Skip to main content

Zinc Oxide: From Optoelectronics to Biomaterial—A Short Review

  • Chapter
  • First Online:
Book cover ZnO Nanocrystals and Allied Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 180))

Abstract

Zinc oxide is a well-known wide bandgap semiconductor that has attracted recent attention in part because of its large exciton binding energy (60 meV) which could lead to lasing action even above room temperature. Further interest has arisen because of the availability of good quality single crystals, improved technologies for thin film growth and nanorods or fibres, the possibility of p-type conduction, and some papers claiming ferromagnetism above room temperature. In addition, it is being proposed that ZnO might exhibit an antibacterial activity even under the dark condition. I review work pertaining to material growth and point out possible emerging applications in fields ranging from optoelectronics to biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reschikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. J. Sawai, T. Yoshikawa, J. Appl. Microbiol. 96, 803 (2004)

    Article  Google Scholar 

  3. K. Horota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Ceram. Int. 36, 497 (2010)

    Article  Google Scholar 

  4. A history of Zinc by Fathi Habashi, International Zinc Association (IZA), www.zincworld.org

  5. R.A. Laudise, A. Ballman, J. Phys. Chem. 64, 688 (1960)

    Article  Google Scholar 

  6. J.W. Nielson, E.F. Dearborn, J. Phys. Chem. 64, 1762 (1960)

    Article  Google Scholar 

  7. K. Matsumoto, K. Noda, J. Cryst. Growth 102, 137 (1990)

    Article  ADS  Google Scholar 

  8. J.-M. Ntep, S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, R. Triboulet, J. Cryst. Growth 207, 30 (1999)

    Article  ADS  Google Scholar 

  9. Cermet, inc. http://www.cermetinc.com

  10. J.-S. Park, D.-W. Park, Surf. Coat. Technol. 205, S79 (2010)

    Article  Google Scholar 

  11. S. Ohara et al., Solid State Ionics 172, 261 (2004)

    Article  Google Scholar 

  12. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  13. C.G. Van de Walle, Physica B 899, 308–310 (2001)

    Google Scholar 

  14. K. Thonke, T. Gruber, N. Trofilov, R. Schönfelder, A. Waag, R. Sauer, Physica B 945, 308–310 (2001)

    Google Scholar 

  15. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  16. J.F. Rommeluère, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003)

    Article  ADS  Google Scholar 

  17. O.F. Schirmer, D. Zwingel, Solid State Commun. 8, 1559 (1970)

    Article  ADS  Google Scholar 

  18. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  ADS  Google Scholar 

  19. H. Kato, M. Sano, K. Miyamoto, T. Yao, J. Cryst. Growth 538, 237–239 (2002)

    Google Scholar 

  20. S. Singh, M.S.R. Rao, Phys. Rev. B 80, 045120 (2009)

    ADS  Google Scholar 

  21. J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, Appl. Phys. Express 4, 091101 (2011)

    Article  ADS  Google Scholar 

  22. A. Tsukazhaki et al., Nat. Mat. 4, 42 (2005)

    Article  Google Scholar 

  23. E.S. Kumar, J. Chatterjee, N. Rama, N. DasGupta, and M.S.R. Rao, ACS Appl. Mater. Interfaces 3, 1974 (2011)

    Google Scholar 

  24. S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D. Becker, T. Homann, T. Bredow, J. Mater. Sci. 42, 1965 (2007)

    Article  ADS  Google Scholar 

  25. H.L. Porter, A.L. Cai, J.F. Muth, J. Narayan, Appl. Phys. Lett. 86, 211918 (2005)

    Article  ADS  Google Scholar 

  26. O. Maksimov, Rev. Adv. Mater. Sci. 24, 26 (2010)

    Google Scholar 

  27. J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006)

    Article  ADS  Google Scholar 

  28. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  29. J. Thakur et al., J. Appl. Phys. 102, 093904 (2007)

    Article  ADS  Google Scholar 

  30. N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73, 132404 (2006)

    Article  ADS  Google Scholar 

  31. C. Sudakar et al., J. Mag. Mag. Mat. 320, L1 (2008)

    Article  Google Scholar 

  32. R.P. Panguluri et al., Phys. Rev. B 79, 165208 (2009)

    Article  ADS  Google Scholar 

  33. S. Sonmezoglu, Appl. Phys. Express 4, 104104 (2011)

    Article  ADS  Google Scholar 

  34. D.-H. Lee, S. Kim, S.Y. Lee, Thin Solid Films 519, 4361 (2011)

    Article  ADS  Google Scholar 

  35. R. Mohan, S.-J. Kim, Jpn. J. Appl. Phys. 50, 04DJ01 (2011)

    Google Scholar 

  36. M. Williander et al., Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  37. E. Scharowski, Z. Phys. 135, 318 (1953)

    Article  ADS  Google Scholar 

  38. C.S. Rout, C.N.R. Rao, Nanotechnology 19, 285203 (2008)

    Article  Google Scholar 

  39. S. Singh et al., New J. Phys. 12 (2010)

    Google Scholar 

  40. A.K. Panda, S. Rout, Nat. Prod. Radiance 5, 284 (2006)

    Google Scholar 

  41. S. Cunningham, Rundles. International Zinc Association, Belgium

    Google Scholar 

  42. U. Desselberger, J. Infect. 40, 3 (2000)

    Article  Google Scholar 

  43. P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Langmuir 18, 6679 (2002)

    Article  Google Scholar 

  44. K. Hirota et al., Ceram. Int. 36, 497 (2010)

    Article  Google Scholar 

  45. R. Enderlea et al., Biomaterials 26, 3379 (2005)

    Article  Google Scholar 

  46. G. A. Fielding et al., to be published; Dental Materials, doi:10.1016/j.dental.2011.09.010

  47. S.A. Kumar, S.-M. Chen, Anal. Lett. 41, 141 (2008)

    Article  MathSciNet  Google Scholar 

  48. I. Ferain, C.A. Colinge, J.-P. Colinge, Nature 479, 310 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. M. S. Ramachandra Rao for encouraging me to write this review and for the hospitality shown to me during my visit to IIT Madras in January 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suryanarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Suryanarayanan, R. (2014). Zinc Oxide: From Optoelectronics to Biomaterial—A Short Review. In: Rao, M., Okada, T. (eds) ZnO Nanocrystals and Allied Materials. Springer Series in Materials Science, vol 180. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1160-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1160-0_14

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1159-4

  • Online ISBN: 978-81-322-1160-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics