Advertisement

Time and Spatially Resolved Luminescence Spectroscopy of ZnO Nanostructures

  • Hideaki Murotani
  • Yoichi Yamada
  • Daisuke Nakamura
  • Tatsuo Okada
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

The optical properties of undoped, P-doped, and Sb-doped ZnO nanostructures (NSs) have been studied by means of photoluminescence (PL), time-resolved PL, and spatially resolved cathodoluminescence (CL) spectroscopy. The temperature dependence of the PL spectra of the P-doped and Sb-doped ZnO NSs was analyzed, and the binding energies of the P-acceptor- and the Sb-acceptor-bound excitons were estimated to be 15 and 11 meV, respectively. This indicated that the Sb impurities formed a shallower acceptor level than the P impurities in ZnO. PL lines due to the radiative recombination of biexcitons and the inelastic scattering processes of excitons were clearly observed in the undoped ZnO NSs, which enabled us to evaluate the binding energies of the excitons and biexcitons as 60 and 15 meV, respectively. These values were identical to the values in bulk ZnO. The radiative and nonradiative recombination lifetimes were estimated from the temperature dependence of the PL lifetime and the time-integrated PL intensity. Although the radiative recombination lifetimes for the undoped and P-doped ZnO NSs were almost equal, the nonradiative recombination lifetime for the P-doped ZnO NSs was longer than that for the undoped ZnO NSs. This suggested that the P doping suppressed the thermal activation of the nonradiative recombination processes. CL images revealed that the intensity of the side surface was much stronger than that of the interior in the P-doped ZnO NSs. On the other hand, the CL intensity was distributed almost uniformly in the Sb-doped ZnO NSs. These observations suggested that the P impurities were distributed around the surface of the NSs and that the Sb impurities were distributed almost uniformly over the NSs.

Keywords

Free Exciton Recombination Lifetime Excitation Power Density Lower Polariton Branch Excitation Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a Japanese national research fund sponsored by the Japan Science and Technology Agency.

References

  1. 1.
    Ü. Özgür, Y.L. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoҫ, J. Appl. Phys. 98, 041301 (2005)Google Scholar
  2. 2.
    K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, S.-J. Park, Appl. Phys. Lett. 83, 63 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Y.R. Ryu, T.S. Lee, H.W. White, Appl. Phys. Lett. 83, 87 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Status Solidi B 229, 911 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, W.P. Beyermann, Appl. Phys. Lett. 87, 152101 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, B.H. Zhao, Appl. Phys. Lett. 88, 062107 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S.W. Koch, H. Haug, G. Schmieder, W. Bohnert, C. Klingshirn, Phys. Status Solidi B 89, 431 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.-J. Wu, S.-C. Liu, Adv. Mater. 14, 215 (2002)CrossRefGoogle Scholar
  15. 15.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T. Okada, B.H. Agung, Y. Nakata, Appl. Phys. A 79, 1417 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    T. Okada, K. Kawashima, Y. Nakata, X. Ning, Jpn. J. Appl. Phys. 44, 668 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T. Okada, K. Kawashima, Y. Nakata, Thin Solid Films 506–507, 274 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    W. Lee, M.-C. Jeong, J.-M. Myoung, Appl. Phys. Lett. 85, 6167 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, J.G. Hou, Appl. Phys. Lett. 86, 031909 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, R.E. Russo, S.S. Mao, Appl. Phys. Lett. 87, 043106 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K. Sakai, S. Oyama, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Physica E 40, 2489 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    K. Sakai, A. Fukuyama, T. Ikari, T. Okada, Jpn. J. Appl. Phys. 48, 085001 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Qiu, K.S. Wong, M. Wu, W. Lin, H. Xu, Appl. Phys. Lett. 84, 2739 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, J.G. Hou, Appl. Phys. Lett. 86, 223106 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    W.M. Kwok, A.B. Djurišić, Y.H. Leung, W.K. Chan, D.L. Phillips, Appl. Phys. Lett. 87, 093108 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T.-W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu, T. Sekiguchi, Appl. Phys. Lett. 84, 3358 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    H.J. Fan, R. Scholz, M. Zacharias, U. Gösele, F. Bertram, D. Forster, J. Christen, Appl. Phys. Lett. 86, 023113 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    M. Foley, C. Ton-That, M.R. Phillips, Appl. Phys. Lett. 93, 243104 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S.S. Kurbanov, G.N. Panin, T.W. Kang, Appl. Phys. Lett. 95, 211902 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    T. Yatsui, J. Lim, M. Ohtsu, S.J. An, G.-C. Yi, Appl. Phys. Lett. 85, 727 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    T. Yatsui, M. Ohtsu, J. Yoo, S.J. An, G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    T. Yatsui, S. Sangu, K. Kobayashi, T. Kawazoe, M. Ohtsu, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 94, 083113 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Okada, K. Kawashima, M. Ueda, Appl. Phys. A 81, 907 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Appl. Phys. A 89, 141 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    R. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, T. Okada, Appl. Phys. A 93, 843 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R. Guo, M. Matusmoto, T. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Appl. Surf. Sci. 225, 9671 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Kumeda, K. Toya, K. Kubo, K. Tsuta, M. Higashihata, D. Nakamura, T. Okada, and K. Sakai, in Proceedings of 2010 IEEE Region 10 Conference, 446 (2011)Google Scholar
  42. 42.
    H. Murotani, D. Akase, Y. Yamada, T. Matsumoto, D. Nakamura, and T. Okada, Proceedings of 2010 IEEE Region 10 Conference, 1011 (2011)Google Scholar
  43. 43.
    K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, R. Sauer, Physica. B 308–310, 945 (2001)CrossRefGoogle Scholar
  44. 44.
    M.W. Allen, P. Miller, R.J. Reeves, S.M. Durbin, Appl. Phys. Lett. 90, 062104 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    B.K. Meyer, J. Sann, S. Lautenschläger, M.R. Wagner, A. Hoffmann, Phys. Rev. B 76, 184120 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Y.P. Varshni, Physica 34, 149 (1967)ADSCrossRefGoogle Scholar
  47. 47.
    S. Permogorov, in Excitons, ed. by E.I. Rashba, M.D. Sturge (North-Holland, Amsterdam, 1982)Google Scholar
  48. 48.
    J.R. Haynes, Phys. Rev. Lett. 4, 361 (1960)ADSCrossRefGoogle Scholar
  49. 49.
    A. Allenic, W. Guo, Y.B. Chen, Y. Che, Z.D. Hu, B. Liu, X.Q. Pan, J. Phys. D Appl. Phys. 41, 025103 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D.C. Look, Y.S. Park, Appl. Phys. Lett. 86, 151917 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    A. Allenic, W. Guo, Y.B. Chen, M.B. Katz, G.Y. Zhao, Y. Che, Z.D. Hu, B. Liu, S.B. Zhang, X.Q. Pan, Adv. Mater. 19, 3333 (2007)CrossRefGoogle Scholar
  52. 52.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, W.P. Beyermann, Appl. Phys. Lett. 88, 052106 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Qin, B. Yao, Y. Yan, J.Y. Zhang, X.P. Jia, Z.Z. Zhang, B.H. Li, C.X. Shan, D.Z. Shen, Appl. Phys. Lett. 95, 022101 (2009)CrossRefGoogle Scholar
  54. 54.
    O. Lopatiuk-Tirpak, W.V. Schoenfeld, L. Chernyak, F.X. Xiu, J.L. Liu, S. Jang, F. Ren, S.J. Pearton, A. Osinsky, P. Chow, Appl. Phys. Lett. 88, 202110 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    L.J. Mandalapu, Z. Yang, S. Chu, J.L. Liu, Appl. Phys. Lett. 92, 122101 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yamada, Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices, ed. by K. Takahashi, A. Yoshikawa, A. Sandhu (Springer, Berlin, 2007), p. 56Google Scholar
  57. 57.
    C. Klingshirn, Phys. Status Solidi B 71, 547 (1975)ADSCrossRefGoogle Scholar
  58. 58.
    M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, S. Franchi, Phys. Rev. B 44, 3115 (1991)ADSCrossRefGoogle Scholar
  59. 59.
    J. Feldmann, G. Peter, E.O. Gobel, P. Dawson, K. Moore, C. Foxon, R.J. Elliot, Phys. Rev. Lett. 59, 2337 (1987)ADSCrossRefGoogle Scholar
  60. 60.
    H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, A. Shimizu, H. Sakaki, Phys. Rev. Lett. 72, 924 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    H.L. Yan, J.B. Wang, X.L. Zhong, Y.C. Zhou, Appl. Phys. Lett. 93, 142502 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    I.A. Palani, D. Nakamura, K. Okazaki, M. Higashihata, T. Okada, Mater. Sci. Eng. B 176, 1526 (2011)CrossRefGoogle Scholar
  63. 63.
    D. Nakamura, K. Okazaki, I.A. Palani, M. Higashihata, T. Okada, Appl. Phys. A 103, 959 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    I.A. Palani, K. Okazaki, D. Nakamura, K. Sakai, M. Higashihata, T. Okada, Appl. Surf. Sci. 258, 3611 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Hideaki Murotani
    • 1
    • 2
  • Yoichi Yamada
    • 1
  • Daisuke Nakamura
    • 3
  • Tatsuo Okada
    • 3
  1. 1.Department of Materials Science and EngineeringYamaguchi UniversityUbeJapan
  2. 2.Department of Electrical and Electronic EngineeringToyota National College of TechnologyToyotaJapan
  3. 3.Graduate School of Information Science and Electrical EngineeringKyushu UniversityNishi-ku, FukuokaJapan

Personalised recommendations