Advertisement

On the Optical and Magnetic Properties of Doped-ZnO

  • J. Kumar
  • S. Ramasubramanian
  • R. Thangavel
  • M. Rajagopalan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

Investigations on the modifications of the optical and magnetic properties in ZnO due to different dopants have been carried out. First principle calculations were performed to understand the effect of dopants on the magnetic properties of ZnO. The studies revealed addition of nitrogen with cobalt enhances the total magnetic moment of the system. While considering the position of occupation of the dopants in the ZnO matrix, cobalt and nitrogen bonded pair is found to be energetically favorable. Likewise, lithium and cobalt co-doping in ZnO has been predicted to increase the magnetic moment of the system. Room temperature ferromagnetism has been observed in the Co and N, Li and Co co-doped ZnO films. Due to selective doping in ZnO, the bandgap can be tuned to the desired applications. Cadmium and magnesium co-doping is found to effectively modify the bandgap energy in the range between 3.3 eV and 3.66 eV.

Keywords

Sapphire Substrate Room Temperature Ferromagnetism Zinc Acetate Dihydrate Cobalt Acetate Tetrahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the significant contributions from several researchers who collaborated in this work and in particular our thanks are due to Dr. G. Srinivasan, Dr. V. Ravichandran, and Dr. R. Thangavel

References

  1. 1.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    S.G. Yang, A.B. Pakhomov, S.T. Hung, C.Y. Wong, IEEE Trans. Magn. 38, 2877 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    R. Thangavel, M. Rajagopalan, J. Kumar, J. Magn. Magn. Mater. 320, 172 (2008)CrossRefGoogle Scholar
  5. 5.
    H.J. Lee, S.Y. Jeong, C.R. Cho, C.H. Park, Appl. Phys. Lett. 81, 4020 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J.H. Park, M.G. Kim, H.M. Jang, S.W. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 92, 6066 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S. Deka, P.A. Joy, Solid State Comm. 134, 665 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 78, 3824 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, I.T. Ferguson, J. Appl. Phys. 97, 023906 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Alaria, H. Bieber, S. Colis, G. Schmerber, A. Dinia, Appl. Phys. Lett. 88, 112503 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kobayashi, Y. Ishida, J.I. Hwang, T. Mizokawa, A. Fujimori, K. Mamiya, J. Okamoto, Y. Takeda, T. Okane, Y. Saitoh, Y. Muramatsu, A. Tanaka, H. Saeki, H. Tabata, T. Kawai, Phys. Rev. B 72, 201201R (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Appl. Phys. Lett. 87, 052501 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka , J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (2001)Google Scholar
  17. 17.
    K. Sato, H.K. Yoshida, Physica E 10, 251 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    E.C. Lee, K.J. Chang, Phys. Rev. B 69, 085205 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Park, D.J. Chadi, Phys. Rev. Lett. 94, 127204 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Rajagopalan, S. Ramasubramanian, J. Kumar, AIP Conf. Proc. 1447, 1155 (2012)Google Scholar
  21. 21.
    M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, U.V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Ivill, S.J. Pearton, D.P. Norton, J. Kelly, A.F.J. Hebard, Appl. Phys. 97, 53904–53908 (2005)CrossRefGoogle Scholar
  23. 23.
    T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 3366–3368 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    G. Srinivasan, J. Kumar, J. Cryst. Growth 310(7–9), 1841–1846 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Mandal, T.K. Nath, Thin Solid Films 515, 2535–2541 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    P. Koidl, Phys. Rev. B 15, 2493 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    Z.L Lu, Z.R. Mo, W.Q. Zou, S.Wang, G.Q. Yan, X.C. Liu, Y.B. Lin, J.P. Xu, L. Y. Lv, X.M. Wu, Z.H. Xia, M.X. Xu, F.M. Zhang, Y.W. Du, J. Phys. D: Appl. Phys. 41, 115008 (2008)Google Scholar
  28. 28.
    H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C. L. Shao, R. Mu. Appl. Phys. Lett. 88, 242502 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    H.J. Lee, S.Y. Jeong, C.R. Cho, C.H. Park, Appl. Phys. Lett. 81, 4020 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    G.A. Garson, M.H. Nassir, M.A. Langell, J. Vac. Sci. Technol., A 14, 1637 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J.G. Ma, Y.C. Liu, R. Mu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Vac. Sci. Technol. B 22, 94 (2004)CrossRefGoogle Scholar
  32. 32.
    Craig L. Perkins, S. Lee, X. Li, Sally E. Asher, Timothy J. Coutts, J. Appl. Phys. 97, 034907 (2005)Google Scholar
  33. 33.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  35. 35.
    J. Narayan, A.K. Sharma, A. Kvit, C. Jin, J.F. Muth, O.W. Holland, Solid State Commn. 121, 9 (2002)CrossRefGoogle Scholar
  36. 36.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan and v.H. Shen, Appl. Phys. Lett. 80, 1529 (2002)Google Scholar
  38. 38.
    H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 1993 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Comm. 103, 459 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    W.I. Park, G.C. Yi, H.M. Jang, Appl. Phys. Lett. 79, 2022 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    D. Spemann, E.M. Kaidashev, M. Lorenz, J. Vogt, T. Butz, Nucl. Instr. Meth. B219–220, 891 (2004)CrossRefGoogle Scholar
  43. 43.
    Y.F. Lu, H.Q. Ni, Z.H. Mai, Z.M. Ren, J. Appl. Phys. 88, 498 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    D.N. Bose, M.S. Hedge, S. Basu, K.C. Mandal, Semicond. Sci. Tech. 4, 866 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    Y.S. Choi, C.G. Lee, S.M. Cho, Thin Solid Films 289, 153 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    M. Lorenz, E.M. Kaidashev, von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H. C. Semmelhack, M. Grundmann. Solid State Electron. 47, 2205 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    X. Zhang, X.M. Li, T.L. Chen, J.M. Bian, C.Y. Zhang, Thin Solid Films 492, 248 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    U. Ozgur, A. Ya, I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkood, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    C. Jianlin, D. Chen, J. He, S. Zhang, Z. Chen, Appl. Surf. Sci. 255, 9413 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    V. Osinsky, J.W. Dong, J.Q. Xie, B. Hertog, A.M. Dubrian, P.P. Chow, S.J. Pearton, D. P. Norton, D. C. Look, W. Schoenfeld, O. Lopatiuk, L. Chernyak, M. Cheung, A. N Cartwright, M. Gerhold, Mater. Res. Soc. Symp. Proc. 892, FF 18-01 (2006)Google Scholar
  51. 51.
    W.L. Xu, M.J. Zheng, G.Q. Ding, W.Z. Shen, Chem. Phys. Lett. 411, 37 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    X.Y. Zhang, J.Y. Dai, H.C. Ong, N. Wang, H.L.W. Chan, C.L. Choy, Chem. Phys. Lett. 393, 17 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    H. Priller, R. Hauschild, J. Zeller, C. Klingshirn, H. Kalt, R. Kling, F. Reuss, Ch. Kirchner, A. Waag, J. Lumin. 112, 173 (2005)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • J. Kumar
    • 1
  • S. Ramasubramanian
    • 1
  • R. Thangavel
    • 2
  • M. Rajagopalan
    • 1
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Research Centre for Applied SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations