Skip to main content

Challenges and Prospects in Exploring Marine Microbial Diversity

  • Chapter
  • First Online:
  • 2729 Accesses

Abstract

The marine realm is one of the major habitats of the biosphere and covers around 70 % of the Earth’s surface. Eighty to ninety percent of all life forms of the Earth are present only in the oceans. The microbial diversity is enormous in marine habitat. The knowledge of the oceanic biodiversity, as a whole, is limited, in spite of the advances in sampling techniques and use of in situ methods to study natural communities. Apart from natural variations in biodiversity, pollution of coastal waters and bio-invasions through human activity also alter the biodiversity drastically. Industrial effluents, discharges, land reclamation, and other anthropogenic effects are found to cause damage or create imbalance in coastal diversity and modify it significantly. This phenomenon is observed all around the world. Thus, better understanding of the relations between diversity at different topological levels as well as between biodiversity and ecosystem functioning is essential. This could have important implications in conservation management. Further it is being increasingly realized that the marine environment is an inexhaustible resource of biomolecules of commercial importance including antibiotics and enzymes. Marine diversity is also considered important to find solution for the expensive problem of biofouling, which is a serious impediment for maritime industries such as shipping, thermal and nuclear power plant maintenance. The potential of marine isolates against inhibition of primary foulers is opening a realm for the development of nontoxic, environmentally friendly natural product antifouling agents (NPAs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    CAS  Google Scholar 

  • Aldred N, Phang IY, Conlan SL, Clare AS, Vancso GJ (2008) The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107

    Article  CAS  Google Scholar 

  • Amend JP, Rogers KL, Meyer-Dombard DR (2004) Microbially mediated sulfur-redox: energetics in marine hydrothermal vent systems. In: Sulfur biogeochemistry—past and present. The Geological Society of America, Boulder, pp 17–34

    Chapter  Google Scholar 

  • Aristegui J, Gasol JM, Duarte CM, Herndl GJ (2009) Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr 54:1501–1529

    Article  CAS  Google Scholar 

  • Armstrong E, Boyd KG, Pisacane A, Peppiatt CJ, Burgess JG (2000) Marine microbial natural products in antifouling coatings. Biofouling 16:215–224

    Article  CAS  Google Scholar 

  • Auguet JC, Barberan A, Casamayor EO (2009) Global ecological patterns in uncultured archaea. ISME J 4:182–190

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  CAS  Google Scholar 

  • Bhattarai HD, Lee YK, Cho KH, Lee HK, Shin HW (2006) The study of antagonistic interactions among pelagic bacteria: a promising way to coin environmental friendly antifouling compounds. Hydrobiologia 568:417–423

    Article  CAS  Google Scholar 

  • Braithwaite RA, McEvoy LA (2005) Marine biofouling on fish farms and its remediation. Adv Mar Biol 47: 215–252

    Article  CAS  Google Scholar 

  • Brogden K (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  • Bull AT (2004) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 191–203

    Google Scholar 

  • Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M (2003) The development of a marine natural product based antifouling paint. J Bacteriol 19:197–205

    CAS  Google Scholar 

  • Button DK (2004) Life in extremely dilute environments: the major role of oligobacteria. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 160–168

    Google Scholar 

  • Callow ME, Callow JA (2002) Marine biofouling a sticky problem. Biologist 49:10–14

    Google Scholar 

  • Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652

    Article  CAS  Google Scholar 

  • Chandramohan D (1997) Recent advances in marine microbiology: the Indian scenario. J Mar Biotechnol 5:73–81

    Google Scholar 

  • Clare AS, Rihschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Invert Rep Dev 22:67–76

    Article  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Article  CAS  Google Scholar 

  • Daniel GF, Chamberlain AHL (1981) Copper immobilization in fouling diatoms. Bot Mar 24:229–243

    Article  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming in bacteria. FEMS Microbiol Rev 28:261–289

    Article  CAS  Google Scholar 

  • Das S, Lyla PS, Khan AS (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • De Sousa SN, Kumar MD, Sardesai S, Sarma VVSS, Shirodkar PV (1996) Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea. Curr Sci 71:857–862

    Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–633

    Article  CAS  Google Scholar 

  • Dionisi H, Lozada M, Nelda M, Olivera L (2012) Bioprospection of marine micro-organisms: biotechnological applications and methods. Rev Argent Microbiol 44:49–60

    CAS  Google Scholar 

  • Dobrestov SV, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18:217–228

    Article  Google Scholar 

  • Dobretsov S, Xiong HR, Xu Y, Levin LA, Qian PY (2007) Novel antifoulants: inhibition of larval attachment by proteases. Mar Biotechnol 9:388–397

    Article  CAS  Google Scholar 

  • Douglas–Helders GM, Tan C, Carson J, Nowak BF (2003) Effects of copper based antifouling treatment on the presence of Neoparamoeba pemaquidensis sp 1987 on nets and gills of reared Atlantic salmon (Salmo salar). Aquaculture 221:13–22

    Article  Google Scholar 

  • Egan S, James S, Holmstrom C, Kjelleberg S (2001) Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicate. FEMS Microbiol Ecol 35:67–73

    Article  CAS  Google Scholar 

  • Eguía E, Trueba A (2007) Application of marine biotechnology in the production of natural biocides for testing on environmentally innocuous antifouling coatings. J Coat Technol Res 4:191–202

    Article  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28: 1971–1985

    Article  CAS  Google Scholar 

  • Evans LV (1981) Marine algae and fouling: a review with particular reference to ship fouling. Bot Marina 24:167–171

    Article  CAS  Google Scholar 

  • Evans LV, Clarkson N (1993) Antifouling strategies in the marine environment. J Appl Bacteriol 74:119–124

    Article  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  CAS  Google Scholar 

  • Fusetani N, Clare A (2006) Antifouling compounds. Springer-Verlag, Berlin/New York

    Google Scholar 

  • Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T (2009) The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol 11:3132–3139

    Article  CAS  Google Scholar 

  • Glöckner FO, Joint I (2010) Marine microbial genomics in Europe: current status and perspectives. Microb Biotechnol 3:523–530

    Article  Google Scholar 

  • Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73: 3272–3282

    Article  CAS  Google Scholar 

  • Gunn N, Woods DC, Blunn G, Fletcher RL, Jones EBG (1987) Problems associated with marine microbial fouling. In: Hill EC, Sherman JL, Walkinson RJ (eds) Microbial problems in the offshore oil industry. Wiley, London, pp 175–200

    Google Scholar 

  • Handelsman J (2004) Metagenomic approaches to exploit the biotechnological potential active molecules. Annu Rev Genet 38:525–552

    Article  Google Scholar 

  • Harder T, Lau CKS, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on soft coral Dendronephthya sp. and antibacterial activity of coral tissue extract suggest chemical mechanism against bacterial epibiosis. FEMS Microb Ecol c43:337–347

    Google Scholar 

  • Hayase N, Sogabe T, Itou R, Yamamori N, Sunamoto J (2003) Polymer film produced by a marine bacterium. J Biosci Bioeng 95:72–76

    CAS  Google Scholar 

  • Heidelberg KB, Gilbert JA, Joint I (2010) Marine genomics: at the interface of marine microbial ecology and bio-discovery. Microb Biotechnol 3:531–543

    Article  CAS  Google Scholar 

  • Hellio C, Maréchal JP, Da Gama BAP, Pereira RC, Clare AS (2009) Natural marine products with antifouling activities. In: Hellio C, Yebra DMY (eds) Advances in marine antifouling coatings and technologies. Woodshead, Cambridge, pp 572–622

    Chapter  Google Scholar 

  • Holm ER, Neolved BT, Phillips N, Deangebis KL, Hadfield MG, Smith CM (2000) Temporal and spatial variation in the family of silicon coatings in pearl harbor, Hawaii. Biofouling 15:95–107

    Article  CAS  Google Scholar 

  • Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  CAS  Google Scholar 

  • Holmstrom C, James S, Neilan BA, White DC, Kjelleberg S (1998) Pseudoalteromonas tunicate sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 48:1205–1212

    Article  CAS  Google Scholar 

  • Kalinovskaya NI, Ivanova EP, Alexeeva YV, Gorshkova NM, Kuznetsova TA, Dmitrenok AS, Nicolau DV (2004) Low molecular-weight, biologically active compounds from marine Pseudoalteromonas species. Curr Microbiol 48:441–446

    Article  CAS  Google Scholar 

  • Joint I, Muhling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microbiol Biotechnol 3:564–575

    Article  CAS  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  Google Scholar 

  • Karl DM (2007) Microbial oceanography: paradigm, processes and promise. Nature 5:759–769

    CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  CAS  Google Scholar 

  • Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Lee HS, Kwon KK, Kang SG, Cha SS, Kim SJ, Lee JH (2010) Approaches for novel enzyme discovery from marine environments. Cur Opin Biotechnol 21:353–357

    Article  CAS  Google Scholar 

  • Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22

    Article  CAS  Google Scholar 

  • Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian PY (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22:201–208

    Article  CAS  Google Scholar 

  • Lodeiros CJM, Himmelman JH (2000) Identification of factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in the Golfo De Cariaco, Venezuela. Aquaculture 182:91–114

    Article  Google Scholar 

  • Longeon A, Peduzzi J, Barthelemy M, Corre S, NicolaL L, Michele G (2004) Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X 153. Marine Biotechnol 6:633–641

    Article  CAS  Google Scholar 

  • Malik S, Michael B, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  Google Scholar 

  • Maréchal JP, Hellio C (2009) Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 10:4623–4637

    Article  Google Scholar 

  • McManus MA, Woodson CB (2012) Plankton distribution and ocean dispersal. J Exp Biol 215:1008–1016

    Article  Google Scholar 

  • Meadows PS, Campbell JI (1995) An introduction to marine science. Blackie Academic and Professional, Glasgow, pp 192–202

    Google Scholar 

  • Newman DJ, Cragg GM, Kingston DG (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  Google Scholar 

  • Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74:4889–4897

    Article  CAS  Google Scholar 

  • Olsen SM, Pedersen LT, Laursen MH, Kii S, Dam-Johansen K (2007) Enzyme-based antifouling coatings: a review. Biofouling 23:369–383

    Article  CAS  Google Scholar 

  • Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448

    Article  CAS  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microb Mol Biol Rev 75:361–422

    Article  CAS  Google Scholar 

  • Paerl HW (2000) Marine plankton, the ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 121–148

    Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanography. Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 69:113–124

    Article  CAS  Google Scholar 

  • Perez V, Fern’andez E, Mara˜n’on E, Mor’an XAG, Zubkovc MV (2006) Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res I 53:1616–1634

    Article  Google Scholar 

  • Prochnow AM, Evans F, Saludes DD, Stelzer S, Egan S, James S, Webb JS, Kjelleberg S (2004) Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 70(6):3232–3238

    Article  Google Scholar 

  • Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  CAS  Google Scholar 

  • Raghukumar S, Anil AC (2003) Marine biodiversity and ecosystem functioning: a perspective. Curr Sci 84:884–892

    Google Scholar 

  • Rahnamaeian M (2011) Antimicrobial peptides modes of mechanism, modulation of defense responses. Plant Signal Behav 6:1325–1332

    Article  CAS  Google Scholar 

  • Rittschof D (2000) Natural product antifoulants: one perspective on the challenges related to coatings development. Biofouling 15:119–127

    Article  CAS  Google Scholar 

  • Salomon CE, Nathan AM, David HS (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  CAS  Google Scholar 

  • Sarma SD, Arora P (2001) Halophiles. Encyclopedia of life sciences. pp 1–9

    Google Scholar 

  • Schroeder FC, Gibson DM, Churchill AC, Sojikul P, Wursthorn EJ, Krasnoff SB, Clardy J (2007) Differential analysis of 2D NMR spectra: new natural products from a pilot-scale fungal extract library. Angew Chem Int Ed 46:901–904

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2000) Marine microbes an overview. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 13–46

    Google Scholar 

  • Snell NJ (2003) Examining unmet needs in infectious disease. Drug Discov Today 8:22–30

    Article  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575

    Article  CAS  Google Scholar 

  • Tait K, Williams P, Cámara M, Williamson H, Gan Chan K, Joint I (2009) Quorum sensing signal molecule synthesis and turnover in polymicrobial marine biofilms modulates communication with algal zoospores. Environ Microbiol 11:1792–1802

    Article  CAS  Google Scholar 

  • Tasso M, Pettitt ME, Cordeir AL, Callow ME, Callow JA, Werner C (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516

    Article  CAS  Google Scholar 

  • Tok O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Curr Trends Pept Sci 80:717–735

    Article  Google Scholar 

  • Venkataraman K, Wafar MVM (2005) Coastal and marine biodiversity of India. Indian J Marine Sci 34:57–75

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microb Mol Biol Rev 62:504–544

    CAS  Google Scholar 

  • Vignesh S, Raja A, Jame RA (2011) Marine drugs-implications and future studies. Int J Phamacol 7:22–30

    Article  CAS  Google Scholar 

  • Xu Y, Li HL, Li XC, Xiao X, Qian PY (2009) Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar Biotechnol 11:495–504

    Article  CAS  Google Scholar 

  • Yebra DM, Soren K, Johansen KD (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Yu Y, Li H, Zeng Y, Chen B (2005) Isolation and phylogenetic assignation of actinomycetes in the marine sediments from the Arctic Ocean. Acta Oceanol Sin 24:135–142

    CAS  Google Scholar 

  • Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  CAS  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T (2005) High throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  Google Scholar 

  • Zhao B, Poh CL (2008) Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8: 874–881

    Article  CAS  Google Scholar 

  • Zobell CE, Upham HC (1994) A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanogr Tech Ser 5:239–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Akondi, K.B., Lakshmi, V.V. (2014). Challenges and Prospects in Exploring Marine Microbial Diversity. In: Fulekar, M., Pathak, B., Kale, R. (eds) Environment and Sustainable Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1166-2_4

Download citation

Publish with us

Policies and ethics