Advertisement

Synthesis of Polycrystalline Silicon Carbide (SiC) Thin Films Using Pulsed Laser Deposition

  • B. Venkataramesh
  • Nilesh J. Vasa
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

Silicon carbide (SiC), similar to diamond and other ceramic materials, is a material with excellent functional properties. SiC films based devices can be used for various applications ranging from automobile, aerospace industry, power delivery systems, photovoltaic, and microelectromechanical systems. The growth of bulk single crystals of SiC is difficult, but several techniques, such as chemical vapor deposition (CVD), electron beam CVD (EB-CVD), pulsed laser deposition (PLD), are used to produce SiC thin films for various functional applications. In the PLD technique, high substrate temperature (>600 °C) is required to produce crystalline SiC thin films and the onset of the large-scale crystallization has been detected above 800 °C. The PLD technique has been extended for SiC film deposition on various substrates, such as Si (100), alkali-free glass materials. A review on PLD of SiC thin film clearly show that it is possible to deposit 3C-SiC (β-SiC) and 4H-SiC (α-SiC) thin films by controlling various process parameters, such as laser fluence and substrate temperature. Recent advances in the PLD technique combined with the surface annealing can improve the characteristics of SiC thin films for photovoltaic and electronic device-related applications.

Keywords

Substrate Temperature Pulse Laser Deposition Laser Fluence Chemical Vapor Deposition Technique Pulse Laser Deposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are grateful to Prof. M. Singaperumal (IIT Madras) and Dr. I. A. Palani (IIT Indore) for their discussions at various stages. Authors are also grateful to Mr. Xavier from Carborundum Universal Ltd., India for providing SiC powder with different grit sizes.

References

  1. 1.
    G. Muller, G. Krotz, SiC for sensors and high-temperature electronics. Sens. Actuators, A 43, 259–268 (1994)CrossRefGoogle Scholar
  2. 2.
    J.W. Palmour, J.A. Edmond, H.S. Kong, C.H. Carter Jr, 6H-silicon carbide devices and applications. Physics B 185, 461–465 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    W. Slusark Jr., B. Lalevic, G. Taylor, Hard transparent dielectric coatings. Thin Solid Films, 39, 155–163 (1976)Google Scholar
  4. 4.
    C. Banerjee, K.L. Narayanan, K. Haga, J. Sritharathikhun, S. Miyajima, A. Yamada, M. Kongai, Fabrication of microcrystalline cubic silicon carbide/crystalline silicon heterojunction solar cell by hot wire chemical vapour deposition. Jpn. J. Appl. Phys. 46, 1–6 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    H. Matsunami, S. Nishino, H. Ono, Hetero-epitaxial growth of cubic silicon-carbide on foreign substrates. IEEE Trans. Electron Devices 28, 1235–1236 (1981)CrossRefGoogle Scholar
  6. 6.
    A. Tabata, Y. Komura, T. Narita, A. Kondo, Growth of silicon carbide thin films by hot-wire chemical vapor deposition from SiH4/CH4/H2. Thin Solid Films 517, 3516–3519 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    I.A. Yunaz, K. Hashizume, S. Miyajima, A. Yamada, M. Konagai, Fabrication of amorphous silicon carbide films using VHF-PECVD fortriple-junction thin-film solar cell applications. Sol. Energy Mater. Sol. Cells 93, 1056–1061 (2009)CrossRefGoogle Scholar
  8. 8.
    I. Golecki, F. Reidinger, J. Marti, Single-crystalline, epitaxial cubic SiC films grown on (100) Si at 750-degree-C by chemical vapor deposition. Appl. Phys. Lett. 60, 1703–1705 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Y.S. Katharria, S. Kumar, F. Singh, J.C. Pivin, D. Kanjilal, Synthesis of buried SiC using an energetic ion beam. J. Phys. D-Appl. Phys. 39, 3969–3973 (2006)CrossRefGoogle Scholar
  10. 10.
    H. ElGazzar, E.A. Rahaman, H.G. Salem, F. Nassar, Preparation and characterization of amorphous nanostructured SiC thin films by low energy pulsed laser deposition. Appl. Surf. Sci. 256, 2056–2060 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y.S. Katharria, S. Kumar, R.J. Choudhary, R. Prakash, F. Singh, N.P. Lalla, D.M. Phase, D. Kanjilal, Pulsed laser deposition of SiC thin films at medium substrate temperatures. Thin Solid Films 516, 6083–6087 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    I. Hanyecz, J. Budai, A. Oszko, E. Szilagyi, Z. Toth, Room-temperature pulsed laser deposition of SizC thin films in different compositions. Appl. Phys. A 100, 1115–1121 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Y.H. Tang, T.K. Sham, D. Yang, L. Xue, Preparation and characterization of pulsed laser deposition (PLD) SiC films. Appl. Surf. Sci. 252, 3386–3389 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Pelt, M.E. Ramsey, S.M. Durbin, Characterization of crystalline SiC films grown by pulsed laser deposition. Thin Solid Films 371, 72–79 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. Tabbal, A. Said, E. Hannoun, T. Christidis, Amorphous to crystalline phase transition in pulsed laser deposited silicon carbide. Appl. Surf. Sci. 253, 7050–7059 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kasumori, H. Muto, M.E. Brito, Control of polytype formation in silicon carbice heteroepitaxial films by pulsed-laser deposition. Appl. Phys. Lett. 84, 1272–1274 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang, J. Wen, Z. Guo, Y. Tang, H. Tang, J. Wu, The preparation of single-crystal 4H-SiC film by pulsed XeCl laser deposition. Thin Solid Films 338, 93–99 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Burton, L. Sun, M. Pophristic, S.J. Lukacs, F.H. Longa, Spatial characterization of doped SiC wafers by Raman spectroscopy. J. Appl. Phys. 84, 6268–6273 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    A. Debernardi, C. Ulrich, K. Syassen, M. Cardona, Raman linewidths of optical phonons in 3C-SiC under pressure First-principles calculations and experimental results. Phys. Rev. B 59, 6774–6783 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    C. Ghica, C. Ristoscu, G. Socol, D. Brodoceanu, L.C. Nistor, I.N. Mihailescu, A. Klini, C. Fotakis, Growth and characterization of β-SiC films obtained by fs laser ablation. Appl. Surf. Sci. 252, 4672–4677 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M. Vendan, P. Molian, A. Bastawros, J. Anderegg, Ultra-short pulsed laser deposition and patterning of SiC thin films for MEMS fabrication. Mater. Sci. Semicond. Process. 8, 630–645 (2005)CrossRefGoogle Scholar
  22. 22.
    Y.S. Latharria, S. Kumar, R. Prakash, R.J. Choudhary, F. Singh, D.M. Phase, D. Kanjilal, Characterization of pulsed laser deposition of SiC thin films. J. Non-Cryst. Solids 353, 4660–4665 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    H.X. Zhang, P.X. Feng, V. Makarov, B.R. Weiner, G. Morell, Synthesis of nanostructured SiC using the pulsed laser deposition technique. Mater. Res. Bull. 44, 184–188 (2009)CrossRefGoogle Scholar
  24. 24.
    C.Y. Zhao, Z.R. Liu, B. Sun, J. Tang, P.S. Xu, J.C. Xie, Effects of SiC buffer on the structural and photoelectrical properties of ZnO thin films grown on Si (111) by PLD. Physica E 41, 479–482 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    G. Monaco, D. Garoli, M. Natali, M.G. Pelizzo, P. Nicolosi, Synthesis of heteroepytaxial 3C-SiC by means of PLD. Appl. Phys. A 105, 225–231 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Engineering DesignIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations