Advertisement

Photoluminescence Processes in ZnO Thin Films and Quantum Structures

  • L. M. Kukreja
  • P. Misra
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

ZnO, a well-known direct and wide bandgap semiconductor is found to show intricate photoluminescence (PL) spectra in thin films and quantum structures such as quantum wells and quantum dots (QDs). In ZnO, thin films grown on sapphire substrates using pulsed laser deposition (PLD) an intense PL in the UV region at about 3.35 eV was observed, which corresponded to near band-edge emission due to the excitonic recombinations. The deep level emission in the visible spectral region of 2–3 eV, which is found to be due to off stoichiometry of the ZnO films, i.e., oxygen vacancies, zinc interstitial, and other structural defects, was almost negligible compared to the near band-edge emission. The strong near band-edge emission in UV spectral region was found to have fine structures consisting of various peaks mainly due to donor and acceptor bound excitons and their phonon replicas, which changed their position and intensity with temperature. In ZnO/Mg x Zn1−x O multi-quantum wells (MQWs) with well layer thickness in the range of ~4 to 1 nm on (0001) sapphire substrates also grown using PLD under the optimized conditions, we observed size-dependent blue shift in ZnO bandgap due to the quantum confinement effect. The PL spectra of these ZnO MQWs recorded at 10 K showed that line width of the PL peaks increased with decreasing well layer thickness, which was attributed to fluctuations in the well layer thickness. The temperature-dependent PL peak positions for the MQWs were found to shift gradually toward red end of the spectrum with increase in temperature up to 300 K due to the temperature-dependent thermal expansion/dilation of the lattice and carrier-phonon scattering. This dependance was found to be consistent with the well-known Varshni’s empirical relation. Ensembles of alumina capped ZnO quantum dots (ZQDs) also grown using pulsed laser deposition with mean radii comparable to and smaller than the pertinent excitonic Bohr radius (~2.34 nm), called ultra-small QDs showed size-dependent optical absorption edges. These absorption spectra were found to be consistent with the strong confinement model, in which the confinement energy and Coulombic interaction energy of the localized electron-hole pairs are taken to be significantly higher than their correlation energy and the optical transitions are perceived to be non-excitonic in nature. In PL spectra of such ZQDs of mean radius of ~2.3 nm at temperatures of ~6 K and above the primary recombinations were found to be due to the surface bound and Al donor bound electron-hole pairs. The near band-edge recombination peaks of the PL spectra appeared at the sample temperature of ~70 K and beyond. These peaks were found to be ~166 meV Stoke and/or thermally red shifted with respect to the experimentally observed absorption edge. Almost all the PL spectra of the ZQDs at different temperatures showed the LO and 2 LO phonon replicas of the primary transitions, which suggests strong coupling between the recombining charge carriers and the LO phonons. The temperature-dependent spectral positions of the PL peaks for the ZQDs also followed the above stated Varshni’s relation with fitting parameters close to that of the bulk ZnO. The intensity of the PL peaks was found to follow the normal mechanism of thermal quenching which could be fitted with the Arrhenius type of equation having activation energy of ~10 meV. Temperature dependence of FWHM of the PL peaks when fitted with the Hellmann and O’Neill models did not result in a close match. Although one could estimate a value of the carrier-LO phonon coupling coefficient of ~980 meV from this fit, but this was found to be much higher than that reported earlier for the ZQDs. These studies are expected to provide deeper insight into the basic optical processes in ZnO thin films, quantum wells, and QDs.

Keywords

Pulse Laser Deposition Sapphire Substrate Free Exciton Longitudinal Optical Phonon Longitudinal Optical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

It is a pleasure to thank Prof. C. Klingshirn of University of Karlsruhe, Germany, Dr. G. M. Prinz and Dr. K. Thonke of Institut für Halbleiterphysik, Universität Ulm, Germany, and Dr. T. K. Sharma, Mr. Sanjay Porwal, and Dr. S. M. Oak of Raja Ramanna Centre for Advanced Technology, Indore for their help with the PL measurements and many fruitful discussions. We also thank Dr. T. Ganguli, Dr. A. K. Shrivastava, and Dr. S. K. Deb of our centre for their help with HRXRD and TEM measurements and Dr. D. M. Phase and Mr. A. Wadikar of UGC—DAE Centre for Scientific Research, Indore for their help with the XPS measurements. LMK thanks Alexander von Humboldt foundation of Germany for the financial support to visit University of Karlsruhe and Universität Ulm where low temperature PL studies were carried out.

References

  1. 1.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doðan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)Google Scholar
  2. 2.
    C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 87, 153, 504 (2005)Google Scholar
  5. 5.
    W.I. Park, J.S. Kim, G.-C. Yi, H.-J. Lee, Adv. Mater. 17, 1393 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Misra, A.K. Das, L.M. Kukreja, Phys. Status Solidi C 7(6), 1718 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    P. Sharma, A. Mansingh, K. Sreenivas, Appl. Phys. Lett. 80, 553 (2002)Google Scholar
  8. 8.
    A. Mang, K. Reimann, St. Rubenacke, Solid State Commun. 94, 251 (1995)Google Scholar
  9. 9.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, V.I. Vdovin, K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, J.M. Zavada, J. Appl. Phys. 94, 2895 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, C. Evans, A.J. Nelson, A.V. Hamza, Phys. Rev. B 67, 094115 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    V.A. Coleman, C. Jagadish, Basic Properties and Applications of ZnO, in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, ed. by C. Jagadish, S.J. Pearton (Elsevier, 2006)Google Scholar
  12. 12.
    R. Triboulet, J. Perriere, Prog. Cryst. Growth Charact. Mater. 47, 65 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Fukumura, H. Toyosaki, Y. Yamada, Semicond. Sci. Technol. 20, S103–S111 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)Google Scholar
  15. 15.
    A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, H. Koinuma, Appl. Phys. Lett. 77, 2204 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    H.D. Sun, T. Makino, N.T. Tuan, Y. Segawa, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77, 4250 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, Y. Yoshimoto, Appl. Phys. Lett. 72, 824 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971)Google Scholar
  19. 19.
    L. Birman, Phys. Rev. Lett. 2, 157 (1959)ADSCrossRefGoogle Scholar
  20. 20.
    Landolt-Bçrnstein, New Series, Group III, vol. 17 B, 22, 41B, ed. by U. Rçssler, (Springer, Heidelberg, 1999)Google Scholar
  21. 21.
    C. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Heidelberg, 2006)Google Scholar
  22. 22.
    J.H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)Google Scholar
  23. 23.
    P. Harrison, Quantum Wells (Wires and Dots, New York, 2000)Google Scholar
  24. 24.
    P.K. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Clarendon Press, Oxford, 1997)Google Scholar
  25. 25.
    L.M. Kukreja, B.N. Singh, P. Misra, Pulsed Laser Deposition of Nanostructured Semiconductors, in Bottom-up Nanofabrication: Supramolecules, Self-Assemblies and Organized Films, ed. by K. Ariga, H.S. Nalwa, (American Scientific, California, 2008)Google Scholar
  26. 26.
    P. Misra, L.M. Kukreja, Thin Solid Films 485(1–2), 42 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    P. Misra, T.K. Sharma, L.M. Kukreja, Curr. Appl. Phys. 9(1), 179 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakura, Y. Yashida, T. Yashuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    C. Klingshirn, Phys. Status Solidi B 71, 547 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Phys. Rev. B 57, 12151 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    C. Solbrig, E. Mollwo, Solid State Commun. 5, 625 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184/185, 605 (1998)Google Scholar
  35. 35.
    S. Bethke, H. Pan, B.W. Wessels, Appl. Phys. Lett. 52, 138 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Phys. Rev. B 70, 195207 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Douglas B. Chrisey, Graham K. Hubler, Pulsed Laser Deposition of Thin Films, (Wiley-interscience, 1994)Google Scholar
  38. 38.
    A. Alim Khan, A. Fonoberov Vladimir, A. Balandin Alexander, Appl. Phys. Lett. 86, 053103 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M.S. Liu, L.A. Bursill, S. Prawer, K.W. Nugent, Y.Z. Tong, G.Y. Zhang, Appl. Phys. Lett. 74, 3125 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    E. Gross, S. Permogorov, B. Razbirin, J. Phys. Chem. Solids 27, 1647 (1966)ADSCrossRefGoogle Scholar
  41. 41.
    T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Semicond. Sci. Technol. 20, 78 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, A. Dadgar, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    P. Misra, T.K. Sharma, S. Porwal, L.M. Kukreja, Appl. Phys. Lett. 89, 161912 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, 1 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    P. Misra, T.K. Sharma, G.M. Prinz, K. Thonke, L.M. Kukreja, in Proceedings IUMRS-ICAM, Banglore, Oct 7–12 2007, pp. V11–12Google Scholar
  46. 46.
    R. Hellmann, M. Koch, J. Feldmann, S.T. Condiff, E.O. Gobel, D.R. Yakovlev, A. Waag, G. Landwehr, Phys. Rev. B 48, 2847 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    M. O’Neill, M. Oestreich, W.W. Ruhle, D.E. Ashenford, Phys. Rev. 48, 8980 (1993)CrossRefGoogle Scholar
  48. 48.
    Y.P. Varshni, Physica 34, 149 (1967)ADSCrossRefGoogle Scholar
  49. 49.
    B.P. Zhang, N.T. Binh, K. Wakatsuki, C.Y. Liu, Y. Segawa, N. Usami, Appl. Phys. Lett. 86, 032105 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    T. Mozume, J. Kasai, J. Appl. Phys. 95, 1050 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    P. Misra, T.K. Sharma, L.M. Kukreja, Superlattices Microstruct. 42(1–6), 212–217 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    U. Koch, A. Fojtik, H. Weller, A. Henglein, Chem. Phys. Lett. 122, 507 (1985)ADSCrossRefGoogle Scholar
  53. 53.
    L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)CrossRefGoogle Scholar
  54. 54.
    E.M. Wong, J.E. Bonevich, P.C. Searson, J. Phys. Chem. B 102, 7770 (1998)CrossRefGoogle Scholar
  55. 55.
    J.J. Cavaleri, D.E. Skinner, D.P. Colombo Jr, R.M. Bowman, J. Chem. Phys. 103, 5378 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    I. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci. 159–160, 514 (2000)CrossRefGoogle Scholar
  58. 58.
    S. Barik, A.K. Srivastava, P. Misra, R.V. Nandedkar, L.M. Kukreja, Solid State Commun. 127, 463 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    L.M. Kukreja, P. Misra, A.K. Das, J. Sartor, H. Kalt, J. Vac. Sci. Technol., A 29(3), 120 (2011)CrossRefGoogle Scholar
  60. 60.
    L.M. Kukreja, S. Barik, P. Misra Jr, Cryst. Growth 268(3–4), 531 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    L.M. Kukreja, P. Misra, J. Fallert, J. Sartor, H. Kalt, C. Klingshirn, IEEE Photon. Global 1 (2009)Google Scholar
  62. 62.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984)ADSCrossRefGoogle Scholar
  63. 63.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)Google Scholar
  64. 64.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)Google Scholar
  65. 65.
    M.V. Rama Krishna, R.A. Friesner, Phys. Rev. Lett. 67, 629 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    P.E. Lippens, M. Lannoo, Phys. Rev. B 39, 10935 (1989)ADSCrossRefGoogle Scholar
  67. 67.
    S.V. Nair, L.M. Ramaniah, K.C. Rustagi, Phys. Rev. B 45, 5969 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Chem. Phys. Lett. 409, 208 (2005) and references cited thereinGoogle Scholar
  69. 69.
    V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Phys. Rev. B 73, 165317 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    W.-T. Hsu, K.-F. Lin, W.-F. Hseih, Appl. Phys. Lett. 91, 181913 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    V.V. Travanikov, A. Freiberg, S.F. Savikhin, J. Lumin. 47, 107 (1990)CrossRefGoogle Scholar
  72. 72.
    L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, Nanotechnology 19, 135705 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    B.K. Meyer et al., Phys. Status Solidi B 241, 231 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)ADSCrossRefGoogle Scholar
  75. 75.
    N. Ohtsu, M. Oku, T. Shishido, K. Wagatsuma, Appl. Surf. Sci. 253, 8713 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)ADSCrossRefGoogle Scholar
  77. 77.
    R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg, Phys. Rev. Lett. 83, 4654 (1999)ADSCrossRefGoogle Scholar
  78. 78.
    J.-P. Richters, T. Voss, D.S. Kim, R. Scholz, M. Zacharias, Nanotechnology 19, 305202 (2008)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Laser Materials Processing DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations