Control of ZnO Nano-Crystals Synthesized by Nanoparticle-Assisted Pulsed Laser Deposition Using Buffer Layer and Laser Irradiation

  • Daisuke Nakamura
  • Tetsuya Shimogaki
  • Kota Okazaki
  • I. A. Palani
  • Mitsuhiro Higashihata
  • Tatsuo Okada
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


Various ZnO nanocrystals, such as nanowires, nanorods, and nanowalls, have been successfully synthesized by a nanoparticle-assisted pulsed laser deposition (NAPLD). In this study, we have succeeded in controlling the growth density and position of the ZnO nano crystals with a ZnO buffer layer and a buffer layer patterned by interference laser irradiation, respectively. Vertically aligned ZnO nanowires with low lateral density were grown on the ZnO buffer layer, and each nanowire was grown at the tip of the hexagonal cone-shape ZnO core formed on the layer. The lateral density of the ZnO nanowires can be controlled by the buffer layer thickness. In addition, laser irradiation to the buffer layer can also control the density, because the density of the nanowire grown on the laser-irradiated layer was clearly decreased as compared with no-irradiated layer. Furthermore, patterned growth of ZnO nano crystals was demonstrated using four beam interference patterning. The buffer layer and interference laser irradiation can be used as one of the effective additives to control the growth of the ZnO nano crystals synthesized by NAPLD.


Buffer Layer View Scanning Electron Microscopy Image Nanowire Density Broad Visible Emission Background Oxygen Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A part of this study has been financially supported by Special Coordination Funds for Promoting Science and Technology from Japan Science and Technology Agency and Agency and Grant-in-Aid for Young Scientist (B) from the Japan Society for the Promotion of Science (No. 23760036, 24656053). We are also indebted to the Research Laboratory of High Voltage Electron Microscope of Kyushu University for the use of TEM and the Center of Advanced Instrumental Analysis, Kyushu University for the use of XRD.


  1. 1.
    Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J Kelly, A.F. Hebard, ZnO spintronics and nanowire devices. J. Elec. Mat. 35(5), 862 (2006)Google Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    E.S.P. Leong, S.F. Yu, S.P. Lau, Directional edge-emitting UV random laser diodes. Appl. Phys. Lett. 89, 221109 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater.16, 87 (2004)Google Scholar
  8. 8.
    R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 94, 33 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009)CrossRefGoogle Scholar
  10. 10.
    M.-C. Jeong, B.-Y. Oh, M.-H. Ham, J.-M. Myounga, Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    H. Gao, F. Yan, J. Li, Y. Zeng, J. Wang, Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. J. Phys. D Appl. Phys. 40, 3654 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation. Appl. Phys. Lett. 93, 253107 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    T. Okada, J. Suehiro, Synthesis of nano-structured materials by laser-ablation and their application to sensors. Appl. Sur. Sci. 253, 7840 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Yang, J.J. Qi, Y. Zhang, Q.L. Liao, L.D. Tang, Z. Qin, Controllable fabrication and electromechanical characterization of single crystalline Sb-doped ZnO nanobelts. Appl. Phys. Lett. 92, 183117 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17, 2567 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Kawakami, A.B. Hartanto, Y. Nakata, T. Okada, Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Jpn. J. Appl. Phys. 42, L33 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    T. Okada, A.B. Hartanto, Y. Nakata, ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Appl. Phys. A 79, 1417 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113, 10975 (2009)CrossRefGoogle Scholar
  20. 20.
    R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition. Appl. Phys. A 89, 141 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Substrate effects on ZnO nanostructure growth via nanoparticle-assisted pulsed-laser deposition. Appl. Sur. Sci. 254, 3100 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    R.Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Aligned growth of ZnO nanowires and lasing in single ZnO nanowire optical cavities. Appl. Phys. B 90, 539 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    R.Q. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, T. Okada, Catalyst-free synthesis of vertically-aligned ZnO nanowires by nanoparticle-assisted pulsed laser deposition. Appl. Phys. A 93, 843 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    R. Guo, M. Matsumoto, T. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Aligned growth of ZnO nanowires by NAPLD and their optical characterizations. Appl. Sur. Sci. 255, 9671 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    R.Q. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Density-controlled growth of ZnO nanowires via nanoparticle-assisted pulsed-laser deposition and their optical properties. Jpn. J. Appl. Phys. 47, 741 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    B.Q. Cao, J. Zúñiga-Pérez, N. Boukos, C. Czekalla, H. Hilmer, J. Lenzner, A. Travlos, M. Lorenz, M. Grundmann, Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires. Nanotechnology 20, 305701 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, T. Yamada, Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct. 39, 306 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.L. Yang, S.J. An, W.I. Park, G.-C. Yi, W. Choi, Photocatalysis using ZnO tin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater. 16, 1661 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Nakamura, T. Matsumoto, A. Kumeda, K. Toya, M. Higashihata, T. Okada, Synthesis of ZnO nanowire heterostructures by laser ablation and their photoluminescence. J. Laser Micro/Nanoeng. 6, 23 (2011)CrossRefGoogle Scholar
  30. 30.
    D. Nakamura, K. Okazaki, K. Kubo, K. Tsuta, M. Higashihata, T. Okada, Synthesis of Core/Shell nanowires using doped ZnO targets. J. Laser Micro/Nanoeng. 7, 109 (2012)CrossRefGoogle Scholar
  31. 31.
    E.S. Kumar, S. Venkatesh, M.S.R. Rao, Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Appl. Phys. Lett. 96, 232504 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    E.S. Kumar, J. Chatterjee, N. Rama, N. DasGupta, M.S.R. Rao, A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition. Appl. Mater. Interfaces 3, 1974 (2011)CrossRefGoogle Scholar
  33. 33.
    B.Q. Cao, W.P. Cai, H.B. Zeng, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 88, 161101 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    S.B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    D. Nakamura, K. Okazaki, I.A. Palani, M. Higashihata, T. Okada, Influence of Sb on a controlled-growth of aligned ZnO nanowires in nanoparticle-assisted pulsed-laser deposition. Appl. Phys. A 103, 959 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, W.P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl. Phys. Lett. 87, 152101 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 253, 5067 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    C.H. Zang, D.X. Zhao, Y. Tang, Z. Guo, J.Y. Zhang, D.Z. Shen, Y.C. Liu, Acceptor related photoluminescence from ZnO:Sb nanowires fabricated by chemical vapor deposition method. Chem. Phys. Lett. 452, 148 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    S. Li, X. Zhang, L. Zhang, Sb2O3-Induced tapered ZnO nanowire arrays: the kinetics of radial growth and morphology control. J. Phys. Chem. C 114, 10379 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Senda, R.C. Bradt, Grain growth of zinc oxide during the sintering of zinc oxide-antimony oxide ceramics. J. Am. Ceram. Soc. 74, 1296 (1991)CrossRefGoogle Scholar
  43. 43.
    Y. Yang, J.J. Qi, Q.L. Liao, Y. Zhang, L.D. Tang, Z. Qin, Synthesis and characterization of Sb-doped zno nanobelts with single-side zigzag boundaries. J. Phys. Chem. C 112, 17916 (2008)CrossRefGoogle Scholar
  44. 44.
    X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Structural and photoluminescence properties of aligned Sb-doped ZnO nanocolumns synthesized by the hydrothermal method. Thin Solid Films 518, 5687 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A.A. Maznev, T.F. Crimmins, K.A. Nelson, How to make femtosecond pulses overlap. Opt. Lett. 23, 1378 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Nakata, N. Miyanaga, T. Okada, Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl. Sur. Sci. 253, 6555 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Daisuke Nakamura
    • 1
  • Tetsuya Shimogaki
    • 1
  • Kota Okazaki
    • 1
  • I. A. Palani
    • 2
  • Mitsuhiro Higashihata
    • 1
  • Tatsuo Okada
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan
  2. 2.Indian Institute of TechnologyIndoreIndia

Personalised recommendations