Advertisement

Low-Temperature Photoluminescence of Sb-doped ZnO Nanowires Synthesized on Sb-coated Si Substrate by Chemical Vapor Deposition Method

  • K. Sakai
  • K. Ishikura
  • A. Fukuyama
  • I. A. Palani
  • M. S. Ramachandra Rao
  • T. Okada
  • T. Ikari
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

The fabrication of p-type ZnO crystal is motivated by the need to develop ZnO semiconductor devices. On the other hand, it is well-known that high-quality nano-sized ZnO crystal can be easily obtained by various crystal growth techniques. Consequently, we tried to grow p-type Sb-doped ZnO nanowires by the chemical vapor deposition under various deposition temperature conditions and investigated their optical properties by photoluminescence (PL) spectroscopy. Multiple emission peaks caused by free excitons, excitons bound to donors and structural defects, and acceptors formed by Sb-doping were observed. The temperature dependence of PL confirmed the existence of acceptor level due to Sb-doping, and the activation energy of the acceptor level was estimated to be 125 meV.

Keywords

Deposition Temperature Green Luminescence Incorporated Impurity Increase Deposition Temperature Straight Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency, and a Grant-in-Aid by the Ministry of Education, Science, Sports, and Culture.

References

  1. 1.
    K. Sakai, S. Oyama, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Phys. E 40, 2489 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Sakai, K. Noguchi, A. Fukuyama, T. Ikari, T. Okada, Jap. J. Appl. Phys. 48, 085001 (2009)Google Scholar
  3. 3.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Stat. Sol. B 229, 911 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 152101 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Sol. B 241, 231 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer, Phys. B 308–310, 945 (2001)CrossRefGoogle Scholar
  9. 9.
    Y. Dongqi, H. Lizhong, Q. Shuangshuang, Z Heqiu, S. Len, and L. Len, J. Phys. D: Appl. Phys. 42 (2009) 055110Google Scholar
  10. 10.
    D. Hwang, H. Kim, J. Lim, J. Oh, J. Yang, S. Park, K. Kim, D.C. Look, Y.S. Park, Appl. Phys. Lett. 86, 151917 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 87, 252102 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, J. Bian, Vacuum 85, 718 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G. Hong, Z. Mingyu, J. Hong, W. Xuanzhang, Z. Zhiguo, J. Alloys Compd. 464, 234 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Manoogian, J.C. Wooly, Can. J. Phys. 62, 285 (1984)ADSGoogle Scholar
  15. 15.
    Y. Chem, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    F. Su, W. Wang, K. Ding, G. Li, Y. Liu, A.G. Joly, W. Chen, J. Phys. Chem. Solids 67, 2376 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • K. Sakai
    • 1
  • K. Ishikura
    • 2
  • A. Fukuyama
    • 2
  • I. A. Palani
    • 3
  • M. S. Ramachandra Rao
    • 3
  • T. Okada
    • 4
  • T. Ikari
    • 2
  1. 1.Center for Collaborative Research and Community CooperationUniversity of MiyazakiMiyazakiJapan
  2. 2.Faculty of EngineeringUniversity of MiyazakiMiyazakiJapan
  3. 3.Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research CentreIndian Institute of Technology MadrasChennaiIndia
  4. 4.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations