Preparation and Characterization of ZnO Nanorods, Nanowalls, and Nanochains

  • T. Premkumar
  • Y. F. Lu
  • K. Baskar
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)


The vertically aligned zinc oxide (ZnO) nanorods were synthesized on silicon (Si) substrate using high-pressure pulsed laser deposition (HPPLD). The aligned ZnO nanorods were obtained at the substrate temperature of 650 °C, oxygen partial pressure of 7 Torr, and the target–substrate distance of 25 mm. The influence of substrate lattice mismatch including gallium nitride (GaN-2 %), sapphire (Al2O3-18 %), and Si (40 %) on the growth of ZnO nanowalls was examined. The interlinked ZnO nanowalls were obtained on GaN substrate, whereas ZnO nanorods were obtained on Al2O3 and Si substrates. The magnesium (Mg) doping has influenced the morphological transition of ZnO from nanorods to nanochains. The chain-like structures were obtained for Mg-doped ZnO target. The growth mechanism has been proposed for the formation of ZnO nanorods, nanowalls, and nanochains. The strong (0002) peak and E2H mode confirmed that the ZnO nanorods, nanowalls, and nanochains are preferentially oriented along c-axis and have good crystalline quality. The near band edge emission (NBE) at 3.27 eV revealed the good optical properties of ZnO nanorods, nanowalls, and nanochains.


Lattice Mismatch High Oxygen Pressure Substrate Lattice Mismatch Broad Deep Level Emission Neighboring Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Z.L. Wang, J. Phys. Condens. Matter. 16, R829 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    D.B. Chrisey, G.K. Hubler, Pulsed laser deposition of thin films (Wiley-Interscience, New York, 1994), pp. 327–356Google Scholar
  4. 4.
    A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kawakami, A. Hartanto, Y. Nakata, T. Okada, Jpn. J. Appl. Phys. 42, L33 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    X. Wang, J. Song, Z.L. Wang, J. Mater. Chem. 17, 711 (2007)CrossRefGoogle Scholar
  7. 7.
    H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassel, J. Han, M. Meyyappan, Science 300, 1249 (2003)CrossRefGoogle Scholar
  8. 8.
    Y.J. Hong, H.S. Jung, J. Yoo, Y.J. Kim, C.H. Lee, M. Kim, G.C. Yi, Adv. Mater. 21, 222 (2009)CrossRefGoogle Scholar
  9. 9.
    S.W. Kim, H.K. Park, M.S. Yi, N.M. Park, J.H. Park, S.H. Kim, S.L. Maeng, C.J. Choi, S.E. Moon, Appl. Phys. Lett. 90, 033107 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    T. Premkumar, Y.S. Zhou, Y.F. Lu, K. Baskar, ACS Appl. Mater. Interfaces 2, 2863 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Verma, D. Mukherjee, S. Witanachchi, P. Mukherjee, M. Batzill, J. Cryst. Growth 312, 2012 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Jeong, J.Y. Lee, J.H. Cho, C.J. Lee, S.J. An, G.C. Yi, R. Gronsky, Nanotechnology 16, 2455 (2005)CrossRefGoogle Scholar
  14. 14.
    R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64, 688 (1960)CrossRefGoogle Scholar
  15. 15.
    C.C. Wu, D.C. Wu, P.R. Lin, T.N. Chen, R.H. Horng, Nanoscale. Res. Let. 4, 377 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Singamaneni, M. Gupta, R. Yang, M.M. Tomczak, R.R. Naik, Z.L. Wang, V.V. Tsukruk, ACS Nano 3, 2593 (2009)CrossRefGoogle Scholar
  17. 17.
    X. Zhu, H. Wu, Z. Yuan, J. Kong and W. Shen 40, 2155 (2009)Google Scholar
  18. 18.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Jeong, B.S. Kim, B.T. Lee, Appl. Phys. Lett. 82, 2625 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, ACS Appl. Mater. Interfaces 1, 789 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Lorenz, E.M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M.H. Choi, T.Y. Ma, Mater. Lett. 62, 1835 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Dutta, D. Basak, Nanotechnology 20, 475602 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Premkumar, Y.S. Zhou, Y. Gao, K. Baskar, L. Jinag, Y.F. Lu, Appl. Surf. Sci. 258, 2297 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Y.H. Leung, A.B. Djurisic, J. Gao, M.H. Xie, W.K. Chan, Chem. Phys. Lett. 385, 155 (2004)CrossRefADSGoogle Scholar
  26. 26.
    P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, J.G. Lu, Chem. Mater. 16, 5133 (2004)CrossRefGoogle Scholar
  27. 27.
    G. Shen, J.H. Cho, J.K. Yoo, G.C. Yi, C.J. Lee, J. Phys. Chem. B. 109, 5491 (2005)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Department of Electrical EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations