Influence of Sb as a Catalyst in Synthesize of Sb Doped ZnO Nanostructures Using Nanoparticle Assisted Pulsed Laser Deposition for UV LED Applications

  • I. A. Palani
  • D. Nakamura
  • K. Okazaki
  • M. Highasiata
  • T. Okada
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


The paper deals with synthesis of Sb and Sb–Al co-doped ZnO nanowires using nanoparticle assisted pulsed laser deposition (NAPLD) by considering Sb as a catalyst. The mechanism of the growth initiation of nanostructures from the Sb droplets is analyzed at varying growth temperature. Nanowires and nanosheets of different orientation were synthesized. With ZnO:Al target and Sb coated Si as substrates, at a growth temperature of 750 °C, random oriented high density nanowires with a diameter of about 1 μm and a length up to a few tens of micrometer were synthesized. The suppression of A1T modes and E1(L0) modes from Raman spectroscopy confirming that depletion of oxygen vacancies. XPS analysis confirming that the Sb would substitute for Zn(Sbzn) instead of oxygen Al–O bonds, leading to excess of oxygen, neutralizing the oxygen vacancies. The Sb–Al co-doped nanowires annealed at 650 °C showed a strong UV emission and reduction in visible emission as compared to the Sb–Al co-doped nanowires annealed at 450 °C. This confirms that the Sb–Al co-doped posses high stoichiometric nature, good structural and optical properties. To investigate the p-type conductivity of the Sb–Al co-doped nanowires, a homo pn junction was prepared by synthesizing Sb–Al co-doped ZnO nanowires on the pure ZnO surface. The I–V characteristics of the homo PN junction were investigated and a rectifying behavior was observed confirming the formation of p-type. Hence the Sb mono-doped and co-doped ZnO nanowires synthesized by using Sb as catalyst posses good structural and optical properties with good crystallization quality and high stoichiometry nature, hence it is highly suitable for light emitting device applications.


Near Band Edge Emission Thermal Evaporation Method Buffer Layer Thickness Lattice Fringe Spacing Single Ionize Oxygen Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A part of this work was supported by the Special Coordination Funds for Promoting Science and Technology from Japan Science and Technology Agency.


  1. 1.
    G. VijayaPrakash, K. Pradeesh, A. Kumar et al., Fabrication and optoelectronics characterization of ZnO photonic structure. Mater. Lett. 62, 1183–1186 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Cao, M.K. Li, M. Lub, W. Zhang, Q. Wei, Z.B. Liu, The fabrication and electrical characteristics of ZnO twinned nanowires. Mater. Sci. Semicon. Process. 11, 25–29 (2008)CrossRefGoogle Scholar
  3. 3.
    Y.S. Lim, J.W. Park, S.-T. Hong, J. Kim, Carbothermal synthesis of ZnO nanocomb structure. Mater. Sci. Eng. B. 129, 100–103 (2006)CrossRefGoogle Scholar
  4. 4.
    Z. Xiaohui, Y. Xiaoqin, Z. Jing, Q. Zi, Z. Yue et al., Structure and photoluminescence of S-doped ZnO nanorods arrays. Mater. Lett 63, 444–446 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Ishizumi, Y. Takahashi, A. Yamamoto, Y. Kanemitsu, Fabrication and optical properties of Eu3+-doped ZnO nanospheres and nanorods. Mater. Sci. Eng. B. 146, 212–215 (2008)CrossRefGoogle Scholar
  6. 6.
    P. Xiuhua, Y. Zhizhen, L. Jiesheng, G. Xiuquan, Yujia et al., Fabrictaion of Sb-doped P-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 253, 5067–5069 (2003)Google Scholar
  7. 7.
    H. Benelmadjat, N. Touka, B. Harieche, B. Boudine et al., Study of structural and optical properties of Sb doped ZnO thin films deposited by spin coating method. Opt. Mater. 32, 764–767 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    D. Yu, L. Hu, J. Li, H. Hu, H. Zhang, Z. Zhao, Q. Fu, Catalyst-free synthesis of ZnO nanorod arrays on InP (001) substrate by pulsed laser deposition. Mater. Lett. 62, 4063–4065 (2008)CrossRefGoogle Scholar
  9. 9.
    I.A. Palani, D. Nakamura, K. Okazaki, M. Higashihata, T. Okada, Influence of Sb as a catalyst in the growth of ZnO nanowires and nano sheets using Nanoparticle Assisted Pulsed Laser Deposition (NAPLD). Mater. Sci. Eng. 176, 1526–1530 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Guo, D.X. Zhao, Y. Liu, D. Shen, J. Zhang, B. Liu, Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Appl. Phys Lett. 93, 163501–163503 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    H. Guo, J. Zhou, Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochem. Commun. 10, 146–150 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Li, L. You, R. Duan, P. Shi, G. Qin, Oxidation of a ZnS nanobelt into a ZnO nanotwin belt or double single-crystalline ZnO nanobelts. Solid State Commun. 129, 233–238 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    T. Yamamoto, H.K. Yoshida, Solution using a co-doping method to unipolarity for the fabrication of p-type ZnO. Jpn J. Appl. Phys. 38, 166–169 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, Interaction between gallium and nitrogen dopants in ZnO films grown by radical source molecular beam epiatxy. Appl. Phys. Lett. 79, 4139–4141 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma, M. Sumiya, S. Fuke, T. Fukumura, M. Kawasaki., Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Appl. Phys. Lett. 81, 235–238 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Y.Z. Zeng, Z.Z. Ye, J.G. Lu, L.P. Zhu, D.Y. Li, B.H. Zao, J.Y. Huang, Appl. Surf. Sci. 249, 203 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    H.P. He, F. Zhuge, Z.Z. Ye, L.P. Zhu, F.Z. Wang, B.H. Zhao, J.Y. Huange, Stain and its effect on optical properties of Al–N co-doped ZnO films. J. Appl. Phys. 99, 023503 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    F. Zhuge, L.P. Zhu, Z.Z. Ye, J.G. Lu, H.P. He, B.H. Zao, Al concentration dependence of electrical and photoluminescent properties of co-doped ZnO films. Chem. Phys. Lett. 437, 203 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    E. Jung Yun, H.S. Park, K.H. Lee, H.G. Nam, M. Jung, Charecterization of Al–As Co-Doped p-type ZnO films by magnetron cosputtering deposition. J. Appl. Phys. 103, 073507-1-3 (2006)Google Scholar
  20. 20.
    W.W. Zho, F.M. Liu, L.G. Cai, C.C. Zhou, P. Ding, H. Zhang, Annealing effect of co-doping with Al and Sb on structure and optical-electrical properties of the ZnO thin films. J. Alloys Compd. 499, 265–268 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Nakamura, K. Okazaki, I.A. Palani, M. Highasiata, T. Okada, Influence of Sb on a controlled-growth of aligned ZnO nanowires in nanoparticle-assisted pulsed-laser–deposition. doi: 10.1007/s00339-011-6401-5
  22. 22.
    N.J. Vasa, I.A. Palani, M. Singaperumal, T. Okada, Laser assisted doping and smiulatneous texturization of amorphous Si film for tandem photovoltaic cells. Opt. Precis. Engg. 19, 2263–2270 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Yousefi, B. Kamaluddin, M. Ghoranneviss, F. Hajakbari, Auger and photoluminescence analysis of ZnO nanowires grown on AlN thin film. Appl. Surf. Sci. 255, 6985–6988 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R. Yousefi, B. Kamaluddin, Effect of S- and Sn-doping to the optical properties of ZnO nanobelts. Appl. Surf. Sci. 255, 9376–9380 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    R. Yousefi, A.K. Zak, Growth and characterization of ZnO nanowires grown on the Si(1 1 1) and Si(1 0 0) substrates: optical properties and biaxial stress of nanowires. Mater. Sci. Semicon. Proc. doi: 10.1016/j.mssp.2011.02.007
  26. 26.
    S. Xin, Z. Zhengjun, W. Yuquan, Z. Minmin, Synthesis and photoluminescence of aligned ZnO nanorods by thermal decomposition of Zinc acetate at a substrate temperature of 250 °C. J. Phys. D: Appl. Phys. 38, 3934–3937 (2005)CrossRefGoogle Scholar
  27. 27.
    C. Bing, W. Xiufeng, L. Liying, G. Litong, Growth mechanism and morphology dependent luminescence properties of ZnO nano structures prepared in aqueous solution. Mater. Lett. 62, 3099–3102 (2008)CrossRefGoogle Scholar
  28. 28.
    R. Yousefi, B. Kamaluddin, The effects of annealing temperature on structural and optical properties of S-doped ZnO nanobelts. Solid State Sci. 12, 252–256 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Structure and visible luminescence of ZnO nanoparticles. Mater. Sci. Semicond. Process. 9, 156–159 (2006)CrossRefGoogle Scholar
  30. 30.
    P.T. Hsieh, Y.C. Chen, C.M. Wang, Y.Z. Tsai, C.C. Hu, Structural and PL characteristics of ZnO films by room temperature sputtering and rapid thermal annealing processes. Appl. Phys. A 84, 345–349 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6–12 (2008)CrossRefGoogle Scholar
  32. 32.
    Y. Ya, J. Qi, Q. Lioa, Y. Zhnag, L. Tang, Z. Qin, Synthesis and characterization of Sb doped ZnO nanobelts with single side zigzag boundaries. J. Phy. Chem. C 112, 17916–17919 (2008)CrossRefGoogle Scholar
  33. 33.
    J.Y. Li, L. Li, J. Xu, Z. Xiaosong, L. Haiyan, Z.J. Yan, Controlled growth of ZnO nanorods bypolmer template and their Photoluminescence properties. Sci. China Ser. E-tech. Sci. 52, 888–892 (2009)CrossRefMATHGoogle Scholar
  34. 34.
    M. Gomi, N. Oohira, K. Ozaki, M. Koyano, Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn J. Appl. Phys. 42, 481–485 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    I.A. Palani, D. Nakamura, K. Okazaki, T. Shimogaki, M. Higashihata, T. Okada, Influence of ZnO buffer layer on growth of Sb doped ZnO nanowires using nano particle assisted pulsed laser deposition (NAPLD) using Sb as catalyst. Adv. Mat. Lett. doi: 10.5185/amlett.2012.1302
  36. 36.
    T. Yang, B. Yao, T.T. Zhao, G.Z. Xing, H. Wang, H.L. Pan, R. Deng, Y.R. Sui, L.L. Gao, H.Z. Wang, T. Wu, D.Z. Shen, Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. J. Alloys. Compd 509, 5426–5430 (2011)CrossRefGoogle Scholar
  37. 37.
    I.A. Palani, D. Nakamura, K. Okazaki, M. Highasiata, T. Okada, Structural and optical properties of SbAl co-doped ZnO nanowires synthesized using Nanoparticle Assisted Pulsed Laser Deposition (NAPLD) with Sb as catalyst. J. Alloys. Compd. 527, 112–116 (2012)CrossRefGoogle Scholar
  38. 38.
    S.M.H. Hejazi, F. Majidi, M. Pirhadi Tavandashti, M. Ranjbar, The effect of heat treatment process on structure and properties of ZnO nano layer produced by sol–gel method. Mater. Sci. Semicond. Process. 13, 267–271 (2010)CrossRefGoogle Scholar
  39. 39.
    O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, H. Heinrich, Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater. Sci. Eng. B. 145, 57–66 (2007)CrossRefGoogle Scholar
  40. 40.
    L.C. Oleg, L.K. Lee, L. Ono et al., Synthesis and characterization of Ag- or Sb- doped ZnO nanorods by a facmile hydrothermal route. J. Phys. Chem. C 114, 12401–12408 (2010)CrossRefGoogle Scholar
  41. 41.
    J.M. Qin, B. Yao, Y. Yan, J.Y. Zhang, X.P. Jia, Z.Z. Zhang, B.H. Li, C.X. Shan, D.Z. Shen, Formation of stable and reporoducible low resistivity and high carrier concentration p-type ZnO doped at high pressure with Sb. App. Phys. Lett. 95, 022101 (2009)CrossRefGoogle Scholar
  42. 42.
    G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, Effect of annealing on conductivity behavior of undoped ZnO prepared by rf magnetron sputtering. J. Alloys. Compd. 457, 36–41 (2008)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • I. A. Palani
    • 1
    • 2
  • D. Nakamura
    • 2
  • K. Okazaki
    • 2
  • M. Highasiata
    • 2
  • T. Okada
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations