Skip to main content

Role of Biopolymers in Industries: Their Prospective Future Applications

  • Chapter
  • First Online:
Environment and Sustainable Development

Abstract

Surfactants are surface-active compounds capable of reducing surface and interfacial tension at interfaces between liquids, solids, and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The demand for eco-friendly products is high; therefore, an increasing interest in biosurfactants has resulted. Biosurfactants are amphiphilic compounds of microbial origin having advantages in biodegradability and effectiveness at extreme temperatures or pH and in having lower toxicity. These molecules are very effective in various fields nowadays. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, and the metal treatment and processing, pulp and paper processing, and paint industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahimou F, Jacques P, Deleu M (2001) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  Google Scholar 

  • Bloomberg G (1991) Designing proteins as emulsifiers. Lebensmitteltechnologie 24:130–131

    Google Scholar 

  • Brown MJ (1991) Biosurfactants for cosmetic applications. Int J Cosmet Sci 13:61–64

    Article  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987). Surface active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Google Scholar 

  • Cooper DG, Paddock DA (1983) Torulopsis petrophilum and surface activity. Appl Environ Microbiol 46:1426–1429

    CAS  Google Scholar 

  • Daniel HJ, Ress M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two-stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153–1156

    Article  CAS  Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JP (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47:496–501

    Article  CAS  Google Scholar 

  • Desai JD (1987) Microbial surfactants: evaluation, types and future applications. J Sci Ind Res 46:440–449

    CAS  Google Scholar 

  • Desai DJ, Banat MI (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Desai AJ, Patel KM, Desai JD (1988) Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons. Curr Sci 57:500–501

    CAS  Google Scholar 

  • Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27(6):645–654

    Article  CAS  Google Scholar 

  • Edward JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421

    Article  Google Scholar 

  • Falatko DM, Novak JT (1992) Effects of biologically produced surfactants on mobility and biodegradation of petroleum hydrocarbons. Water Environ Res 64:163–169

    Article  CAS  Google Scholar 

  • Fautz B, Lang S, Wagner F (1986) Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol Lett 8:757–762

    Article  Google Scholar 

  • Greek BF (1990) Detergent industry ponders product for new decade. Chem Eng News 68:37–38

    Article  Google Scholar 

  • Guerra-Santos LH, Kappeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305

    CAS  Google Scholar 

  • Guerra-Santos LH, Kappeli O, Flechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    Article  CAS  Google Scholar 

  • Harvey S, Elashvilli I, Valdes JJ, Kamely D, Chakrabarty AM (1990) Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology 8:228–230

    Article  CAS  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa: its function in hydrocarbon fermentations. Agric Biol Chem 35:686–692

    Article  Google Scholar 

  • Hommel RK, Weber L, Weiss A, Himelreich U, Rilke O, Kleber HP (1994) Production of sophorose lipid by Candida (Torulopsis) apicola grown on glucose. J Biotechnol 33:147–155

    Article  CAS  Google Scholar 

  • Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7:45–52

    Article  CAS  Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability. Agric Biol Chem 36:2233–2235

    Article  CAS  Google Scholar 

  • Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot (Tokyo) 24:855–859

    Article  CAS  Google Scholar 

  • Jain DK, Thompson DLC, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Jain DK, Lee H, Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10:87–93

    Article  Google Scholar 

  • Javaheri M, Jenneman GE, McInnerey MJ, Knapp RJ (1985) Anaerobic production of a biosurfactant by Bacillus licheniformis. Appl Environ Microbiol 50:698–700

    CAS  Google Scholar 

  • Kappeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    CAS  Google Scholar 

  • Kim K, Jung SY, Lee DK (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55(7):975–985

    Article  CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol 44:864–870

    CAS  Google Scholar 

  • Lang S, Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology. Marcel Dekker, New York, pp 21–47

    Google Scholar 

  • Lang S, Wagner F (1993) Biological activities of biosurfactants. In: Kosaric N (ed) Biosurfactants, vol 48, Surfactants science series. Dekker, New York,pp 251–268

    Google Scholar 

  • Liu W, Wang X, Wu L, Chen M, Tu C, Luo Y, Christie P (2012) Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87(10):1105–1110

    Article  CAS  Google Scholar 

  • Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23(5):673–682

    Article  CAS  Google Scholar 

  • Marahiel M, Denders W, Krause M, Kleinkauf H (1977) Biological role of gramicidin S in spore functions. Studies on gramicidin-S negative mutants of Bacillus brevis 9999. Eur J Biochem 99:49–52

    Article  Google Scholar 

  • Matsuyama T, Sogawa M, Yano I (1991) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188

    Google Scholar 

  • Mishra S, Singh SN (2012) Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresour Technol 111:148–154

    Article  CAS  Google Scholar 

  • Mulligan CN, Eftekhari F (2001) Remediation of soil with surfactants in the form of foam and liquid solutions. In: Young RN, Thomas HR (eds) Geo-environmental impact management. Telford, London,pp 210–215

    Google Scholar 

  • Mutsuyama T, Fujita M, Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28:125–129

    Article  Google Scholar 

  • Palejwala S, Desai JD (1989) Production of extracellular emulsifier by a gram negative bacterium. Biotechnol Lett 11:115–118

    Article  Google Scholar 

  • Parra JL, Guinea J, Manresa MA, Robert M, Mercade ME, Comelles F, Bosch MP (1989) Chemical characterization and physicochemical behaviour of biosurfactants. J Am Oil Chem Soc 66:141–145

    Article  CAS  Google Scholar 

  • Passeri A (1992) Marine biosurfactants. IV. Production, characterization and biosynthesis of anionic glucose lipid from marine bacterial strain MM1. Appl Microbiol Biotechnol 37:281–286

    Article  CAS  Google Scholar 

  • Robinson KG, Ghosh MM, Shi Z (1996) Mineralization enhancement of non-aqueous phase and soil bound PCB using biosurfactant. Water Sci Technol 34:303–309

    CAS  Google Scholar 

  • Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100(3):470–480

    Article  CAS  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  Google Scholar 

  • Rufino RD, Luna JM, Sarubbo LA, Rodrigues LR, Teixeira JA, Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids Surf B Biointerf 84(1):1–5

    Article  CAS  Google Scholar 

  • Shepherd R, Rockey J, Shutherland IW, Roller S (1995) Novel bioemulsifier from microorganisms for use in foods. J Biotechnol 40:207–217

    Article  CAS  Google Scholar 

  • Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K (1965) The chemical structure of polymyxin E. The identities of polymyxin E1 with colistin A and polymyxin E2 with colistin B. J Biol Chem 57:226–227

    CAS  Google Scholar 

  • Syldatk C, Lang S, Wagner F (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Z Naturforsch 40C:51–60

    CAS  Google Scholar 

  • Velikonja J, Kosaric N (1993) Biosurfactant in food applications. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker, New York, pp 419–446

    Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25(3):289–297

    Article  CAS  Google Scholar 

  • Yakimov MM, Fredrickson HL, Timmis KN (1996) Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem 23:13–18

    CAS  Google Scholar 

  • Yamane T (1987) Enzyme technology for the lipid industry. An engineering overview. J Am Oil Chem Soc 64:1657–1662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaranjit Singh Cameotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rautela, R., Cameotra, S.S. (2014). Role of Biopolymers in Industries: Their Prospective Future Applications. In: Fulekar, M., Pathak, B., Kale, R. (eds) Environment and Sustainable Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1166-2_9

Download citation

Publish with us

Policies and ethics