Skip to main content

Control of ZnO Nano-Crystals Synthesized by Nanoparticle-Assisted Pulsed Laser Deposition Using Buffer Layer and Laser Irradiation

  • Chapter
  • First Online:
ZnO Nanocrystals and Allied Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 180))

  • 1624 Accesses

Abstract

Various ZnO nanocrystals, such as nanowires, nanorods, and nanowalls, have been successfully synthesized by a nanoparticle-assisted pulsed laser deposition (NAPLD). In this study, we have succeeded in controlling the growth density and position of the ZnO nano crystals with a ZnO buffer layer and a buffer layer patterned by interference laser irradiation, respectively. Vertically aligned ZnO nanowires with low lateral density were grown on the ZnO buffer layer, and each nanowire was grown at the tip of the hexagonal cone-shape ZnO core formed on the layer. The lateral density of the ZnO nanowires can be controlled by the buffer layer thickness. In addition, laser irradiation to the buffer layer can also control the density, because the density of the nanowire grown on the laser-irradiated layer was clearly decreased as compared with no-irradiated layer. Furthermore, patterned growth of ZnO nano crystals was demonstrated using four beam interference patterning. The buffer layer and interference laser irradiation can be used as one of the effective additives to control the growth of the ZnO nano crystals synthesized by NAPLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  2. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366 (2010)

    Article  ADS  Google Scholar 

  3. S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J Kelly, A.F. Hebard, ZnO spintronics and nanowire devices. J. Elec. Mat. 35(5), 862 (2006)

    Google Scholar 

  4. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  5. E.S.P. Leong, S.F. Yu, S.P. Lau, Directional edge-emitting UV random laser diodes. Appl. Phys. Lett. 89, 221109 (2006)

    Article  ADS  Google Scholar 

  6. Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719 (2003)

    Article  ADS  Google Scholar 

  7. W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater.16, 87 (2004)

    Google Scholar 

  8. R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 94, 33 (2009)

    Article  ADS  Google Scholar 

  9. X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009)

    Article  Google Scholar 

  10. M.-C. Jeong, B.-Y. Oh, M.-H. Ham, J.-M. Myounga, Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105 (2006)

    Article  ADS  Google Scholar 

  11. H. Gao, F. Yan, J. Li, Y. Zeng, J. Wang, Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. J. Phys. D Appl. Phys. 40, 3654 (2007)

    Article  ADS  Google Scholar 

  12. Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation. Appl. Phys. Lett. 93, 253107 (2008)

    Article  ADS  Google Scholar 

  13. T. Okada, J. Suehiro, Synthesis of nano-structured materials by laser-ablation and their application to sensors. Appl. Sur. Sci. 253, 7840 (2007)

    Article  ADS  Google Scholar 

  14. Y. Yang, J.J. Qi, Y. Zhang, Q.L. Liao, L.D. Tang, Z. Qin, Controllable fabrication and electromechanical characterization of single crystalline Sb-doped ZnO nanobelts. Appl. Phys. Lett. 92, 183117 (2008)

    Article  ADS  Google Scholar 

  15. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)

    Article  ADS  Google Scholar 

  16. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17, 2567 (2006)

    Article  ADS  Google Scholar 

  17. M. Kawakami, A.B. Hartanto, Y. Nakata, T. Okada, Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Jpn. J. Appl. Phys. 42, L33 (2003)

    Article  ADS  Google Scholar 

  18. T. Okada, A.B. Hartanto, Y. Nakata, ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Appl. Phys. A 79, 1417 (2004)

    Article  ADS  Google Scholar 

  19. B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113, 10975 (2009)

    Article  Google Scholar 

  20. R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition. Appl. Phys. A 89, 141 (2007)

    Article  ADS  Google Scholar 

  21. R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Substrate effects on ZnO nanostructure growth via nanoparticle-assisted pulsed-laser deposition. Appl. Sur. Sci. 254, 3100 (2008)

    Article  ADS  Google Scholar 

  22. R.Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Aligned growth of ZnO nanowires and lasing in single ZnO nanowire optical cavities. Appl. Phys. B 90, 539 (2008)

    Article  ADS  Google Scholar 

  23. R.Q. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, T. Okada, Catalyst-free synthesis of vertically-aligned ZnO nanowires by nanoparticle-assisted pulsed laser deposition. Appl. Phys. A 93, 843 (2008)

    Article  ADS  Google Scholar 

  24. R. Guo, M. Matsumoto, T. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Aligned growth of ZnO nanowires by NAPLD and their optical characterizations. Appl. Sur. Sci. 255, 9671 (2009)

    Article  ADS  Google Scholar 

  25. R.Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Density-controlled growth of ZnO nanowires via nanoparticle-assisted pulsed-laser deposition and their optical properties. Jpn. J. Appl. Phys. 47, 741 (2008)

    Article  ADS  Google Scholar 

  26. B.Q. Cao, J. Zúñiga-Pérez, N. Boukos, C. Czekalla, H. Hilmer, J. Lenzner, A. Travlos, M. Lorenz, M. Grundmann, Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires. Nanotechnology 20, 305701 (2009)

    Article  Google Scholar 

  27. S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, T. Yamada, Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct. 39, 306 (2006)

    Article  ADS  Google Scholar 

  28. J.L. Yang, S.J. An, W.I. Park, G.-C. Yi, W. Choi, Photocatalysis using ZnO tin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater. 16, 1661 (2004)

    Article  Google Scholar 

  29. D. Nakamura, T. Matsumoto, A. Kumeda, K. Toya, M. Higashihata, T. Okada, Synthesis of ZnO nanowire heterostructures by laser ablation and their photoluminescence. J. Laser Micro/Nanoeng. 6, 23 (2011)

    Article  Google Scholar 

  30. D. Nakamura, K. Okazaki, K. Kubo, K. Tsuta, M. Higashihata, T. Okada, Synthesis of Core/Shell nanowires using doped ZnO targets. J. Laser Micro/Nanoeng. 7, 109 (2012)

    Article  Google Scholar 

  31. E.S. Kumar, S. Venkatesh, M.S.R. Rao, Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Appl. Phys. Lett. 96, 232504 (2010)

    Article  ADS  Google Scholar 

  32. E.S. Kumar, J. Chatterjee, N. Rama, N. DasGupta, M.S.R. Rao, A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition. Appl. Mater. Interfaces 3, 1974 (2011)

    Article  Google Scholar 

  33. B.Q. Cao, W.P. Cai, H.B. Zeng, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 88, 161101 (2006)

    Article  ADS  Google Scholar 

  34. S.B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)

    Article  ADS  Google Scholar 

  35. X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004)

    Article  ADS  Google Scholar 

  36. D. Nakamura, K. Okazaki, I.A. Palani, M. Higashihata, T. Okada, Influence of Sb on a controlled-growth of aligned ZnO nanowires in nanoparticle-assisted pulsed-laser deposition. Appl. Phys. A 103, 959 (2011)

    Article  ADS  Google Scholar 

  37. F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, W.P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl. Phys. Lett. 87, 152101 (2005)

    Article  ADS  Google Scholar 

  38. X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 253, 5067 (2007)

    Article  ADS  Google Scholar 

  39. C.H. Zang, D.X. Zhao, Y. Tang, Z. Guo, J.Y. Zhang, D.Z. Shen, Y.C. Liu, Acceptor related photoluminescence from ZnO:Sb nanowires fabricated by chemical vapor deposition method. Chem. Phys. Lett. 452, 148 (2008)

    Article  ADS  Google Scholar 

  40. X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687 (2010)

    Article  ADS  Google Scholar 

  41. S. Li, X. Zhang, L. Zhang, Sb2O3-Induced tapered ZnO nanowire arrays: the kinetics of radial growth and morphology control. J. Phys. Chem. C 114, 10379 (2010)

    Article  Google Scholar 

  42. T. Senda, R.C. Bradt, Grain growth of zinc oxide during the sintering of zinc oxide-antimony oxide ceramics. J. Am. Ceram. Soc. 74, 1296 (1991)

    Article  Google Scholar 

  43. Y. Yang, J.J. Qi, Q.L. Liao, Y. Zhang, L.D. Tang, Z. Qin, Synthesis and characterization of Sb-doped zno nanobelts with single-side zigzag boundaries. J. Phys. Chem. C 112, 17916 (2008)

    Article  Google Scholar 

  44. X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687 (2010)

    Article  ADS  Google Scholar 

  45. A.A. Maznev, T.F. Crimmins, K.A. Nelson, How to make femtosecond pulses overlap. Opt. Lett. 23, 1378 (1998)

    Article  ADS  Google Scholar 

  46. Y. Nakata, N. Miyanaga, T. Okada, Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl. Sur. Sci. 253, 6555 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A part of this study has been financially supported by Special Coordination Funds for Promoting Science and Technology from Japan Science and Technology Agency and Agency and Grant-in-Aid for Young Scientist (B) from the Japan Society for the Promotion of Science (No. 23760036, 24656053). We are also indebted to the Research Laboratory of High Voltage Electron Microscope of Kyushu University for the use of TEM and the Center of Advanced Instrumental Analysis, Kyushu University for the use of XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nakamura, D., Shimogaki, T., Okazaki, K., Palani, I.A., Higashihata, M., Okada, T. (2014). Control of ZnO Nano-Crystals Synthesized by Nanoparticle-Assisted Pulsed Laser Deposition Using Buffer Layer and Laser Irradiation. In: Rao, M., Okada, T. (eds) ZnO Nanocrystals and Allied Materials. Springer Series in Materials Science, vol 180. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1160-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1160-0_7

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1159-4

  • Online ISBN: 978-81-322-1160-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics