous Province. Earth Sci Rev 107:315–324

    Article  Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009) Petrology and Geochemistry of diamondiferous mesoproterozoic kimberlites from Wajrakarur kimberlite field, eastern Dharwar Craton, Southern India: genesis and constraints on mantle source regions. Contrib Mineral Petrol 157:245–265

    Article  Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar craton, southern India. J Petrol 45(5):907–948

    Article  Google Scholar 

  • Chalapathi Rao NV, Burgess R, Anand M, Mainkar D (2007) 40Ar–39Ar dating of the Kodomali pipe, Bastar craton, India: a Pan-African (491 ± 11 Ma) age of diamondiferous kimberlite emplacement. J Geol Soc India 69:539–546

    Google Scholar 

  • Chalapathi Rao NV, Kamde G, Kale HG, Dongre A (2010) Mesoproterozoic lamproites from the Krishna valley, eastern Dharwar craton, southern India: petrogenesis and diamond prospectivity. Precambr Res 177:103–130

    Article  Google Scholar 

  • Chalapathi Rao NV, Lehmann B, Mainkar D, Belyatsky B (2011a) Petrogenesis of the end-cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume—lithosphere interaction in the Bastar craton, central India. Contrib Mineral Petrol 161:721–742

    Article  Google Scholar 

  • Chalapathi Rao NV, Burgess R, Lehmann B, Mainkar D, Pande SK, Hari KR, Bodhankar N (2011b) 40Ar/39Ar ages of mafic dykes from the mesoproterozoic Chhattisgarh basin, Bastar craton, central India: implication for the origin and spatial extent of the Deccan Large Igneous Province. Lithos 125:994–1005

    Article  Google Scholar 

  • Chalapathi Rao NV, Paton C, Lehmann B (2012) Origin and diamond prospectivity of the Mesoproterozoic kimberlites from the Narayanpet field, Eastern Dharwar craton, southern India: insights from groundmass mineralogy, bulk-chemistry and perovskite oxybarometry. Geological J 47:186–212

    Article  Google Scholar 

  • Chatterjee B, Jha N (1994) Diamondiferous kimberlitic diatremes of Payalikhand, Behradih and Jangra, Raipur district, Madhya Pradesh. Rec Geol Surv India 127(6):240–243

    Google Scholar 

  • Chatterjee B, Smith CB, Jha N, Khan MWY (1995) Kimberlites of the Southeastern Raipur kimberlitic field, Raipur district, Madhya Pradesh, Central India. In: Extended abstracts sixth international kimberlite conference, Novosibirsk, Russia, pp 106–108

    Google Scholar 

  • Coe N, Le Roex AP, Gurney J, Pearson G, Nowell G (2008) Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contrib Mineral Petrol 156:627–652

    Article  Google Scholar 

  • Collerson KD, Williams Q, Ewart AE, Murphy DT (2010) Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys Earth Planet Interiors 181:112–131

    Article  Google Scholar 

  • Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petrol 159:645–657

    Article  Google Scholar 

  • Crookshank H (1963) Geology of southern Bastar and Jeypore from the Bailadila range to the eastern Ghats. Geol Surv India Mem 87:150

    Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID suite of (mica-amphibole-rutile- ilmenite-diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–323

    Article  Google Scholar 

  • Dawson JB, Stephens WE (1975) Statistical analysis of garnets from kimberlites and associated xenoliths. J Geol 83:589–607

    Article  Google Scholar 

  • Donnelly CL, Griffin WL, O’reilly SY, Pearson NJ, Shee SR (2011) The kimberlites and related rocks of the Kuruman kimberlite province, Kaapvaal craton, south Africa. Contrib Mineral Petrol 161:351–371

    Article  Google Scholar 

  • Fareeduddin, Pant NC, Neogi S, (2006) Petrology of the Kodomali diatreme, Mainpur area, Chhattisgarh, Central India: implications for a Palaeozoic orangeite field. J. Geol.Soc. India 68:19-34

    Google Scholar 

  • Fedortchouk Y, Canil D, Carlson JA (2005) Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib Mineral Petrol 150:1725–1745

    Article  Google Scholar 

  • Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples. Geol Surv Canada Bull 423:86

    Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites- an experimental study. Contrib Mineral Petrol 73:105–117

    Article  Google Scholar 

  • Frei D, Gerdes A (2008) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem Geol 261:261–270

    Article  Google Scholar 

  • Ghosh JG (2004) 3.56 Ga Tonalite in the central part of the Bastar craton, India: oldest Indian date. J Asian Earth Sci 23:359–364

    Article  Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36:189–229

    Article  Google Scholar 

  • Gibson SA, Malarkey J, Day J (2008) Melt depletion and enrichment beneath the western Kaapvaal Craton: evidence from Finsch Peridotite xenoliths. J Petrol 49:1817–1852

    Article  Google Scholar 

  • Gopalan K, Kumar A (2008) Phlogopite K–Ca dating of Narayanpet kimberlites, South India: Implications to the discordance between their Rb–Sr, Ar/Ar ages. Precambrian Res 167:377–382

    Article  Google Scholar 

  • Gregoire M, Bell DR, le Roex AP (2003) Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Gregory LC, Meert JG, Pradhan V, Pandit MK, Tamrat E, Malone SJ (2006) A palaeomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the Upper Vindhyan SuperGroup. Precamb Res 149:65–75

    Article  Google Scholar 

  • Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999) Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petrol 134:232–250

    Article  Google Scholar 

  • Grutter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Gupta S, Bhattacharya A, Raith M, Nanda JK (2000) Contrasting pressure-temperature-deformation history across a vestigial craton-mobile belt boundary: the western margin of the Eastern Ghats belt at Deobhog (India). J Metm Geol 18:683–697

    Article  Google Scholar 

  • Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105:689–712

    Article  Google Scholar 

  • Haggerty SE (1999) Diamond formation and kimberlite clan magmatism. Geochem Soc Spec Publ 6:105–123

    Google Scholar 

  • Howarth GH, Skinner EMW, Prevec SA (2011) Petrology of the hypabyssal kimberlite of the Kroonstad Group II kimberlite (orangeite) cluster, South Africa: evolution of the magma within the cluster. Lithos 125:795-808

    Google Scholar 

  • Jagadeesh S, Rai SS (2008) Thickness, composition and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precamb Res 16:4–15

    Article  Google Scholar 

  • Jha N, Smith CB, Griffin BJ, Chatterjee B, Pooley GD (1995) Diamonds from the kimberlites of Southeastern Raipur kimberlitic field, Raipur district, Madhya Pradesh, Central India. Extended Abstracts Sixth International Kimberlite Conference Novosibirsk, Russia, 266–268

    Google Scholar 

  • Jha N, Chatterjee B, Mishra BK, Sarkar SK (2002) Kimberlites of Mainpur kimberlite field, Raipur district, Chhattisgarh, central India. In: Abstracts volume of the international conference on Diamonds and Gemstones, Raipur

    Google Scholar 

  • Kent RW, Kelley SP, Pringle MS (1998) Mineralogy and 40Ar/39Ar geochronology of orangeites (Group II kimberlites) from the Damodar Valley, Eastern India. Mineral Magz 62:313–323

    Article  Google Scholar 

  • Kjarsgaard BA, Harvey S, Mcclintock M, Zonneveld JP, Du Pleissis P, Mcneil D, Heaman L (2009) Geology of the Orion South kimberlite, Fort à la Corne, Canada. Lithos 112:600–617

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Gunther D (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U–Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib Mineral Petrol 139:704–719

    Article  Google Scholar 

  • Kopylova MG, Caro G (2004) Mantle xenoliths from the Southeastern Slave craton: the evidence for a thick cold stratified lithosphere. J Petrol 45:1045–1067

    Article  Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Lehmann B, Mainkar D, Belyatsy B (2006) The Tokapal Crater-facies kimberlite system, Chattisgarh, India: Reconnaissance petrography and geochemistry. J Geol Soc India 68:9–18

    Google Scholar 

  • Lehmann B, Storey C, Mainkar D, Jeffries T (2007) In-situ U–Pb dating of titanite in the Tokapal-Bejripadar kimberlite system, Central India. J Geol Soc India 69:553–556

    Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathi Rao NV, Heaman LM (2010) Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet Sci Lett 290:142–149

    Article  Google Scholar 

  • Lehtonen ML (2005) Rare earth element characteristics of pyrope garnets from the Kaavi-Kuopio kimberlites- implications for mantle metasomatism. Bull Geol Soc Finland 77:31–47

    Google Scholar 

  • Lehtonen ML, O’brien HE, Peltonen P, Johnson BS, Pakkanen LK (2004) Layered mantle at the Karelian craton margin: P-T of mantle xenocrysts from the Kaavi-Kuopio kimberlites, Finland. Lithos 77:593–608

    Article  Google Scholar 

  • Mainkar D (2010) Petrological and geochemical investigation of the Behradih kimberlite from the Bastar craton, Central India, with special reference to its diamond potential. Unpublished PhD thesis, Pt. Ravishankar Shukla University, Raipur, 171)

    Google Scholar 

  • Mainkar D, Lehmann B (2007) The diamondiferous Behradih kimberlite pipe, Mainpur kimberlite field, Chhattisgarh, India: reconnaissance petrography and geochemistry. J Geol Soc India 69:547–552

    Google Scholar 

  • Mainkar D, Lehmann B, Haggerty SE (2004) The crater facies kimberlite system of Tokapal, Bastar district, Chattisgarh, India. Lithos 76:210–217

    Article  Google Scholar 

  • Marathe T (2010) Significance of Petrographical and Geochemical Characteristics of Kodomali Kimberlite Clan Rock, Mainpur Kimberlite Field, Raipur District, Chhattisgarh, India. In: Karmalkar NR, Duraiswami RA, Pawar NJ, Sivaji Ch (eds) Origin and evolution of the deep continental crust. Narosa Publishers, New Delhi

    Google Scholar 

  • Masun K, Sthapak AV, Singh A, Vaidya A, Krishna C (2009) Exploration history and geology of the diamondiferous ultramafic Saptarshi intrusions, Madhya Pradesh. India Lithos 112:142–154

    Article  Google Scholar 

  • Mishra VP, Singh P, Dutta NK (1988) Stratigraphy, structure and metamorphic history of Bastar craton. Rec Geol Surv India 117:1–26

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York, p 442

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum press, New York, p 406

    Book  Google Scholar 

  • Mitchell RH (2006) Potassic magmas derived from metasomatised lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. J Geol Soc India 67(3):317–327

    Google Scholar 

  • Mitchell RH, Fareeduddin (2009) Mineralogy of peralkaline lamproites from the Raniganj Coalfield, India. Mineral Magz 73:457–477

    Article  Google Scholar 

  • Mukherjee A, Tripathi A, Singh PK, BABU EVSSK (2000) Chemistry of eclogitic garnets from Behradih kimberlite, Raipur district, Madhya Pradesh. J Geol Soc India 56:425–430

    Google Scholar 

  • Newlay SK, Pashine JK (1993) New find of diamond-bearing kimberlite in Raipur district, Madhya Pradesh, India. Curr Sci 65:292–293

    Google Scholar 

  • Newlay SK, Pashine JK (1995) New find of diamond bearing gravel horizon in Payalikhand area of Raipur district, Madhya Pradesh. J Geol Soc India 46:309–312

    Google Scholar 

  • Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Newslett 20:247–261

    Article  Google Scholar 

  • Ogilve-Harris RC, Field M, Sparks RSJ, Walter MJ (2009) Perovskite from Dutoitspan kimberlite, Kimberley, South Africa: implications for magmatic processes. Mineral Magz 73:915–928

    Google Scholar 

  • ORAPA (2000) Project Report, Raipur diamond project. Block-7, Madhya Pradesh. July 2000. website: http://www.orapa.com.au

  • Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103

    Article  Google Scholar 

  • Page Z, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAA, Valley JW (2007) Zircons from kimberlite: new insights from oxygen isotopes, trace elements and Ti in zircon thermometry. Geochmi Cosmochim Acta 71:3887–3903

    Article  Google Scholar 

  • Patnaik BC, Mishra BP, Maharana RC (2002) A new discovery of diamond bearing pipe rocks in orissa. Proceedings international conference on diamonds & gemstones, (organized by SAEEG & DGM, Chattisgarh), Raipur, 90

    Google Scholar 

  • Paton C, Hergt JM, Woodhead JD, Phillips D, Shee SR (2009) Identifying the asthenospheric component of kimberlitic magmas from the Dharwar craton, India. Lithos 112:296–310

    Article  Google Scholar 

  • Paul DK, Nayak SS, Pant NC (2006) Indian kimberlites and related rocks: petrology and geochemistry. J Geol Soc India 67:328–355

    Google Scholar 

  • Paul DK, Crocket JH, Reddy TAK, Pant NC (2007) Petrology and geochemistry including Platinum Group element abundances of the Mesoproterozoic ultramafic (lamproite) rocks of Krishna district, southern India: implications for source rock characteristics and ptrogenesis. J Geol Soc India 69:577–596

    Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise on Geochemistry 2:171–276 Holland HD, Turekian KK (eds)

    Article  Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar craton, India. J Geol Soc London 166:193–196

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India, Geological society of India p 1550

    Google Scholar 

  • Ramsay RR (1992) Geochemistry of diamond indicator minerals. Unpublished PhD thesis, University of Western Australia p 246

    Google Scholar 

  • Ringwood AR, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and their related magmas. Earth Planet Sci Lett 113:521–538

    Article  Google Scholar 

  • Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK (1993) Early Archean crust in Bastar Craton, Central India-a geochemical and isotopic study. Precamb Res 62:127–137

    Article  Google Scholar 

  • Sand KK, Waight TE, Pearson DG, Nielsen TFD, Makovicky E, Hutchison MT (2009) The lithospheric mantle below southern West Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos 112s:1155-1166

    Google Scholar 

  • Schulze DJ, Canil D, Channer DMDR, Kaminsky F (2006) Layered mantle structure beneath the western Guyana Shield, Venezuela: Evidence from diamonds and xenocrysts in Guaniamo kimberlites. Geochim Cosmochim Acta 70:192–205

    Article  Google Scholar 

  • Scott-Smith BH, Skinner EMW (1984) A new look at the Prairie Creek Arkansas. In: Kornprobst J (ed) Kimberlites 1: kimberlites and related rocks. Proceedings 3rd international kimberlite conference developments in petrology, vol 1. Elsevier, Amsterdam, pp 255–283

    Google Scholar 

  • Scott-Smith BH, Smith SCS (2009) The economic implications of kimberlite emplacement. Lithos 112S:10–22

    Article  Google Scholar 

  • Shimizu N (1975) Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth Planet Sci Lett 25:26–32

    Article  Google Scholar 

  • Singh SB, Chandrakar NK, Verma D, Saxena V (2000) Report on the prospecting for diamond in Behradih-Kodomali area, district Raipur (M.P) Field Season 1996–1998. Unpublished Report of DGM, M.P

    Google Scholar 

  • Skinner EMW (1989) Contrasting Group I and II kimberlite petrology: towards a genetic model for kimberlites. Geol Soc Austral Spec Publ 14(1):528–544

    Google Scholar 

  • Small M, Vaidya A (2002) Field exploration for diamond, Raipur area, Chhattisgarh. In: Extended Abstracts volume International Conference on Diamonds and Gemstones, Raipur

    Google Scholar 

  • Smith CB, Clark TC, Barton ES and Bristow J (1994) Emplacement ages of kimberlite occurrences in the Prieska region, southwest border of the Kaapvaalc raton, South Africa. Chemical Geology, 113:149-169

    Google Scholar 

  • Smith CB, Gurney JJ, Skinner EMW, Clement CR, Ebrahim N (1985) Geochemical character of southern African kimberlites: a new approach based on isotopic constraints. Trans Geol Soc South Africa 88:267–280

    Google Scholar 

  • Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle—REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Letts 159:1–12

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345 Saunders AD, Norry MJ (eds) Magmatism in ocean basins

    Article  Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 28:259–270

    Article  Google Scholar 

  • Tainton KM (1992) The petrogenesis of group II kimberlites and lamproites from the northern Cape Province, South Africa. Unpublished PhD thesis, University of Cambridge, UK

    Google Scholar 

  • Tappe S, Pearson DG, Nowell G, Nielson T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305:235–246

    Article  Google Scholar 

  • Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–355

    Article  Google Scholar 

  • Ulmer P, Sweeney RJ (2002) Generation and differentiation of Group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim Cosmochim Acta 66:2139–2215

    Article  Google Scholar 

  • Verma D, Saxena VK (1997) A report on the investigation for diamond and other precious and semi-precious stones in southeastern parts of district Raipur, M.P. Field Season 1992–1994, Unpublished Report of DGM, M.P

    Google Scholar 

  • Woodhead J, Hergt J, Phillips D, Paton C (2009) African kimberlites re-visited: in situ Sr-isotope analysis of groundmass perovskite. Lithos 112S:311-317

    Google Scholar 

Download references

Acknowledgments

NVCR thanks the Head, Department of Geology, Centre of Advanced Study, Banaras Hindu University for providing logistics for undertaking field trip to Mainpur area and to the Humboldt Foundation for support. DM thanks Directorate of Mines and Geology, Chhattisgarh for support, permission and encouragement for carrying out studies on the Mainpur pipes and their xenocrysts. Chiranjeeb Sarkar and Graham Pearson are thanked for their helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao .

Editor information

Editors and Affiliations

Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Chalapathi Rao, N.V., Lehmann, B., Belousova, E., Frei, D., Mainkar, D. (2013). Petrology, Bulk-Rock Geochemistry, Indicator Mineral Composition and Zircon U–Pb Geochronology of the End-Cretaceous Diamondiferous Mainpur Orangeites, Bastar Craton, Central India. In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_7

Download citation

Publish with us

Policies and ethics