Experimental and Theoretical Investigations of Dopant, Defect, and Morphology Control on the Magnetic and Optical Properties of Transition Metal Doped ZnO Nanoparticles

  • O. D. Jayakumar
  • C. Persson
  • A. K. Tyagi
  • C. Sudakar
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


The control of size, shape, and physical properties by surface modifications are of immense interest in materials which are of technological importance. The ZnO-based wide bandgap semiconductor nanoparticles have gained significant interest in the research community due to its large exciton binding energy (60 meV). Further substantial renewed interest in ZnO-based compounds is due to the possible realization of p-type conduction and ferromagnetic behavior when doped with transition metals. In this report we present interesting results on the ZnO nanoparticle system in which the control of dopants, morphology, and the surface modification can influence significantly the physical properties of the ZnO nanoparticles. First, we present the methods to control the morphology of the ZnO particle to obtain nanorods. As an example we show the effect of Li dopant on the morphology control of Co and Ni doped ZnO. The effect of morphology on the magnetic properties of these compounds is discussed further. We also demonstrate the effect of the n-type charge carriers on the magnetic and optical properties by doping aliovalent cations in Zn(Co)O. Following this we comment on the magnetic property manipulations by surfactant treatment of transition metal (TM) doped ZnO and defect stabilization in ZnO by Mg doping. The magnetic coupling is RKKY-like both with and without Li co-doping. Finally, we provide the significant implications of these results on the nanorods structures of room temperature ferromagnetic materials by first-principles modeling. These theoretical analyses demonstrate that Li co-doping has primarily two effects in bulk Zn1−x M x O (with M = Co or Ni). First, the Li-on-Zn acceptors increase the local magnetic moment by depopulating the M 3d minority spin-states. Second, Li-on-Zn prefer to be closer to the M atoms to compensate the M–O bonds and to locally depopulate the 3d states, and this will help in forming high aspect nanostructures. The observed room temperature ferromagnetism in Li co-doped Zn1−x M x O nanorods can therefore be explained by the better rod morphology in combination with locally ionizing the magnetic M atoms.


Total Magnetic Moment Local Magnetic Moment Surfactant Treatment Nanorod Morphology Aliovalent Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



C. Sudakar would like to thank Prof. R. Naik, Prof. V. M. Naik, and Prof. G. Lawes and members of their group at Wayne State University (WSU). The author would like to acknowledge the Jane and Frank Warchol Foundation and the Institute for Manufacturing Research at WSU for support to TEM works carried out at WSU. C. Persson is supported by the Swedish Energy Agency, and the Swedish Research Council, and he acknowledges access to high-performance computing resources at the HPC2N and NSC centers through SNIC/SNAC and Matter network.


  1. 1.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98(4) (2005)Google Scholar
  2. 2.
    G.-C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol. 20(4), S22 (2005)ADSGoogle Scholar
  3. 3.
    S. Xu, Z. Wang, Nano Res. 4(11), 1013–1098 (2011)Google Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292(5523), 1897–1899 (2001)ADSGoogle Scholar
  5. 5.
    K. Govender, D.S. Boyle, P. O’Brien, D. Binks, D. West, D. Coleman, Adv. Mater. 14(17), 1221–1224 (2002)Google Scholar
  6. 6.
    W.I. Park, G.C. Yi, Adv. Mater. 16(1), 87–90 (2004)MathSciNetGoogle Scholar
  7. 7.
    W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M.J. Naughton, Z.F. Ren, Adv. Mater. 18(24), 3275–3278 (2006)Google Scholar
  8. 8.
    Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83(1), 144–146 (2003)ADSGoogle Scholar
  9. 9.
    T.-Y. Wei, P.-H. Yeh, S.-Y. Lu, Z.L. Wang, J. Am. Chem. Soc. 131(48), 17690–17695 (2009)Google Scholar
  10. 10.
    P.-H. Yeh, Z. Li, Z.L. Wang, Adv. Mater. 21(48), 4975–4978 (2009)Google Scholar
  11. 11.
    C. Lévy-Clément, R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, Adv. Mater. 17(12), 1512–1515 (2005)Google Scholar
  12. 12.
    B. Weintraub, Y. Wei, Z.L. Wang, Angew. Chem. Int. Ed. 48(47), 8981–8985 (2009)Google Scholar
  13. 13.
    Y. Wei, C. Xu, S. Xu, C. Li, W. Wu, Z.L. Wang, Nano Lett. 10(6), 2092–2096 (2010)ADSGoogle Scholar
  14. 14.
    X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316(5821), 102–105 (2007)ADSGoogle Scholar
  15. 15.
    Z.L. Wang, Adv. Funct. Mater. 18(22), 3553–3567 (2008)Google Scholar
  16. 16.
    Z.L. Wang, Adv. Mater. 19(6), 889–892 (2007)Google Scholar
  17. 17.
    Z.L. Wang, Mater. Today 10(5), 20–28 (2007)Google Scholar
  18. 18.
    Z.L. Wang, J. Song, Science 312(5771), 242–246 (2006)ADSGoogle Scholar
  19. 19.
    O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, Nano Lett. 3(8), 1097–1101 (2003)ADSGoogle Scholar
  20. 20.
    H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14(2), 158–160 (2002)Google Scholar
  21. 21.
    H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 445(2), 317–321 (2003)ADSGoogle Scholar
  22. 22.
    S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84(24), 5022–5024 (2004)ADSGoogle Scholar
  23. 23.
    K. Keem, H. Kim, G.-T. Kim, J.S. Lee, B. Min, K. Cho, M.-Y. Sung, S. Kim, Appl. Phys. Lett. 84(22), 4376–4378 (2004)ADSGoogle Scholar
  24. 24.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao, J.P. Li, Appl. Phys. Lett. 84(16), 3085–3087 (2004)ADSGoogle Scholar
  25. 25.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84(18), 3654–3656 (2004)ADSGoogle Scholar
  26. 26.
    Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Appl. Phys. Lett. 84(22), 4556–4558 (2004)ADSGoogle Scholar
  27. 27.
    M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107(3), 659–663 (2002)Google Scholar
  28. 28.
    C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 83(15), 3168–3170 (2003)ADSGoogle Scholar
  29. 29.
    W.I. Park, G.-C. Yi, J.-W. Kim, S.-M. Park, Appl. Phys. Lett. 82(24), 4358–4360 (2003)ADSGoogle Scholar
  30. 30.
    Z.L. Wang, Mater. Today 7(6), 26–33 (2004)Google Scholar
  31. 31.
    S. Ghosh, V. Sih, W.H. Lau, D.D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya, G. Chapline, Appl. Phys. Lett. 86(23), 232507 (2005)ADSGoogle Scholar
  32. 32.
    D.C. Look, Semicond. Sci. Technol. 20(4), S55 (2005)ADSGoogle Scholar
  33. 33.
    J. Wang, R. Martins, N.P. Barradas, E. Alves, T. Monteiro, M. Peres, E. Elamurugu, E. Fortunato, J. Nanosci. Nanotechnol. 9(2), 813–816 (2009)Google Scholar
  34. 34.
    E. Senthil Kumar, J. Chatterjee, N. Rama, N. DasGupta, M.S.R. Rao, ACS. Appl. Mater. and Interfaces 3(6), 1974–1979 (2011)Google Scholar
  35. 35.
    K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94(14), 147209 (2005)ADSGoogle Scholar
  36. 36.
    N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126(30), 9387–9398 (2004)Google Scholar
  37. 37.
    H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120(11), 439–443 (2001)ADSGoogle Scholar
  38. 38.
    D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16(23–24), 2115–2119 (2004)Google Scholar
  39. 39.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93(17), 177206 (2004)ADSGoogle Scholar
  40. 40.
    I. Djerdj, Z. Jaglicic, D. Arcon, M. Niederberger, Nanoscale 2(7), 1096–1104 (2010)ADSGoogle Scholar
  41. 41.
    H. Ohno, Science 281(5379), 951–956 (1998)ADSGoogle Scholar
  42. 42.
    K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5(4), 291–297 (2006)ADSGoogle Scholar
  43. 43.
    J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng: R: Reports 52(1–3), 49–91 (2006)Google Scholar
  44. 44.
    Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13(1), 9–24 (2003)Google Scholar
  45. 45.
    W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 80(22), 4232–4234 (2002)ADSGoogle Scholar
  46. 46.
    G. Malandrino, S.T. Finocchiaro, R. Lo Nigro, C. Bongiorno, C. Spinella, I.L. Fragalà, Chem. Mater. 16(26), 5559–5561 (2004)Google Scholar
  47. 47.
    H.W. Kim, N.H. Kim, Appl. Phys. A: Mater. Sci. Process. 81(4), 763–765 (2005)ADSGoogle Scholar
  48. 48.
    Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Adv. Mater. 12(10), 746–750 (2000)Google Scholar
  49. 49.
    H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17(17), 4312 (2006)ADSGoogle Scholar
  50. 50.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13(2), 113–116 (2001)Google Scholar
  51. 51.
    Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76(15), 2011–2013 (2000)ADSGoogle Scholar
  52. 52.
    Z.L. Wang, J. Phys. Condens. Matter 16(25), R829 (2004)ADSGoogle Scholar
  53. 53.
    S.Y. Bae, H.W. Seo, J. Park, J. Phys. Chem. B 108(17), 5206–5210 (2004)Google Scholar
  54. 54.
    L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chem. Mater. 13(12), 4395–4398 (2001)Google Scholar
  55. 55.
    L.W. Yang, X.L. Wu, T. Qiu, G.G. Siu, P.K. Chu, J. Appl. Phys. 99(7), 074303 (2006)ADSGoogle Scholar
  56. 56.
    J. Song, S. Baek, S. Lim, Phys. B 403(10–11), 1960–1963 (2008)ADSGoogle Scholar
  57. 57.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2(10), 673–677 (2003)ADSGoogle Scholar
  58. 58.
    O.D. Jayakumar, C. Sudakar, I.K. Gopalakrishnan, J. Cryst. Growth 310(13), 3251–3255 (2008)ADSGoogle Scholar
  59. 59.
    O.D. Jayakumar, C. Sudakar, A. Vinu, A. Asthana, A.K. Tyagi, J. Phys. Chem. C 113(12), 4814–4819 (2009)Google Scholar
  60. 60.
    O.D. Jayakumar, C. Sudakar, C. Persson, V. Sudarsan, R. Naik, A.K. Tyagi, J. Phys. Chem. C 114(41), 17428–17433 (2010)Google Scholar
  61. 61.
    O.D. Jayakumar, C. Sudakar, C. Persson, V. Sudarsan, T. Sakuntala, R. Naik, A.K. Tyagi, Cryst. Growth Des. 9(10), 4450–4455 (2009)Google Scholar
  62. 62.
    O.D. Jayakumar, C. Sudakar, C. Persson, H.G. Salunke, R. Naik, A.K. Tyagi, Appl. Phys. Lett. 97(23), 232510 (2010)ADSGoogle Scholar
  63. 63.
    Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Nanotechnology 14(1), 11 (2003)ADSGoogle Scholar
  64. 64.
    O.D. Jayakumar, I.K. Gopalakrishnan, K. Shashikala, S.K. Kulshreshtha, C. Sudakar, Appl. Phys. Lett. 89(20), 202507 (2006)ADSGoogle Scholar
  65. 65.
    O.D. Jayakumar, V. Sudarsan, C. Sudakar, R. Naik, R.K. Vatsa, A.K. Tyagi, Scr. Mater. 62(9), 662–665 (2010)Google Scholar
  66. 66.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294(5546), 1488–1495 (2001)ADSGoogle Scholar
  67. 67.
    G.A. Prinz, Science 282(5394), 1660–1663 (1998)Google Scholar
  68. 68.
    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93(1), 1–13 (2003)ADSGoogle Scholar
  69. 69.
    J.C. Hulteen, C.R. Martin, J. Mater. Chem. 7(7), 1075–1087 (1997)Google Scholar
  70. 70.
    C. Xu, G. Xu, Y. Liu, G. Wang, Solid State Commun. 122(3–4), 175–179 (2002)ADSGoogle Scholar
  71. 71.
    Q.L. Tao Gao, T. Wang, Chem. Mater. 17 (2005)Google Scholar
  72. 72.
    J. Wang, L. Gao, J. Mater. Chem. 13(10), 2551–2554 (2003)Google Scholar
  73. 73.
    M. Guo, P. Diao, S. Cai, J. Solid State Chem. 178(6), 1864–1873 (2005)ADSGoogle Scholar
  74. 74.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125(15), 4430–4431 (2003)Google Scholar
  75. 75.
    C. Persson, O.D. Jayakumar, C. Sudakar, V. Sudarsan, A.K. Tyagi, Acta Phys. Plolonica A 119(2), 95–98 (2011)Google Scholar
  76. 76.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130(1–2), 269–279 (1993)ADSGoogle Scholar
  77. 77.
    B.D. Yuhas, D.O. Zitoun, P.J. Pauzauskie, R. He, P. Yang, Angew. Chem. Int. Ed. 45(3), 420–423 (2006)Google Scholar
  78. 78.
    P. Lommens, F. Loncke, P.F. Smet, F. Callens, D. Poelman, H. Vrielinck, Z. Hens, Chem. Mater. 19(23), 5576–5583 (2007)Google Scholar
  79. 79.
    S. Shubra, N. Daisuke, S. Kentaro, O. Tatsuo, M.S.R. Rao, New J. Phys. 12(2), 023007 (2010)Google Scholar
  80. 80.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74 (Copyright (C) 2010 Am. Phys. Soc.), 161306 (2006)Google Scholar
  81. 81.
    O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, Adv. Mater. 18(14), 1857–1860 (2006)Google Scholar
  82. 82.
    S.B. Ogale, Adv. Mater. 22(29), 3125–3155 (2010)Google Scholar
  83. 83.
    M.J. Calderon, G. Gomez-Santos, L. Brey, Phys. Rev. B 66, 075218 (2002)ADSGoogle Scholar
  84. 84.
    T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63(19), 195205 (2001)ADSGoogle Scholar
  85. 85.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)ADSGoogle Scholar
  86. 86.
    T. Dietl, A. Haury, Y.M. d’Aubigne, Phys. Rev. B 55, R3347 (1997)ADSGoogle Scholar
  87. 87.
    A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65, 235205 (2002)ADSGoogle Scholar
  88. 88.
    A. Kaminski, S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002)Google Scholar
  89. 89.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79(7), 988–990 (2001)ADSGoogle Scholar
  90. 90.
    H.-J. Lee, S.-Y. Jeong, C.R. Cho, C.H. Park, Appl. Phys. Lett. 81(21), 4020–4022 (2002)ADSGoogle Scholar
  91. 91.
    D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125(43), 13205–13218 (2003)Google Scholar
  92. 92.
    H.-J. Lee, G.-H. Ryu, S.-K. Kim, S.A. Kim, C.-H. Lee, S.-Y. Jeong, C.R. Cho, Phys. Status Solidi (B) 241(12), 2858–2861 (2004)Google Scholar
  93. 93.
    A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68(20), 205202 (2003)ADSGoogle Scholar
  94. 94.
    S.C. Wi, J.-S. Kang, J.H. Kim, S.-B. Cho, B.J. Kim, S. Yoon, B.J. Suh, S.W. Han, K.H. Kim, K.J. Kim, B.S. Kim, H.J. Song, H.J. Shin, J.H. Shim, B.I. Min, Appl. Phys. Lett. 84(21), 4233–4235 (2004)ADSGoogle Scholar
  95. 95.
    M. Bouloudenine, N. Viart, S. Colis, A. Dinia, Chem. Phys. Lett. 397(1–3), 73–76 (2004)ADSGoogle Scholar
  96. 96.
    G. Lawes, A.S. Risbud, A.P. Ramirez, R. Seshadri, Phys. Rev. B 71(4), 045201 (2005)ADSGoogle Scholar
  97. 97.
    C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15(5), 573–578 (2005)Google Scholar
  98. 98.
    T. Minami, MRS Bulletin August 58 (2000)Google Scholar
  99. 99.
    X.C. Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, B. Xiao, L.X. Song, Appl. Phys. Lett. 88(25), 252503 (2006)ADSGoogle Scholar
  100. 100.
    T. Zhang, L.-X. Song, Z.-Z. Chen, E.-W. Shi, L.-X. Chao, H.-W. Zhang, Appl. Phys. Lett. 89(17), 172502 (2006)ADSGoogle Scholar
  101. 101.
    L. Liao, H.B. Lu, L. Zhang, M. Shuai, J.C. Li, C. Liu, D.J. Fu, F. Ren, J. Appl. Phys. 102(11), 114307 (2007)ADSGoogle Scholar
  102. 102.
    Y. He, P. Sharma, K. Biswas, E.Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J.S. Tse, S. Yin, J.Z. Jiang, Phys. Rev. B 78(15), 155202 (2008)ADSGoogle Scholar
  103. 103.
    Z. Lu, H.-S. Hsu, Y. Tzeng, J.-C.-A. Huang, Appl. Phys. Lett. 94(15), 152507 (2009)ADSGoogle Scholar
  104. 104.
    O.D. Jayakumar, C. Sudakar, A.K. Tyagi, Nanosci. Nanotechnol. Lett. 3(2), 140–145 (2011)Google Scholar
  105. 105.
    C. Sudakar, in Magnetic Thin Films: Properties, Performance and Applications, ed. by J.P. Volkerts (Nova Science Publishers, Inc., Huntington, 2011)Google Scholar
  106. 106.
    C. Sudakar, S. Singh, M.S.R. Rao, G. Lawes, in Functional Metal Oxide Nanostructures, ed. by J. Wu, J. Cao, W.-Q. Han, A. Janotti, H.-C. Kim, Vol. 149 (Springer, New York, 2012), pp. 37–68Google Scholar
  107. 107.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Nat. Mater. 6(7), 493–496 (2007)ADSGoogle Scholar
  108. 108.
    C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, V.M. Naik, Appl. Phys. Lett. 92(6), 062501–062503 (2008)ADSGoogle Scholar
  109. 109.
    O.D. Jayakumar, I.K. Gopalakrishnan, C. Sudakar, R.M. Kadam, S.K. Kulshreshtha, J. Alloy. Compd. 438(1–2), 258–262 (2007)Google Scholar
  110. 110.
    J.D. Bryan, D.A. Schwartz, D.R. Gamelin, J. Nanosci. Nanotechnol. 5(9), 1472–1479 (2005)Google Scholar
  111. 111.
    S. Bhattacharyya, A. Gedanken, J. Phys. Chem. C 112(12), 4517–4523 (2008)Google Scholar
  112. 112.
    W. Zhu, H.H. Weitering, E.G. Wang, E. Kaxiras, Z. Zhang, Phys. Rev. Lett. 93(12), 126102 (2004)ADSGoogle Scholar
  113. 113.
    S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436(7047), 91–94 (2005)ADSGoogle Scholar
  114. 114.
    P. Crespo, R. Litrán, T.C. Rojas, M. Multigner, J.M. de la Fuente, J.C. Sánchez-López, M.A. García, A. Hernando, S. Penadés, A. Fernández, Phys. Rev. Lett. 93(8), 087204 (2004)ADSGoogle Scholar
  115. 115.
    P. Crespo, M.A. García, E. Fernández Pinel, M. Multigner, D. Alcántara, J.M. de la Fuente, S. Penadés, A. Hernando, Phys. Rev. Lett. 97(17), 177203 (2006)ADSGoogle Scholar
  116. 116.
    M.A. Garcia, J.M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M.L. Ruíz González, G.R. Castro, P. Crespo, J. Llopis, J.M. González-Calbet, A. Hernando, Nano Lett. 7(6), 1489–1494 (2007)ADSGoogle Scholar
  117. 117.
    D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184–185, 605–609 (1998)Google Scholar
  118. 118.
    E.G. Bylander, J. Appl. Phys. 49(3), 1188–1195 (1978)ADSGoogle Scholar
  119. 119.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81(4), 622–624 (2002)ADSGoogle Scholar
  120. 120.
    X. Zhou, S. Gu, Z. Wu, S. Zhu, J. Ye, S. Liu, R. Zhang, Y. Shi, Y. Zheng, Appl. Surf. Sci. 253(4), 2226–2229 (2006)ADSGoogle Scholar
  121. 121.
    M.D. McCluskey, S.J. Jokela, J. Appl. Phys. 106(7), 071101 (2009)ADSGoogle Scholar
  122. 122.
    A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61(22), 15019–15027 (2000)ADSGoogle Scholar
  123. 123.
    O.D. Jayakumar, V. Sudarsan, K. Shashikala, C. Sudakar, R. Naik, R.K. Vatsa, A.K. Tyagi, J. Nanosci. Nanotechnol. 11(4), 3273–3277 (2011)Google Scholar
  124. 124.
    W.M. Kwok, A.B. Djurisic, Y.H. Leung, D. Li, K.H. Tam, D.L. Phillips, W.K. Chan, Appl. Phys. Lett. 89(18), 183112 (2006)ADSGoogle Scholar
  125. 125.
    G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758–1775 (1999)ADSGoogle Scholar
  126. 126.
    P.E. Blöchl, Phys. Rev. B 50(24), 17953–17979 (1994)ADSGoogle Scholar
  127. 127.
    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52(8), R5467–R5470 (1995)ADSGoogle Scholar
  128. 128.
    C. Persson, C.L. Dong, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, J. Nordgren, C.L. Chang, A. Ferreira da Silva, J.H. Guo, Microelectron. J. 37(8), 686–689 (2006)Google Scholar
  129. 129.
    W.E. Pickett, S.C. Erwin, E.C. Ethridge, Phys. Rev. B 58(3), 1201–1209 (1998)ADSGoogle Scholar
  130. 130.
    T. Archer, R. Hanafin, S. Sanvito, Phys. Rev. B 78(1), 014431 (2008)ADSGoogle Scholar
  131. 131.
    W. Setyawan, R.M. Gaume, S. Lam, R.S. Feigelson, S. Curtarolo, ACS Comb. Sci. 13(4), 382–390 (2011)Google Scholar
  132. 132.
    P. Mohn, C. Persson, P. Blaha, K. Schwarz, P. Novák, H. Eschrig, Phys. Rev. Lett. 87(19), 196401 (2001)ADSGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • O. D. Jayakumar
    • 1
  • C. Persson
    • 2
    • 3
  • A. K. Tyagi
    • 1
  • C. Sudakar
    • 4
  1. 1.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Department of PhysicsUniversity of OsloOsloNorway
  3. 3.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  4. 4.Deparment of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations