Zinc Oxide Nanomaterials as Amylase Inhibitors and for Water Pollution Control

  • Rohini Kitture
  • Sandip Dhobale
  • S. N. Kale
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


Zinc oxide has been one of the most popular materials in the range of inorganic materials. In its bulk form, it has shown promises to the coatings and device industries. With the advent of nanotechnology, ZnO has expanded its range of applications to sensors, semiconductors, magnetic semiconductors, cosmetics, and also biomedicine. Last decade has witnessed tremendous research in all these domains, especially due to widening of the band gap and the ability to manipulate the nanostructures in various sizes and shapes. Some issues are still being evaluated; such as evolution of magnetic semiconducting nature and p-type or n-type origins of this fascinating material. However, in the biomedical domain, the material has shown interesting promises; namely as antimicrobial, antioxidant, and also as a sensor. In this article, we discuss on the ability of ZnO nanoparticles to work as amylase inhibitors and also as an efficient water pollution controlling agent. The ZnO candidature has been compared with TiO2 nanoparticles for water treatment. The amylase inhibitor activity has been compared with standard drug’s ability to control the conversion of starch to sugar. A strategy to make ZnO work as a probable selective biosensor is also discussed.


Zinc Oxide Methyl Orange Zinc Oxide Nanoparticles White Light Emitter Amylase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank Dr. M. S. R. Rao, the Editor of this book published by the Springer Publishers, for his kind invitation to write this chapter. SK would like to thank Dr. Prahlada, Vice Chancellor, Defence Institute of Advanced Technology (DIAT) for his constant encouragement and support. SK would also acknowledge “DRDO-DIAT programme on Nanomaterials” by ER&IPR, DRDO, New Delhi.


  1. 1.
    U. Özgür, I. Alivov Ya, C. Liu, A. Teke, M.A. Reshchikov, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 04130-1-103 (2005)Google Scholar
  2. 2.
    C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geuts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, Berlin, 2010)CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7, 26–33 (2004)CrossRefGoogle Scholar
  4. 4.
    R.A. Andrievski, A.M. Glezer, Size effects in Properties of Nanomaterials. Elsevier Science Ltd. 44, 1621–1623 (2000)Google Scholar
  5. 5.
    P.H. Miller Jr. in ed. H.K. Henisch, Proceedings of the International Conference on Semiconducting Materials, Reading (1950) (Butterworths Scientific Publications, London, 1951), p. 172Google Scholar
  6. 6.
    H.E. Brown, Zinc Oxide Rediscovered (The New Jersey Zinc Company, New York, 1957)Google Scholar
  7. 7.
    H. Heiland, E. Mollwo, F. Stöckmann, Electronic processes in zinc oxide. Solid State Phys. 8, 191–323 (1959)CrossRefGoogle Scholar
  8. 8.
    C. Klingshirn, ZnO: Basic to application. Phys. Status Solidi B 244, 3027–3073 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A. Tiwari, C. Jin, D. Kumar, J. Narayan, Rectifying electrical characteristics of La0.7Sr0.3MnO3/ZnO heterostructure. Appl. Phys. Lett. 83, 1773–1775 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 16, R829–R858 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Pearton, D.P. Norton, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Prog. Mater Sci. 50, 293–340 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Shen, Y. Zhao, C. Zhang, The preparation of ZnO based gas-sensing thin films by ink-jet printing method. Thin Solid Films 48, 382–387 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    N. Kumar, A. Dorfmann, J. Hahm, Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays. Nanotech 17, 2875–2881 (2006)Google Scholar
  14. 14.
    J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasa, M. Higashihata, T. Okada, M. Hara, Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotech 17, 2567–2573 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M.C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, P. GFnter, Characterization of second and third order optical nonlinearities of ZnO sputtered films. Appl. Phys. B 82, 431–437 (2006)Google Scholar
  16. 16.
    J. Fan, R. Freer, The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys. 77, 4795–4801 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO Nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7(6), 1793–1798 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    M.A. Mitchnick, D. Fairhurst, S.R. Pinnell, Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent. J. Am. Acad. Dermatol. 40, 85–90 (1999)CrossRefGoogle Scholar
  22. 22.
    G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts, Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251–277 (2007)CrossRefGoogle Scholar
  23. 23.
    K.H. Brown, K.R. Wessells, S.Y. Hess, Zinc bioavailability from zinc-fortified foods. Int. J. Vitam. Nutr. Res. 77, 174–181 (2007)CrossRefGoogle Scholar
  24. 24.
    D. Clark, E. Gillis, H. Gobble, N. Francisco, J. Kincaid, Fortified edible compositions and process of making, U.S. Patent 6168811, 2001Google Scholar
  25. 25.
    R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 616, 207–213 (2008)CrossRefGoogle Scholar
  26. 26.
    K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902-1-3 (2007)Google Scholar
  27. 27.
    C. Bárcena, A.K. Sra, G.S. Chaubey, C. Khemtong, J.P. Liu, J. Gao, Zinc ferrite nanoparticles as MRI contrast agents. Chem. Commun. 19, 2224–2226 (2008) Google Scholar
  28. 28.
    J. Szabo, M. Hegedus, G. Bruckner, E. Kosa, E. Andrasofszky, E. Berta, Large doses of zinc oxide increases the activity of hydrolases in rats. J. Nutr. Biochem. 15, 206–209 (2004)CrossRefGoogle Scholar
  29. 29.
    H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia, Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 130, 7522–7523 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Zhou, N. Xu, Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids. Adv. Mater. 18, 2432–2435 (2006)CrossRefGoogle Scholar
  31. 31.
    T. Ghoshal, S. Kar, S. Chaudhuri, Synthesis and optical properties of nanometer to micrometer wide hexagonal cones and columns of ZnO. J. Cry. Growth 293, 438–446 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of Azo Dye Acid Red14 in water—investigation of the effect of operational parameters. J. Photochem. Photobiol., A 157, 111–116 (2003)CrossRefGoogle Scholar
  33. 33.
    M.M. Uddin, M.A. Hasnat, A.J.F. Samed, R.K. Majumdar, Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of erythrosine. Dyes Pigm. 75, 207–212 (2007)CrossRefGoogle Scholar
  34. 34.
    B. Zargar, H. Parham, A. Hatamie, Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles. Chemosphere 76, 554–557 (2009)CrossRefGoogle Scholar
  35. 35.
    Y.M. Slokar, A.M. Le Marechal, Methods of decoloration of textile wastewaters. Dyes Pigm. 37, 335–356 (1998)CrossRefGoogle Scholar
  36. 36.
    S.S. Patil, V.M. Shinde, Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatograph. Environ. Sci. Technol. 22, 1160–1165 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves. Appl. Catal. B: Environ. 46, 155–163 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  39. 39.
    Y.Y. Wu, H.Q. Yan, P.D. Yang, Synthesis and property of mesoporous tantalum oxides. Top. Catal. 19, 197–202 (2002)CrossRefGoogle Scholar
  40. 40.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 31, 145–157 (2001)CrossRefGoogle Scholar
  41. 41.
    Yumin CUI, Photocatalytic degradation of MO by complex nanometer particles WO3/TiO2 Rare Metals 25, 649–653 (2006)Google Scholar
  42. 42.
    C.L. Torres-Martinez, R. Kho, O.L. Mian, R.K. Mehra, Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. J. Colloids Interf. Sci. 240, 525–532 (2001)CrossRefGoogle Scholar
  43. 43.
    X. Ren, D. Han, D. Chen, F. Tang, Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation. Mater. Res. Bull. 42, 807–813 (2007)CrossRefGoogle Scholar
  44. 44.
    H.H. Yin, J. Wada, T. Kitamura, S. Yanamuda, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ. Sci. Tech. 35, 227–231 (2001)Google Scholar
  45. 45.
    W. Chen, Z. Wang, Z. Lin, L. Lin, Absorption and luminescence of the surface states in ZnS nanoparticles. J. Appl. Phys. 82, 3111–3115 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    J.M. Herrmann, Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)CrossRefGoogle Scholar
  47. 47.
    M. Anpo, Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem. 72, 1265–1270 (2000)CrossRefGoogle Scholar
  48. 48.
    D. Chattergee, Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Sol. Energy Mater. Sol. Cells 90, 1013–1020 (2006)CrossRefGoogle Scholar
  49. 49.
    T. Pauporte, J. Rathousky, Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111, 7639–7644 (2007)CrossRefGoogle Scholar
  50. 50.
    C.H. Ye, Y. Bando, G.Z. Shen, D. Golberg, Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B 110, 15146–15151 (2006)CrossRefGoogle Scholar
  51. 51.
    H. Yan, J. Hou, Z. Fu, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, S. Fu, F. Li, Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation. Mater. Res. Bull. 44, 1954–1958 (2009)CrossRefGoogle Scholar
  52. 52.
    R. Kitture, S.J. Koppikar, R. Kaul-Ghanekar, S.N. Kale, Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. J. Phys. Chem. Sol. 72, 60–66 (2011) Google Scholar
  53. 53.
    S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 141, 581–590 (2007)CrossRefGoogle Scholar
  54. 54.
    H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B: Environ. 39, 75–90 (2002)Google Scholar
  55. 55.
    G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl. Catal. B: Environ. 45, 23–38 (2003)CrossRefGoogle Scholar
  56. 56.
    F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral. J. Hazard. Mater. 152, 1037–1044 (2008)CrossRefGoogle Scholar
  57. 57.
    M.N. Rashed, A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int. J. Phys. Sci. 2, 073–081 (2007)Google Scholar
  58. 58.
    S. Singh, P. Thiyagarajan, K. Mohan Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy, M.S.R. Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: Bulk, thin film and nano. J. Phys. D: Appl. Phys. 40, 6312–6327 (2007)Google Scholar
  59. 59.
    J. Lim, K. Shin, H.W. Kim, C. Lee, Photoluminescence studies of ZnO thin films grown by atomic layer epitaxy. J. Lumin. 109, 181–185 (2004)Google Scholar
  60. 60.
    J. Zhang, Z. Zhang, T. Wang, A new luminescent phenomenon of ZnO due to the precipitate trapping effect of MgO. Chem. Mater. 16, 768–770 (2004)CrossRefGoogle Scholar
  61. 61.
    F. Tuomisto, K. Saarinen, Introduction and recovery of point defects in electron-irradiated ZnO. Phys. Rev. 72, 085206-1-11 (2005)Google Scholar
  62. 62.
    M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, H. Abe, Wearable artificial endocrine pancreas with needle-type glucose sensor. The Lancet. 8308,1129–1131 (1982)Google Scholar
  63. 63.
    F. M. Matschinsky, Glucokinase as Glucose Sensor Metabolic Signal Generator in Pancreatic {beta}-Cells and Hepatocytes. Diabetes. 39, 647–652 (1990)Google Scholar
  64. 64.
    D. S. Bindra, Y. Zhang, G. S. Wilson, R. Sternberg, D. R. Thevenot, D. Moatti, G. Reach, Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 63, 1692–1696 (1991)Google Scholar
  65. 65.
    B. Feldman, R. Brazg, S. Schwartz, R. Weinstein, “A continuous glucose sensor based on wired enzyme technology – results from a 3-day trial in patients with type 1 diabetes. Diabetes. Technol. Ther. 5, 769–779 (2003)Google Scholar
  66. 66.
    S. Freiberg, X. X. Zhu, Polymer microspheres for controlled drug release. Int. J. Pharm. 282, 1–18 (2004)Google Scholar
  67. 67.
    R. Jalil, J. R. Nixon, Biodegradable poly(lactic acid) and poly(lactide-coglycolide) microcapsules: problems associated with preparative techniques and release properties. J. Microencapsulation. 7, 297–325 (2008)Google Scholar
  68. 68.
    Eliana B. Souto, Joana F. Fangueiro and Selma S. Souto, in, ed. by Lan-Anh Le, Ross J. Hunter and Victor R. Preedy, Lipid Matrix Nanoparticles in Diabetes, Nanotechnology and Nanomedicine in Diabetes. Chapter 2 (Science Publishers, 2012), pp. 14–33Google Scholar
  69. 69.
    V. Vijayan, D.S. Rao, E. Jayachandran, J. Anburaj, Preparation and characterization of anti diabetic drug loaded solid lipid nanoparticles. JITPS 1, 320–328 (2010)Google Scholar
  70. 70.
    S. BarathManiKanth, K. Kalishwaralal, M. Sriram, S.B.R. Pandian, H. Youn, S. Eom, S. Gurunathan, Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotech. 8, 16–30 (2010)CrossRefGoogle Scholar
  71. 71.
    P. Daisy, K. Saipriya, Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int. J. Nanomed. 7, 1189–1202 (2012)CrossRefGoogle Scholar
  72. 72.
    D. Attivi, P. Wehrle, N. Ubrich, C. Damge, M. Hoffman, P. Maincent, Formulation of insulin-loaded polymeric nanoparticles using response surface methodology. Drug Dev. Ind. Pharm. 31, 179–189 (2005)CrossRefGoogle Scholar
  73. 73.
    P. Venugopalan, A. Sapre, N. Venkatesan, S.P. Vyas, Pelleted bioadhesive polymeric nanoparticles for buccal delivery of insulin: Preparation and characterization. Pharmazie 56, 217–219 (2001)Google Scholar
  74. 74.
    Y. Pan, Y. Li, H. Zhao, J. Zheng, H. Xu, G. Wei, J. Hao, F. Cui, Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249, 139–147 (2002)CrossRefGoogle Scholar
  75. 75.
    M. Morishita, I. Morishita, K. Takayama, Y. Machida, T. Nagai, Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int. J. Pharm. 78, 1–7 (1992)CrossRefGoogle Scholar
  76. 76.
    T. Kuzuya, S. Nakagawa, J. Satoh, Y. Kanazawa, Y. Iwamoto, M. Kobayashi, K. Nanjo, A. Sasaki, Y. Seino, C. Ito, K. Shima, K. Nonaka, T. Kadowaki, Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res. Clin. Pract. 55, 65–85 (2002)CrossRefGoogle Scholar
  77. 77.
    J. Kost, T.A. Horbett, B.D. Ratner, Joseph Kost, M. Singh, Glucose-sensitive membranes containing glucose oxidase: Activity, swelling, and permeability studies. J. Biomed. Mater. Res. 19, 1117–1133 (1985)Google Scholar
  78. 78.
    R. Pandey, A. Sharma, A. Zahoor, S. Sharma, G.K. Khuller, B. Prasad, Poly(dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 52, 981–986 (2003)CrossRefGoogle Scholar
  79. 79.
    M. Takenaga, Y. Yamaguchi, A. Kitagawa, Y. Ogawa, S. Kawai, Y. Mizushima, R. Igarashi, Optimum formulation for sustained-release insulin. Int. J. Pharm. 271, 85–94 (2004)CrossRefGoogle Scholar
  80. 80.
    G.W. Bo-Linn, C.A.S. Ana, S.G. Morawski, J.S. Fordtran, Starch blockers—their effect on calorie absorption from a high-starch meal. N. Engl. J. Med. 307, 1413–1416 (1982)CrossRefGoogle Scholar
  81. 81.
    C.B. Hollenbeck, A.M. Coulston, R. Quan, T.R. Becker, H. Vreman, D.K. Stevenson, G.M. Reaven, Effects of a commercial starch blocker preparation on carbohydrate digestion and absorption: In vivo and in vitro studies. Am. J. Clin. Nutr. 38, 498–503 (1983)Google Scholar
  82. 82.
    S. Ignacimuthu, S. Prakash, Agrobacterium-mediated transformation of chickpea with alpha-amylase inhibitor gene for insect resistance. J. Biosci. 31, 339–345 (2006)CrossRefGoogle Scholar
  83. 83.
    R.J. Henry, V.G. Battershell, P.S. Brennan, K. Oono, Control of wheat α-amylase using inhibitors from cereals. J. Sci. Food Agric. 58, 281–284 (1992)CrossRefGoogle Scholar
  84. 84.
    P. Layer, G.L. Carlson, E.P. DiMagno, Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88(6), 1895–1902 (1985)Google Scholar
  85. 85.
    O.L. Franco, D.J. Rigden, F.R. Melo, C. Bloch Jr., C.P. Silva, M.F. Grossi de Sá, Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Eur. J. Biochem. 267, 2166–2173 (2000)Google Scholar
  86. 86.
    G.H. Feng, M. Richardson, M.S. Chen, K.J. Kramer, T.D. Morgan, G.R. Reeck, α-Amylase inhibitors from wheat: Amino acid sequences and patterns of inhibition of insect and human a-amylases insect biochem. Mol. Biol. 26, 419–426 (1996)Google Scholar
  87. 87.
    S. Dhobale, T. Thite, S.L. Laware, C.V. Rode, S.J. Koppikar, R. Kaul Ghanekar, S.N. Kale, Zinc oxide nanoparticles as novel alpha-amylase inhibitors. J. Appl. Phys. 104, 094907-1-5 (2008)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Electronic-ScienceFergusson CollegePuneIndia
  2. 2.Department of Applied PhysicsDefence Institute of Advanced Technology (DIAT-DU)GirinagarIndia

Personalised recommendations