Advertisement

Zinc Oxide: From Optoelectronics to Biomaterial—A Short Review

  • R. Suryanarayanan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

Zinc oxide is a well-known wide bandgap semiconductor that has attracted recent attention in part because of its large exciton binding energy (60 meV) which could lead to lasing action even above room temperature. Further interest has arisen because of the availability of good quality single crystals, improved technologies for thin film growth and nanorods or fibres, the possibility of p-type conduction, and some papers claiming ferromagnetism above room temperature. In addition, it is being proposed that ZnO might exhibit an antibacterial activity even under the dark condition. I review work pertaining to material growth and point out possible emerging applications in fields ranging from optoelectronics to biomaterials.

Keywords

Zinc Oxide Chemical Vapor Transport Heterojunction Diode Zinc Production Laser Molecular Beam Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank Prof. M. S. Ramachandra Rao for encouraging me to write this review and for the hospitality shown to me during my visit to IIT Madras in January 2012.

References

  1. 1.
    U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reschikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J. Sawai, T. Yoshikawa, J. Appl. Microbiol. 96, 803 (2004)CrossRefGoogle Scholar
  3. 3.
    K. Horota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Ceram. Int. 36, 497 (2010)CrossRefGoogle Scholar
  4. 4.
    A history of Zinc by Fathi Habashi, International Zinc Association (IZA), www.zincworld.org
  5. 5.
    R.A. Laudise, A. Ballman, J. Phys. Chem. 64, 688 (1960)CrossRefGoogle Scholar
  6. 6.
    J.W. Nielson, E.F. Dearborn, J. Phys. Chem. 64, 1762 (1960)CrossRefGoogle Scholar
  7. 7.
    K. Matsumoto, K. Noda, J. Cryst. Growth 102, 137 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    J.-M. Ntep, S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, R. Triboulet, J. Cryst. Growth 207, 30 (1999)ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    J.-S. Park, D.-W. Park, Surf. Coat. Technol. 205, S79 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Ohara et al., Solid State Ionics 172, 261 (2004)CrossRefGoogle Scholar
  12. 12.
    A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    C.G. Van de Walle, Physica B 899, 308–310 (2001)Google Scholar
  14. 14.
    K. Thonke, T. Gruber, N. Trofilov, R. Schönfelder, A. Waag, R. Sauer, Physica B 945, 308–310 (2001)Google Scholar
  15. 15.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Rommeluère, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    O.F. Schirmer, D. Zwingel, Solid State Commun. 8, 1559 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kato, M. Sano, K. Miyamoto, T. Yao, J. Cryst. Growth 538, 237–239 (2002)Google Scholar
  20. 20.
    S. Singh, M.S.R. Rao, Phys. Rev. B 80, 045120 (2009)ADSGoogle Scholar
  21. 21.
    J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, Appl. Phys. Express 4, 091101 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A. Tsukazhaki et al., Nat. Mat. 4, 42 (2005)CrossRefGoogle Scholar
  23. 23.
    E.S. Kumar, J. Chatterjee, N. Rama, N. DasGupta, and M.S.R. Rao, ACS Appl. Mater. Interfaces 3, 1974 (2011)Google Scholar
  24. 24.
    S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D. Becker, T. Homann, T. Bredow, J. Mater. Sci. 42, 1965 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H.L. Porter, A.L. Cai, J.F. Muth, J. Narayan, Appl. Phys. Lett. 86, 211918 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    O. Maksimov, Rev. Adv. Mater. Sci. 24, 26 (2010)Google Scholar
  27. 27.
    J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    J. Thakur et al., J. Appl. Phys. 102, 093904 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73, 132404 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C. Sudakar et al., J. Mag. Mag. Mat. 320, L1 (2008)CrossRefGoogle Scholar
  32. 32.
    R.P. Panguluri et al., Phys. Rev. B 79, 165208 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S. Sonmezoglu, Appl. Phys. Express 4, 104104 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    D.-H. Lee, S. Kim, S.Y. Lee, Thin Solid Films 519, 4361 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    R. Mohan, S.-J. Kim, Jpn. J. Appl. Phys. 50, 04DJ01 (2011)Google Scholar
  36. 36.
    M. Williander et al., Nanotechnology 20, 332001 (2009)CrossRefGoogle Scholar
  37. 37.
    E. Scharowski, Z. Phys. 135, 318 (1953)ADSCrossRefGoogle Scholar
  38. 38.
    C.S. Rout, C.N.R. Rao, Nanotechnology 19, 285203 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Singh et al., New J. Phys. 12 (2010)Google Scholar
  40. 40.
    A.K. Panda, S. Rout, Nat. Prod. Radiance 5, 284 (2006)Google Scholar
  41. 41.
    S. Cunningham, Rundles. International Zinc Association, BelgiumGoogle Scholar
  42. 42.
    U. Desselberger, J. Infect. 40, 3 (2000)CrossRefGoogle Scholar
  43. 43.
    P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Langmuir 18, 6679 (2002)CrossRefGoogle Scholar
  44. 44.
    K. Hirota et al., Ceram. Int. 36, 497 (2010)CrossRefGoogle Scholar
  45. 45.
    R. Enderlea et al., Biomaterials 26, 3379 (2005)CrossRefGoogle Scholar
  46. 46.
    G. A. Fielding et al., to be published; Dental Materials, doi: 10.1016/j.dental.2011.09.010
  47. 47.
    S.A. Kumar, S.-M. Chen, Anal. Lett. 41, 141 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    I. Ferain, C.A. Colinge, J.-P. Colinge, Nature 479, 310 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Université Paris-sudOrsayFrance

Personalised recommendations