Effect of Oxygen Pressure on Photoluminescence Spectra and Hall Coefficients of Li–Ni Co-Doped ZnO Films Grown by a Pulsed Laser Deposition

  • K. Sakai
  • K. Ishikura
  • D. Ohori
  • D. Nakamura
  • A. Fukuyama
  • T. Okada
  • M. S. Ramachandra Rao
  • T. Ikari
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


Since the co-doping method is a key technique for the realization of p-type ZnO films, we grew samples by the co-doping of Li and Ni impurities using a pulsed laser deposition technique to investigate the formation of a possible acceptor level. The effect of the oxygen gas pressure on the physical properties is discussed. The electrical and optical properties of the films were investigated through Hall and photoluminescence (PL) measurements. Although p-type conduction was not observed, we were able to observe the change in conduction type from n-type to insulating upon increasing the oxygen pressure. PL spectra of co-doped samples were investigated at 10 K by comparison with those of mono-doped samples. Co-doping drastically changes the PL spectral shape and reveals additional peaks at 2.4 and 3.0 eV, which could not be observed in the spectra of mono-doped samples. The experimental results showed that the acceptor level was indeed formed by the co-doping of Li and Ni.


Oxygen Vacancy Conduction Type Yellow Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency, and also by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan.


  1. 1.
    K. Sakai, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Jpn. J. Appl. Phys. 48, 085001 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, Q.L. Liang, Appl. Phys. Lett. 88, 222114 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Mahino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Jin, T. Fukumura, M. Kawazaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 78, 3824 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, Appl. Phys. Lett. 88, 152116 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ramachandran, J. Narayan, J.T. Prater, Appl. Phys. Lett. 88, 242503 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T.C. Sum, T. Wu, Appl. Phys. Lett. 96, 112511 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    E.S. Kumar, S. Venkatesh, M.S.R. Rao, Appl. Phys. Lett. 96, 232504 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Qui, H.Z. Wu, A.M. Feng, Y.F. Lao, N.B. Chen, T.N. Xu, Appl. Surf. Sci. 222, 263 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Tong, T. Cheng, H. Han, J. Hu, X. He, Y. Tong, C.M. Schneider, J. Appl. Phys. 108, 023906 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, New J. Phys. 11, 063009 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    O.F. Schirmer, D. Zwingel, Solid State Commun. 8, 1559 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    T. Yamamoto, H. Katayama-Yoshida, Phys. B 302–303, 155 (2001)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • K. Sakai
    • 1
  • K. Ishikura
    • 2
  • D. Ohori
    • 2
  • D. Nakamura
    • 3
  • A. Fukuyama
    • 2
  • T. Okada
    • 3
  • M. S. Ramachandra Rao
    • 4
  • T. Ikari
    • 2
  1. 1.Center for Collaborative Research & Community CooperationUniversity of MiyazakiMiyazakiJapan
  2. 2.Faculty of EngineeringUniversity of MiyazakiMiyazakiJapan
  3. 3.Graduate School of Information Science and Electrical EngineeringKyushu UniversityNishi-kuJapan
  4. 4.Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research CentreIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations