Skip to main content

The “Exceptionally Fresh” Udachnaya-East Kimberlite: Evidence for Brine and Evaporite Contamination

  • Conference paper
  • First Online:
Proceedings of 10th International Kimberlite Conference

Abstract

The composition of the serpentine-free Udachnaya-East kimberlite containing alkali carbonate, gypsum, halite, and other Na-, Cl-, and S-rich minerals has been the basis for a model of alkali-rich primary kimberlite melt. The interpretation of these minerals as mantle-derived, however, contradicts geology and hydrogeology of the Yakutian kimberlite province, as well as petrographic, geochemical, and isotopic evidence. The Udachnaya-East pipe is similar to many other southern Yakutian kimberlites, which emplace through 2-km-thick evaporite-bearing terrigenous carbonate sediments saturated with brines. A secondary origin of Na-, Cl-, and S-rich minerals in the southern Yakutian kimberlites is supported by (1) a regional correlation between the geology and hydrogeology of the local country rocks and the kimberlite mineralogy, in particular the difference between southern and northern Yakutian kimberlites; (2) a restriction of halite or gypsum mineralization to certain depth horizons where pipes intersect country rock strata with similar mineralogy; (3) the localization of the highest abundances of Na–Cl–S-bearing minerals at a depth interval that correlates across three magmatic phases of kimberlites and coincides with the roof of the aquifer carrying Na brines; (4) the presence of evaporite xenoliths and veins of halite, gypsum, and carbonate cutting through kimberlite and xenoliths; (5) crystallization of halite and alkali carbonate after serpentine and other groundmass minerals as evidenced by the rock textures; (6) geochemical evidence for crustal contamination, including high bulk CO2 and CaO content, the absence of correlation between bulk Na2O and any geochemical parameters, as well as initial Sr ratios, δ13C, δ18O, δ37Cl, and δ34S intermediate between crustal and mantle values. We propose that the Udachnaya-East kimberlites acquired high Na, S, and Cl contents by interaction with buried Cambrian Na–Ca–Cl brines or assimilating evaporite xenoliths from the 500-m-thick Chukuck suite formed in the Daldyn-Markha carbonate bank.

Revised for the 10th IKC Proceedings Volume, November 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Article  Google Scholar 

  • Alekseev SV, Alekseeva LP, Borisov VN, Shoukar-Stash O, Frape SK, Chabaux F, Kononov AM (2007) Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian platform. Russ Geol Geophys 48:225–236

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1996) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium. Contrib Mineral Petr 125(2–3):200–212

    Article  Google Scholar 

  • Bobrievich AP, Bondarenko MN, Gnevushev MA, Krasov LM, Smirnov GI, Yurkevich RK (1959) Diamondiferous deposits of Yakutia. State scientific-techniques publishing house, Moskow, p 527 (in Russian)

    Google Scholar 

  • Bogatikov OA, Garanin VK, Kononova VA, Kudryavtceva GP, Vasil’eva EP, Verjak VV, Verichev EM, Posuhova TV (1999) The Arkhangelsk diamondiferous province (geology, petrography, geochemistry and mineralogy). MGU, Moskow, p 524

    Google Scholar 

  • Brakhfogel FF (1984) Geological aspects of kimberlite magmatism in the north-east of the Siberian platform. Yakutsk, USSR, p 128 (in Russian)

    Google Scholar 

  • Caro G, Kopylova MG, Creaser RA (2004) The hypabyssal 5034 kimberlite of the Gahcho Kue cluster, southeastern slave craton, Northwest Territories, Canada: a granite-contaminated Group-I kimberlite. Can Mineral 42:183–207

    Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer, New York, p 252

    Google Scholar 

  • Drozdov AV, Egorov KN, Gotovcev SP, Klimovsky IV (1989) Hydrogeology and hydrochemical zoning of the Udachnaya kimberlite. In: Complex cryo-hydrogeological investigations. Yakutian Branch of Russian Academy Sciences, Yakutsk, pp 145–146 (in Russian)

    Google Scholar 

  • Drozdov AV, Iost NA, Lobanov VV (2008) Criohydrogeology of diamond mines of Western Yakutia. Irkutsk State Technical University, Irkutsk, p 508 (in Russian)

    Google Scholar 

  • Egorov KN, Kornilova VP, Safronov AF, Filippov ND (1986) Micaceous kimberlite from the Udachanaya-East pipe. Trans Russ Acad Sci 291(1):199–202 (in Russian)

    Google Scholar 

  • Egorov KN, Ushzhapovskaya ZF, Kashaev AA (1988) Zemkorite, the new carbonate from Yakutian kimberlites. Dokl Acad Sci USSR 301(1):188–193 (In Russian)

    Google Scholar 

  • Field M, Scott Smith BH (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in Southern Africa and Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th International kimberlite conference, vol 1. Red Roof Design, Cape Town, RSA, pp 214–237

    Google Scholar 

  • Franz GW, Wyllie PJ (1967) Experimental studies in the system CaO-MgO-SiO2-CO2-H2O. In: Wyllie PJ (ed) Ultramafic and related rocks. Wiley, New York, pp 323–326

    Google Scholar 

  • Golovin AV, Sharygin VV, Pokhilenko NP, Malkovets VG, Kolesov BA, Sobolev NV (2003) Secondary melt inclusions in olivine of unaltered kimberlites of the Udachnaya-East. Trans Russ Acad Sci 388(3):199–202 (in Russian)

    Google Scholar 

  • Golovin AV, Sharygin VV, Pokhilenko NP (2007) Melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East: some aspects of kimberlite melt evolution on late stages of crystallization. Petrologiya 15(2):178–195 (In Russian)

    Google Scholar 

  • Ilupin IP, Kaminsky FV, Frantceson EV (1978) Geochemistry of kimberlites. Moskow, Nedra, p 352 (in Russian)

    Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32(10):845–848

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sharygin VV, Golovin AV (2007a) Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas? Geophys Res Lett 34(9):L09316

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sharygin VV, Faure K, Golovin AV (2007b) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chem Geol 237(3–4):384–400

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Weiss Y, Navon O, Nielsen TFD, Mernagh TP (2009a) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112:334–346

    Article  Google Scholar 

  • Kamenetsky VS, Maas R, Kamenetsky MB, Paton C, Phillips D, Golovin AV, Gornova MA (2009b) Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet Sci Lett 285(1–2):96–104

    Article  Google Scholar 

  • Khar’kiv AD, Zuenko VV, Zinchuk NN, Kruchkov AI, Ukhanov VA, Bogatykh MM (1991) Kimberlite petrochemistry. TCNIGRI, Yakutsk, p 302 (in Russian)

    Google Scholar 

  • Khar’kiv AD, Zinchuk NN, Kruchkov AI (1998) Primary diamond deposits of the world. Moscow, NEDRA, p 556 (in Russian)

    Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112S:648–659

    Article  Google Scholar 

  • Kononov AM (2009) Salty waters and brines of the Olenek aquifer. PhD Thesis, The Institute of the Earth's Crust, Irkutsk, pp 350 (in Russian)

    Google Scholar 

  • Kopylova MG, Hayman P (2008) Petrology and textural classification of the Jericho kimberlite, Northern Slave Province, Nunavut, Canada. Can J Earth Sci 45:701–723

    Article  Google Scholar 

  • Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71(14):3616–3629

    Article  Google Scholar 

  • Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112 (S1):284–295

    Google Scholar 

  • Kornilova VP, Egorov KN, Safronov AF, Filippov ND, Zaytsev AI (1998) Mointichellite kimberlite of the Udachnaya pipe and some aspects of the kimberlite melt evolution. Russ Geol 6:48–51 (In Russian)

    Google Scholar 

  • Kostrovitsky SI (1986) Geochemistry of kimberlite minerals. Novosibirsk, Nauka, p 263 (in Russian)

    Google Scholar 

  • Kostrovitsky SI, Morikio T, Serov IV, Yakovlev DA, Amirzhanov AA (2007) Isotope and geochemical systematics of the Siberian platform kimberlites. Geol Geophys 48(3):350–371 (in Russian)

    Google Scholar 

  • Lashkevich VV, Egorov KN (1988) Theoretical modeling of hydrothermal-metasomatic processes in the kimberlites. In: Thermodynamics in geology. Abstracts of the second all-union symposium, vol 1, Miass, pp 139–141 (in Russian)

    Google Scholar 

  • Maas R, Kamenetsky MB, Sobolev NV, Kamenetsky VS, Sobolev AV (2005) Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 33(7):549–552

    Article  Google Scholar 

  • Marshintsev VK, Migalkin KN, Nikolaev NS, Barashkov YuP (1976) Unaltered kimberlite of the Udachnaya-East kimberlite. Dokl Acad Sci USSR, Earth Sci Ser 231(4):961–964 (in Russian)

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mernagh TP, Kamenetsky VS, Kamenetsky MB (2012) A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrosc Acta Pt A-Molec Biomolec Spectr 80(1):82–87

    Article  Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York, p 442

    Google Scholar 

  • Mitchell RH (2006) Petrology of hypabyssal kimberlites. In: Abstract of the kimberlite emplacement workshop, 8th international kimberlite conference, Saskatoon, Sept 2006. http://www.venuewest.com/8IKC/files/00%20zContents.pdf

  • Novoselov AA (2010) Geochemical modeling of hydrothermal transformation of peridotites of slowly-spreading mid-ocean ridges. PhD Thesis Abstract, Institute of Geochemistry, Russian Academy of Science, Moscow, p 16

    Google Scholar 

  • Paton C, Hergt JM, Phillips D, Woodhead JD, Shee SR (2007) New insights into the genesis of Indian kimberlites from the Dharwar Craton via in situ Sr isotope analysis of groundmass perovskite. Geology 35(11):1011–1014

    Google Scholar 

  • Pavlov DI, Ilupin IP (1973) Halite in Yakutian kimberlite, its relations to serpentine and the source of its parent solutions. Dokl Acad Sci USSR, Earth Sci Ser Engl Transl 213:178–180

    Google Scholar 

  • Polozov AG, Sukhov SS, Gornova MA, Grishina SN (2008a) Salts from Udachnaya-East kimberlite pipe (Yakutia, Russia): occurrences and mineral composition. Extended abstracts of 9IKC-A-00247

    Google Scholar 

  • Polozov AG, Svensen H, Planke S (2008b) Chlorine isotopes of salts xenoliths from Udachnaya-East kimberlite pipe (Russia). Extended abstracts of 9IKC-A-00249

    Google Scholar 

  • Scott Smith BH (1996) Kimberlites. Chapter 10, Mineralogical association of Canada short course series. In: Mitchell RH (ed) Undersaturated alkaline rocks: mineralogy, petrogenesis, and economic potential, short course, vol 24, pp 217–243

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. In: Sulfide Mineralogy and Geochemistry 61:633–677

    Google Scholar 

  • Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226(1–2):243–254

    Article  Google Scholar 

  • Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446(5):1062–1065

    Article  Google Scholar 

  • Sharygin VV, Faure K, Golovin AV (2007a) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chem Geol 237:384–400

    Article  Google Scholar 

  • Sharygin VV, Kamenetsky VS, Kamenetsky MB, Golovin AB (2007b) Mineralogy and genesis of chloride-bearing nodules from the Udachnaya-East kimberlites. In: Abstracts, international conference on alkaline terrestrial magmatism and its ores. http://geo.web.ru/conf/alkaline/2007/80.pdf, pp 267–271 (in Russian)

  • Sobolev AV, Sobolev NV, Smith CB, Dubessy J (1989) Fluid and melt compositions in lamproites and kimberlites based on the study of inclusions in olivine. In: Ross J et al (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement. Proceedings of the 4th IKC, vol 1. Blackwell Scientific Publications, Sydney, pp 220–241

    Google Scholar 

  • Sukhov SS (2001) Facies and stratigraphic model of Daldyn-Markha bank: illustration to accumulation mechanism of carbonate deposits on the Siberian craton. In: Lithology and oil-and-gas potential of carbonate deposits. Proceedings of the second all-Russian lithologic conference and 8th all-Russian symposium on fossilized corals and reefs. Syktuvkar, pp 237–239 (in Russian)

    Google Scholar 

  • Vinogradov VI, Ilupin IP (1972) Isotope compositions of sulfur in kimberlites of the Siberian Platform. Dokl USSR Acad Sci 204(6):1452–1456 (in Russian)

    Google Scholar 

  • Webster JD (1992) Water solubility and chlorine partitioning in Cl-rich granitic systems—effects of melt composition at 2 kbar and 800 °C. Geoch Cosmoch Acta 56(2):679–687

    Article  Google Scholar 

  • Woodhead J, Hergt J, Phillips D, Paton C (2009) African kimberlites revisited: in situ Sr-isotope analysis of groundmass perovskite. Lithos 112:311–317

    Google Scholar 

  • Yoder HS (1986) Potassium-rich rocks—phase-analysis and heteromorphic relations. J Petrol 27(5):1215–1228

    Article  Google Scholar 

  • Zinchuk NN, Spetsius ZV, Zuenko VV, Zuev VM (1993) The Udachnaya kimberlite pipe. Publishing House of the Novosibirsk University, Novosibirsk, p 147 (in Russian)

    Google Scholar 

Download references

Acknowledgments

The studies were supported by the integration projects of the Russian Academy of Sciences № 59, 115, and 27.1 and by an NSERC Discovery Grant to MGK. The authors thank G. Sandimirova and Yu. Pakhol’chenko for isotopic analyses, A. Polozov for helpful discussions, and E. Smith for the editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kostrovitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Kostrovitsky, S.I., Kopylova, M.G., Egorov, K.N., Yakovlev, D.A. (2013). The “Exceptionally Fresh” Udachnaya-East Kimberlite: Evidence for Brine and Evaporite Contamination. In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_6

Download citation

Publish with us

Policies and ethics