Skip to main content

Wyoming Craton Mantle Lithosphere: Reconstructions Based on Xenocrysts from Sloan and Kelsey Lake Kimberlites

  • Conference paper
  • First Online:
Proceedings of 10th International Kimberlite Conference

Abstract

The structure of the lithospheric mantle of the Wyoming craton beneath two Paleozoic kimberlite pipes, Sloan and Kelsey Lake 1 in Colorado, was reconstructed using single-grain thermobarometry for a large data set (>2,600 EPMA analyses of xenocrysts and mineral intergrowths). Pyrope compositions from both pipes relate to the lherzolitic field (up to 14 wt% Cr2O3) with a few deviations in CaO to harzburgitic field for KL-1 garnets. Clinopyroxene variations (Cr-diopsides and omphacites) from the Sloan pipe show similarities with those from Daldyn kimberlites, Yakutia, and from kimberlites in the central part of the Slave craton, while KL-1 Cpx resemble those from the Alakit kimberlites in Yakutia that sample metasomatized peridotites. LAM ICP analyses recalculated to parental melts for clinopyroxenes from Sloan resemble contaminated protokimberlite melts, while clinopyroxenes from KL-1 show metasomatism by subduction fluids. Melts calculated from garnets from both pipes show peaks for Ba, Sr and U, and HFSE troughs, typical of subduction-related melts. Parental melts calculated for ilmenites from Sloan suggest derivation from highly differentiated melts, or melting of Ilm-bearing metasomatites, while those from Kelsey Lake do not display extreme HFSE enrichment. Three P-Fe# (where Fe# = Fe/(Fe + Mg) in atomic units) trends within the mantle lithosphere beneath Sloan have been obtained using monomineral thermobarometry. At the base, the trends reveal melt metasomatized (possibly sheared) peridotites (Fe# = 13–15 %), refertilized peridotites (Fe# = 10–11 %) and primary mantle peridotites (Fe# = 7–9 %). Anomalous heating was found at depths equivalent to 4.0 and 3.0–2.0 GPa. The mantle section beneath KL-1 is widely metasomatized with several stages of refertilization with dispersed Ilm–Cpx trends. The step-like subadibatic heating in the mantle column beneath the Sloan pipe is strong in the base and the middle part and weaker within 2–3 GPa. Heating beneath the KL-1 pipe is more evident in the base and middle part from 7.0 to 3.0 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashchepkov IV, Vladykin NV, Mitchell RH, Howard C, Garanin VG, Saprykin AI, Khmelnikova OS, Anoshin GN (2001) Mineralogy of the mantle xenocrysts from KL-1 (Kelsey Lake) kimberlite pipe, Colorado. Rev Bras Geocienc 31:645–652

    Google Scholar 

  • Ashchepkov IV, Vladykin NV, Nikolaeva IV, Palessky SV, Logvinova AM, Saprykin AI, Khmel’Nikova OS, Anoshin GN (2004) Mineralogy and geochemistry of mantle inclusions and mantle column structure of the yubileinaya kimberlite pipe, alakit field, Yakutia. Doklady Russ Acad Sci Earth Sci Sect 395:517–523

    Google Scholar 

  • Ashchepkov IV, Pokhilenko NP, Vladykin NV, Logvinova AM, Kostrovitsky SI, Afanasiev VP, Pokhilenko LN, Kuligin SS, Malygina LV, Alymova NV, Khmelnikova OS, Palessky SV, Nikolaeva IV, Karpenko MA, Stagnitsky YB (2010) Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485:17–41

    Article  Google Scholar 

  • Ashchepkov IV, Vladykin NV, Ntaflos T, Downes H, Mitchel R, Smelov AP, Alymova NV, Kostrovitsky SI, RotmanAYa, Smarov GP, Makovchuk IV, StegnitskyYuB, Nigmatulina EN, Khmelnikova OS (2013) Regularities of the mantle lithosphere structure and formation beneath Siberian craton in comparison with other cratons. Gondwana Res 23:4–24

    Google Scholar 

  • Ashchepkov IV, Rotman AY, Somov SV, Afanasiev VP, Downes H, Logvinova AM, Nossyko S, Shimupi J, Palessky SV, Khmelnikova OS, Vladykin NV (2012) Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics 530–531:128–151

    Article  Google Scholar 

  • Ater PC, Eggler DH, McCallum ME (1984) Petrology and geochemistry of mantle eclogites xenoliths from Colorado-Wyoming kimberlites: recycled oceanic crust? In: Kornprobst J (ed) Kimberlites II: The mantle and crust

    Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208:61–88

    Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Miner Petrol 128:228–246

    Article  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites II. New thermo-barometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Carlson RW, Irving AJ (1994) Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd, and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming craton. Earth Planet Sci Lett 126:457–472

    Article  Google Scholar 

  • Carlson RW, James DE (2011) Craton destruction: an ongoing example in Western North America. International conference on craton formation and destruction abstracts. Beijing, pp 14–15

    Google Scholar 

  • Carlson RW, Irving AJ, Hearn Jr BC (1999) Chemical and isotopic systematics of peridotite xenoliths from the Williams kimberlite, Montana: clues to processes of lithospheric formation, modification and destruction. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of 7th international kimberlite conference, Vol 1. Red Roof Design, Cape Town, pp 90–98

    Google Scholar 

  • Carlson RW, Irving AJ, Schulze DJ, Carter B, Hearn J (2004) Timing of precambrian melt depletion and phanerozoic refertilization events in the lithospheric mantle of the Wyoming craton and adjacent central plains orogen. Lithos 77:453–472

    Article  Google Scholar 

  • Coopersmith HG, Mitchell RH, Hausel WD (2003) Kimberlites and lamproites of Colorado and Wyoming, USA. Guidebook for the 8th international kimberlite conference, Colorado and Wyoming Field Trip, 32 p

    Google Scholar 

  • Davies RM, Griffin WL, O’Reilly SY. Doyle BJ (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77:39–55

    Google Scholar 

  • Dawson B (1980) Kimberlites and their xenoliths. Springer, Berlin 200 p

    Book  Google Scholar 

  • De Stefano A, Kopylova MG, Cartigny P, Afanasiev VP (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Miner Petrol 158:295–315

    Article  Google Scholar 

  • Downes H, Macdonald R, Upton BGJ, Cox KG, Bodinier J-L, Mason PRD, James D, Hill PG, Hearn BC Jr (2004) Ultramafic xenoliths from the Bearpaw mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Craton. J Petrol 45:1631–1662

    Article  Google Scholar 

  • Dueker K, Yuan H, Zurek B (2001) Thick-structured Proterozoic lithosphere of the Rocky Mountain region. GSA Today 11:4–9

    Article  Google Scholar 

  • Eccles DR, Simonetti SS, Cox R (2010) Garnet pyroxenite and granulite xenoliths from Northeastern Alberta: evidence of ∼ 1.5 Ga lower crust and mantle in Western Laurentia. Precambr Res 177:339–354

    Article  Google Scholar 

  • Eggler DH, McCallum ME, Smith CB (1979) Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: petrology, geothermometry–barometry and areal distribution. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry. American Geophysical Union, Washington, DC, pp 213–226

    Google Scholar 

  • Eggler DH, McCallum ME, Kirkley MB (1987) Kimberlite-transported nodules from Colorado-Wyoming: a record of enrichment of shallow portions of an infertile lithosphere. In: Morris EM and Pasteris JD (eds) Mantle metasomatism and alkaline magmatism. Geol Soc Am Spec Paper 215:77–90

    Google Scholar 

  • Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos 77:873–922

    Article  Google Scholar 

  • Gurney JJ (1984) A correlation between garnets and diamonds. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origin: a basis for conceptual models in exploration Geology Department and University Extension Univ WA Publ, vol 8, pp 143–166

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Miner Petrol 113:1–8

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hausel WD (1998) Diamonds and mantle source rocks in the Wyoming Craton, with a discussion of other US occurrences. Wyoming State geological survey report of investigations 53, 93 p

    Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2003) The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71:153–184

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397

    Article  Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multistage modification of the northern slave mantle lithosphere evidence from zircon- and diamond-bearing eclogite xenoliths entrained in Jericho Kimberlite, Canada. J Petrol 47:821–858

    Article  Google Scholar 

  • Hearn BC (2004) The Homestead kimberlite, central Montana, USA: mineralogy, xenocrysts, and upper-mantle xenoliths. Lithos 77:473–491

    Article  Google Scholar 

  • Hearn Jr BC, McGee ES (1984) Garnet peridotites from Williams kimberlites, north-central Montana, USA. In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 57–70

    Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the udachnaya-east kimberlite. J Petrol 51:2177–2210

    Article  Google Scholar 

  • Kjarsgaard IM, McClenaghan MB, Kjarsgaard BA, Heaman LM (2004) Indicator mineralogy of kimberlite boulders from eskers in the Kirkland Lake and Lake Timiskaming areas, Ontario, Canada. Lithos 77:705–731

    Article  Google Scholar 

  • Klemme S, Gunther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234(3):251–263

    Article  Google Scholar 

  • Kopylova MG, Caro G (2004) Mantle xenoliths from the Southeastern slave craton: evidence for chemical zonation in a thick, cold lithosphere. J Petrol 45:1045–1067

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the slave craton, northern Canada. J Petrol 40:79–104

    Google Scholar 

  • Lavrent’ev YUG, Usova LV (1994) New version of KARAT program for quantitative X-ray spectral microanalysis. ZhurnalAnaliticheskoiKhimii 5:462–468

    Google Scholar 

  • Lester A, Larson E (1996) New geochronological evidence for the late proterozoic emplacement of Colorado Wyoming kimberlites belt. EOS Trans Am Geoph Union 77:821

    Google Scholar 

  • Macdonald R, Upton BGJ, Collerson KD, Jr Hearn BC, James D (1992) Potassic mafic lavas of the Bearpaw Mountains, Montana: mineralogy, chemistry, and origin. J Petrol 38:305–346

    Article  Google Scholar 

  • MacGregor ID (1974) The system MgO-Al2O3-SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Miner 59:110–119

    Google Scholar 

  • MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Miner Petrol 134:313–324

    Article  Google Scholar 

  • McCallum ME, Eggler DH, Burns LK (1975) Kimberlitic diatremes in northern Colorado and southern Wyoming. Phys Chem Earth 9:149–161

    Article  Google Scholar 

  • McCallum ME, Eggler DH (1976) Diamonds in an upper mantle peridotite nodule from kimberlite in southern Wyoming. Science 192:253–256

    Google Scholar 

  • McCammon CA, Griffin WL, Shee SR, O’Neill HSC (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Miner Petrol 141:287–296

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Menzies A, Westerlund K, Grutter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT, Canada: major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos 77:395–412

    Article  Google Scholar 

  • Meyer HOA, Waldman MA, Garwood BL (1994) Mantle xenoliths from kimberlite near Kirkland Lake, Ontario. Can Miner 32:295–306

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York 447 p

    Book  Google Scholar 

  • Nimis P, Taylor W (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139:541–554

    Article  Google Scholar 

  • Nixon PH, Boyd FR (1973) Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlites. In: Nixon PH (ed) Lesotho kimberlites. Lesotho Nat Dev Corp Maseru, Lesotho, pp 48–56

    Google Scholar 

  • O’Brien HE, Irving AJ, McCallum IS, Thirlwall MF (1995) Sr, Nd and Pb isotopic evidence for the interaction of post-subduction asthenospheric potassic mafic magmas of the Highwood Montana, Montana, USA, with ancient Wyoming craton lithospheric mantle. Geochimicaet Cosmochima Acta 59:4539–4556

    Google Scholar 

  • O’Neill HSTC, Wall VJ (1987) The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28:1169–1191

    Google Scholar 

  • O’Neill HSTC, Wood BJ (1979) An experimental study of Fe-Mg- partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70:59–70

    Google Scholar 

  • Pizzolato L, Schultze DJ (2003) Geochemistry of peridotites and eclogites from the Kelsey Lake kimberlite, Colorado–Wyoming, USA. In: Proceedings of the 8th International Kimberlite Conference, Victoria, BC, Canada, June 2003:FLA–0300

    Google Scholar 

  • Pokhilenko NP, Sobolev NV, Kuligin SS, Shimizu N (1999) Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. In: Proceedings of the VII international kimberlite conference. The P.H. Nixon volume, pp 690–707

    Google Scholar 

  • Rudnick RL, Ireland TR, Gehrels G, Irving AJ, Chesley JT, Hanchar JM (1999) Dating mantle metasomatism: U–Pb geochronology of zircons in cratonic mantle xenoliths from Montana and Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of 7th international kimberlite conference, vol 2. Red Roof Design, Cape Town, pp 728–735

    Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos 48:195–216

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S (2007) Lu-Hf, in situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet Sci Lett 254:55–68

    Article  Google Scholar 

  • Schulze DJ (1992) Diamond eclogite from Sloan Ranch, Colorado and its bearing on the diamond grade of the Sloan kimberlite. Econ Geol 87:2175–2179

    Article  Google Scholar 

  • Schulze DJ, Anderson PFN, Hearn Jr BC, Hetman CM (1995) Origin and significance of ilmenite megacrysts and macrocrysts from kimberlite. Int Geol Rev 37:780–812

    Google Scholar 

  • Schulze DJ, Coopersmith HG, Harte B, Pizzolato L-A (2008) Mineral inclusions in diamonds from the Kelsey Lake Mine, Colorado, USA: depleted Archean mantle beneath the Proterozoic Yavapai province. Geochimicaet Cosmochimica Acta 72:1685–1695

    Google Scholar 

  • Smart KA, Heaman LM, Chacko T, Simonetti A, Maya Kopylova, Mah D, Daniels D (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada. Earth Planet Sci Lett 284:527–537

    Article  Google Scholar 

  • Smith D, Griffin WL (2005) Garnetite xenoliths and mantle–water interactions below the Colorado plateau, Southwestern United States. J Petrol 46:1901–1924

    Google Scholar 

  • Smith CB, McCallum ME, Coopersmith HG, Eggler DH (1979) Petrochemistry and structure of kimberlites in the Front Range and Laramie Range, Colorado-Wyoming. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes, and diamonds; their geology, petrology, and geochemistry. American Geophysical Union, Washington, DC, pp 178–189

    Chapter  Google Scholar 

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the mantle. American Geophysical Union, Washington, DC, 279 p

    Google Scholar 

  • Sobolev NV, Lavrent’ev YUG, Pokhilenko NP, Usova LV (1973a) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib Miner Petrol 40:39–52

    Google Scholar 

  • Sobolev NV, Sobolev VN, Snyder GA, Yefimova ES, Taylor LA (1973b) Significance of eclogitic and related parageneses of natural diamonds. Int Geol Rev 41:129–140

    Article  Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya pipe, Yakutia. Int Geol Rev 36:42–64

    Article  Google Scholar 

  • Taylor WL, Kamperman M, Hamilton R (1998) New thermometer and oxygen fugacity sensor calibration for ilmenite and Cr-spinel-bearing peridotite assemblage. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th international kimberlite conference. Red Roof Design, Capetown, pp 986–988

    Google Scholar 

  • Usui T, Kobayashi K, Nakamura E, Helmstaedt H (2007) Trace element fractionation in deep subduction zones inferred from a lawsonite-eclogite xenolith from the Colorado Plateau. Chem Geol 239:336–351

    Article  Google Scholar 

  • Zack T, Brumm R (1998) Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenite. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th international kimberlite conference. Red Roof Design, Cape Town, pp 986–988

    Google Scholar 

Download references

Acknowledgments

This study was supported by grant RBRF 05-11-00060a, 11-05-91060-PICSa. Thanks to Prof. G.D.Pearson for corrections of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ashchepkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Ashchepkov, I.V., Downes, H., Mitchell, R., Vladykin, N.V., Coopersmith, H., Palessky, S.V. (2013). Wyoming Craton Mantle Lithosphere: Reconstructions Based on Xenocrysts from Sloan and Kelsey Lake Kimberlites. In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_2

Download citation

Publish with us

Policies and ethics