Skip to main content

Zinc Oxide: The Versatile Material with an Assortment of Physical Properties

  • Chapter
  • First Online:
ZnO Nanocrystals and Allied Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 180))

Abstract

Zinc oxide has the potential to replace GaN as the next-generation white light emitting diode material. This wide bandgap semiconductor with an excitonic binding energy of ~60 meV has been researched extensively in the last decade due to its immense potentiality for blue/UV light emitting devices. ZnO lattice is amenable to doping with transition metal ions (TM) and 4f-elements. Such a doping activity in ZnO has been mainly aimed at the realization of n and p-type conductivity and room temperature diluted magnetic semiconducting behavior. Several doping studies have been attempted in order to get an insight into the changes in physical properties with the emphasis on fabricating of all ZnO pn junctions for white light/UV emission. The challenge is to obtain highly stable p-ZnO with doping. Our group has been working on doping studies in ZnO. Ni doping shows a dramatic decrease in resistivity in polycrystalline ZnO. Stable and low resistive p-type conduction in ZnO was not possible with monovalent ion (Li, Ag etc.) doping. Recent work indicated the possibility of inducing shallow holes into ZnO lattice using co-doping route. We used Li and Ni co-doping to realize a low resistive, p-type and magnetic ZnO. Aligned 1-dimensional ZnO nanowires can also be obtained using PLD and other methods. Our research group at IIT Madras has been working closely with Kyushu University and other partner universities in Japan to make research in ZnO a worthwhile attempt aimed at device applications. We will present, in this chapter, overall physical properties of ZnO with our important results related to the doping aspects in ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, T. Mukai, M. Senoh, High-power GaN pn junction blue light emitting diodes. Jpn. J. Appl. Phys. 30, L1998–L2001 (1991)

    ADS  Google Scholar 

  2. A.M. Haase, J. Qiu, J.M. Depuydt, H. Cheng, Blue-green laser diodes. Appl. Phys. Lett. 59, 1272–1274 (1991)

    ADS  Google Scholar 

  3. A.J. Edmond, H.S. Kang, C.H. Carter, Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC. Phys. B 185, 453–460 (1993)

    ADS  Google Scholar 

  4. C.K. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, S.P. DenBaars, Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum wells LEDs. Phys. Status Solidi (RRL) 1, 125–127 (2007)

    ADS  Google Scholar 

  5. S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139–L142 (1992)

    ADS  Google Scholar 

  6. S. Nakamura, M. Senoh, T. Mukai, P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Jpn. J. Appl. Phys. 32, L8–L11 (1993)

    ADS  Google Scholar 

  7. B.G. Stringfellow, M.G. Craford, Applications for High-brightness Light-Emitting Diodes (Academic Press, London, 1997)

    Google Scholar 

  8. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005)

    ADS  Google Scholar 

  9. G.C. Granqvist, Window coatings for the future. Thin Solid Films 193, 730–741 (1990)

    ADS  Google Scholar 

  10. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 23, L280–L282 (1984)

    ADS  Google Scholar 

  11. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase Mg x Zn1−x O alloy films. Appl. Phys. Lett. 80, 1529–1531 (2002)

    ADS  Google Scholar 

  12. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Band gap engineering based on Mg x Zn1−x O and Cd y Zn1−y O ternary alloy films. Appl. Phys. Lett. 78, 1237–1239 (2001)

    ADS  Google Scholar 

  13. Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88, 241108 (2006)

    ADS  Google Scholar 

  14. D.H. Li, S.F. Yu, A.P. Abiyasa, C. Yuen, S.P. Lau, H.Y. Yang, E.S.P. Leong, Strain dependence of lasing mechanisms in ZnO epilayers. Appl. Phys. Lett. 86, 261111 (2005)

    ADS  Google Scholar 

  15. H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, R.P.H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73, 3656–3658 (1998)

    ADS  Google Scholar 

  16. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G. Wong, Y. Matsumoto, H. Koinuma, Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 77, 2204–2206 (2000)

    ADS  Google Scholar 

  17. S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide. Phys. Rev. Lett. 92, 155504 (2004)

    ADS  Google Scholar 

  18. H. Ohono, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)

    ADS  Google Scholar 

  19. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    ADS  Google Scholar 

  20. L.Z. Wang, J. Song, Piezoelectric Nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    ADS  Google Scholar 

  21. H. Morkoc, U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag GmbH & Co, Wienheim, 2007)

    Google Scholar 

  22. M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga, T. Mizoguchi, The formation of a rock-salt type ZnO thin film by low-level alloying with MgO. J. Phys.: Condens. Matter. 16, 3801–3806 (2004)

    ADS  Google Scholar 

  23. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, New York, 2006)

    Google Scholar 

  24. A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102, 071101 (2007)

    ADS  Google Scholar 

  25. I. Ivanov, J. Pollmann, Electronic structure of ideal and relaxed surfaces of ZnO: a prototype ionic wurtzite semiconductor and its surface properties. Phys. Rev. B. 24, 7275–7296 (1981)

    ADS  Google Scholar 

  26. G.D. Mahan, Intrinsic defects in ZnO varistors. J. Appl. Phys. 54, 3825 (1983)

    ADS  Google Scholar 

  27. J.W. Hoffman, I. Lauder, Diffusion of oxygen in single crystal zinc oxide Trans. Faraday Soc. 66, 2346c (1970)

    Google Scholar 

  28. E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Electrical properties and non-stoichiometry in ZnO single crystals. Phys. Status Solidi A 66, 635 (1981)

    ADS  Google Scholar 

  29. K.I. Hagemark, Defect structure of Zn-doped ZnO. J. Solid State Chem. 16, 293 (1976)

    ADS  Google Scholar 

  30. D.C. Look, J.W. Hemsky, J.R. Sizelove, Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552 (1999)

    ADS  Google Scholar 

  31. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys. Rev. Lett. 91, 205502 (2003)

    ADS  Google Scholar 

  32. Y. Sun, P. Xu, C. Shi, F. Xu, H. Pan, E. Lu, A FP–LMTO study on the native shallow donor in ZnO. J. Electron Spectrosc. Relat. Phenom. 114–116, 1123 (2001)

    Google Scholar 

  33. F.A. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B. 61, 15019–15027 (2000)

    ADS  Google Scholar 

  34. C.G. Van de Walle, Defect analysis and engineering in ZnO. Phys. B 308–310, 899 (2001)

    Google Scholar 

  35. S.B. Zhang, S.H Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)

    Google Scholar 

  36. F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, Energetics of native defects in ZnO. J. Appl. Phys. 90, 824 (2001)

    ADS  Google Scholar 

  37. C.G. Van de Walle, Hydrogen as a cause of doping in Zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)

    ADS  Google Scholar 

  38. J.Y. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, B.H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor. Appl. Phys. Lett. 88, 062107 (2006)

    ADS  Google Scholar 

  39. C.E. Lee, K.J. Chang, Possible p-type doping with group-I elements in ZnO. Phys. Rev. B 70, 1152010 (2004)

    Google Scholar 

  40. J.S. Choi, C.H. Yo, Study of the nonstoichiometric composition op zinc oxide. J. Phys. Chem. Solids 37, 1149 (1976)

    ADS  Google Scholar 

  41. A.W. Sleight, R. Wang, Nonstoichiometry and Doping of Zinc Oxide. MRS Proceedings 453, 323. doi:10.1557/PROC-453-323 (1996)

  42. S.A.M. Lima, F.A. Sigoli, M. Jafelicci Jr, M.R. Davolos, Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3, 749 (2001)

    Google Scholar 

  43. A. Janotti, C.G. Van de Walle, Fundamentals of ZnO as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    ADS  Google Scholar 

  44. H. Kato, K. Miyamoto, T. Yao, Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 42, 2241–2244 (2003)

    ADS  Google Scholar 

  45. K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, H. Takasu, Improvement of electrical properties in ZnO thin films grown by radical source (RS)-MBE. Phys. Status Solidi A 180, 287–292 (2000)

    ADS  Google Scholar 

  46. C.D. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO. Solid State Commun. 105, 399–401 (1998)

    ADS  Google Scholar 

  47. Y.S. Kim, C.H. Park, Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: Origin of n-type doping. Phys. Rev. Lett. 102, 086403 (2009)

    ADS  Google Scholar 

  48. Y.S. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, K.S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn. J. Appl. Phys. 36, L1078–L1081 (1997)

    ADS  Google Scholar 

  49. S. Yata, Y. Nakashima, T. Kobayashi, Improved crystallinity of ZnO thin films grown by the Aurora PLD method. Thin Solid Films 445, 259–262 (2003)

    ADS  Google Scholar 

  50. M.B. Ataev, A.M. Bagamadova, A.M. Djabrailov, V.V. Mamedov, R.A. Rabadanov, Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD. Thin Solid Films 260, 19–20 (1995)

    ADS  Google Scholar 

  51. B.S. Zhang, S.H. Wei, A. Zunger, A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J. Appl. Phys. 83, 3192–3196 (1998)

    ADS  Google Scholar 

  52. T. Yamamoto, H. Katayama-Yoshida, Unipolarity of ZnO with a wide band gap and its solution using codoping method. J. Crys. Growth 214, 552–555 (2000)

    ADS  Google Scholar 

  53. A. Tsukazaki, A. Ohtomo, T. Onuma, M. ohtani, T. Mahino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light emitting diode based on ZnO. Nat. Mater. 4, 42–46 (2005)

    ADS  Google Scholar 

  54. R.J. Duclerea, M. Novotnyb, A. Meaneya, R.O. Hairea, E. McGlynna, M.O. Henrya, J.P. Mosniera, Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition. Superlattices Microstruct. 38, 397–404 (2005)

    ADS  Google Scholar 

  55. H.S. Jeong, D.G. Yoo, D.Y. Kim, N.E. Lee, J.H. Boo, Physical properties and etching characteristics of metal (Al, Ag, Li) doped ZnO films grown by RF magnetron sputtering. Thin Solid Films 516, 6598–6603 (2008)

    ADS  Google Scholar 

  56. L.J. Lyons, A. Janotti, C.G. Van de Walle, Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett. 95, 252105 (2009)

    ADS  Google Scholar 

  57. H.C. Park, S.B. Zhang, S.H. Wei, Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys. Rev. B. 66, 073202 (2002)

    ADS  Google Scholar 

  58. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Nitrogen doped Mg x Zn1−x O/ZnO single heterostructure ultraviolet light emitting diodes on ZnO substrates. Appl. Phys. Lett., 97, 013501 (2010)

    Google Scholar 

  59. M.T. Barnes, K. Olson, C.A. Wolden, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett. 86, 112112 (2005)

    ADS  Google Scholar 

  60. T. Yamamoto, Codoping for the fabrication of p-ZnO. Thin Solid Films 420, 100–106 (2002)

    ADS  Google Scholar 

  61. M.J. Bian, X.M. Li, X.D. Gao, W.D. Yu, L.D. Chen, Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84, 501–543 (2004)

    ADS  Google Scholar 

  62. G.M. Wardle, J.P. Goss, P.R. Briddon, Theory of Li in ZnO: A limitation for Li based p-type doping. Phys. Rev. B 71, 155205 (2005)

    ADS  Google Scholar 

  63. L.W. Liu, M. Shamsa, I. Calizo, A.A. Balandin, V. Ralchenko, A. Popovich, A. Saveliev, Thermal conduction in nanocrystalline diamond films: effects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89, 171915 (2006)

    ADS  Google Scholar 

  64. S. Shubra, N. Rama, M.S. Ramachandra Rao, Influence of d–d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88, 222111 (2006)

    ADS  Google Scholar 

  65. D.O. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, Surfactant-assisted synthesis of Co- and Li-doped ZnO nanocrystalline samples showing room-temperature ferromagnetism. Adv. Mater. 18, 1857–1860 (2006)

    Google Scholar 

  66. G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations. Comput. Mater. Sci. 43, 489–494 (2008)

    Google Scholar 

  67. E. Senthil Kumar, S. Venkatesh, M.S. Ramachandra Rao, Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni) codoped ZnO thin films. Appl. Phys. Lett. 96, 232504 (2010)

    ADS  Google Scholar 

  68. C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci: Mater. Elec. 16, 555–597 (2005)

    Google Scholar 

  69. H.A.M. Macdonald, P. Schiffer, N. Samarth, Ferromagnetic semiconductors: moving beyond (Ga, Mn) As. Nat. Mater. 4, 195–202 (2005)

    ADS  Google Scholar 

  70. J.X. Wang, I.A. Buyanova, F. Zhao, D. Lagarde, A. Balocchi, X. Marie, C.W. Tu, J.C. Harmand, W.M. Chen, Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nat. Mater. 8, 198–202 (2009)

    ADS  Google Scholar 

  71. Z. Lu, H.S. Hsu, Y. Tzeng, J.C.A. Huang, Carrier mediated ferromagnetism in single crystalline (Co, Ga) codoped ZnO films. Appl. Phys. Lett. 94, 152507 (2009)

    ADS  Google Scholar 

  72. D. Chiba, K. Takamura, F. Matsukura, H. Ohno, Effect of low temperature annealing on (Ga, Mn)As trilayer structures. Appl. Phys. Lett. 82, 3020 (2003)

    ADS  Google Scholar 

  73. K.J. Furdyna, Diluted magnetic semipconductors. J. Appl. Phys. 64, R29–R64 (1988)

    ADS  Google Scholar 

  74. C. Zener, Interaction between the d-shells of the transition metals. II Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    ADS  Google Scholar 

  75. K. Sato, H.K. Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)

    ADS  Google Scholar 

  76. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerold, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    ADS  Google Scholar 

  77. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films. Phys. E 10, 260–264 (2001)

    Google Scholar 

  78. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 89, 7284–7286 (2001)

    ADS  Google Scholar 

  79. R. Janisch, P. Gopal, N.A. Spaldin, Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys.: Condens. Matter. 17, R657–R689 (2005)

    ADS  Google Scholar 

  80. P.D. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Appl. Phys. Lett. 82, 239–241 (2003)

    ADS  Google Scholar 

  81. Z. Yan, Y. Ma, D. Wang, J. Wang, Z. Gao, L. Wang, P. Yu, T. Song, Impact of annealing on morphology and ferromagnetism of ZnO nanorods. Appl. Phys. Lett. 92, 081911 (2008)

    ADS  Google Scholar 

  82. M.C. Souza, I.C. Lima, M.A. Boselli, Carrier induced ferromagnetism in Mn doped ZnO: Mante Carlo simulations. Appl. Phys. Lett. 92, 152511 (2008)

    ADS  Google Scholar 

  83. L.D. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Magnetic properties of n-type Cu doped ZnO thin films. Appl. Phys. Lett. 90, 142502 (2007)

    ADS  Google Scholar 

  84. B.Y. Zhang, S. Li, G.K.L. Goh, S. Tripathy, Hydrothermal epitaxy of ZnO:Co diluted magnetic single crystalline thin films. Appl. Phys. Lett. 93, 102510 (2008)

    ADS  Google Scholar 

  85. P.B. Zhang, N.T. Binh, K. Wakatsuki, Y. Sekawa, Y. Yamada, N. Usami, M. Kawazaki, H. Koinuma, Formation of highly oriented ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 84, 4098–4010 (2004)

    ADS  Google Scholar 

  86. T. Zhu, W.S. Zhan, W.G. Wang, J.Q. Xiao, Room temperature ferromagnetism in two step prepared Co doped ZnO bulks. Appl. Phys. Lett. 89, 022508 (2006)

    ADS  Google Scholar 

  87. B. Martínez, F. Sandiumenge, L. Balcells, J. Arbiol, F. Sibieude, C. Monty, Role of the microstructure on the magnetic properties of Co-doped ZnO nanoparticles. Appl. Phys. Lett. 83, 103113 (2005)

    ADS  Google Scholar 

  88. X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, W. Shi, Doping concentration dependence of room temperature ferromagnetism for Ni doped ZnO thin films. Appl. Phys. Lett. 88, 062508 (2006)

    ADS  Google Scholar 

  89. H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Role of point defects in room temperature ferromagnetism of Cr doped ZnO. Appl. Phys. Lett. 91, 072511 (2007)

    ADS  Google Scholar 

  90. H.S. Liu, H.S. Hsu, C.R. Lin, C.S. Lue, J.C.A. Huang, Effect of hydrogenated annealing on structural defects, conductivity and magnetic properties of V doped ZnO powders. Appl. Phys. Lett. 90, 222505 (2007)

    ADS  Google Scholar 

  91. S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, Room temperature ferromagnetism in C implanted ZnO. Appl. Phys. Lett. 93, 232507 (2008)

    ADS  Google Scholar 

  92. S.T. Herng, S.P. Lau, C.S. Wei, L. Wang, B.C. Zhao, M. Tanemura, Y. Akaike, Stable room temperature ferromagnetism in p-type carbon doped ZnO nanoneedles. Appl. Phys. Lett. 95, 133103 (2009)

    ADS  Google Scholar 

  93. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80, 035331 (2009)

    ADS  Google Scholar 

  94. K. Potzger, S. Zhou, J. Grenzer, M. Helm, J. Fassbender, An easy mechanical way to create ferromagnetic defective ZnO. Appl. Phys. Lett. 92, 182504 (2008)

    ADS  Google Scholar 

  95. S. Shionoya, W.M. Yen (ed.), Phosphor Hand Book (CRC Press, Boca Raton, 1999), p. 565

    Google Scholar 

  96. R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, Y. Bando, Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110, 19147 (2006)

    Google Scholar 

  97. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001)

    ADS  Google Scholar 

  98. M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992)

    Google Scholar 

  99. Z.V. Mordkovich, H. Hayashi, M. Haemori, T. Fukumura, M. Kawasaki, Discovery and optimization of new ZnO-based phosphors using a combinatorial method. Adv. Funct. Mater. 13, 519 (2003)

    Google Scholar 

  100. J.H. Egehaaf, D. OelKrug, Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. J. Cryst. Growth 161, 190 (1996)

    ADS  Google Scholar 

  101. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68(3), 403 (1996)

    ADS  Google Scholar 

  102. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)

    ADS  Google Scholar 

  103. Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322 (2000)

    ADS  Google Scholar 

  104. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Mg x Zn1−x O as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)

    ADS  Google Scholar 

  105. O. Vigil, L. Vaillant, F. Cruz, G. Santana, A.M. Acevedo, G.C. Puente, Spray pyrolysis deposition of cadmium–zinc oxide thin films. Thin Solid Films 361, 53–55 (2001)

    Google Scholar 

  106. I.Y. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, B.M. Ataev, Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 83, 2943–2945 (2003)

    ADS  Google Scholar 

  107. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Current injection emission from a transparent pn junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475–477 (2000)

    ADS  Google Scholar 

  108. Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, A pn homojunction light emitting diode formed by As ion implantation. Appl. Phys. Lett. 93, 253107 (2008)

    ADS  Google Scholar 

  109. S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu, Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 183106 (2008)

    ADS  Google Scholar 

  110. D. Hofstetter, R. Théron, A.H. El-Shaer, A. Bakin, A. Waag, Demonstration of a ZnO/MgZnO-based one-dimensional photonic crystal multiquantum well laser. Appl. Phys. Lett. 93, 101109 (2008)

    ADS  Google Scholar 

  111. K.H. Liang, S.F. Yu, H.Y. Yang, Directional and controllable edge emitting ZnO ultraviolet random laser diodes. Appl. Phys. Lett. 91, 101116 (2010)

    ADS  Google Scholar 

  112. X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    ADS  Google Scholar 

  113. B. Liu, H.C. Zeng, Room temperature solution synthesis of mono dispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196–4204 (2004)

    Google Scholar 

  114. C.J. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Grácio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92, 023113 (2008)

    ADS  Google Scholar 

  115. T. Ghoshal, S. Kar, S. Chaudhuri, Synthesis and optical properties of nanometer to micrometer wide hexagonal cones and columns of ZnO. J. Crys. Growth 293, 438–446 (2006)

    ADS  Google Scholar 

  116. R.O. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition. Appl. Phys. A 89, 141–144 (2007)

    ADS  Google Scholar 

  117. J. Nause, B. Nemeth, Pressurized melt growth of ZnO boules. Semicond. Sci. Technol. 20, S45–S48 (2005)

    ADS  Google Scholar 

  118. K. Maeda, M. Sato, I. Niikura, T. Fukuda, Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49 (2005)

    ADS  Google Scholar 

  119. M.E. Kaidashev et al., High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition Appl. Phys. Lett. 82, 3901 (2003)

    ADS  Google Scholar 

  120. T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93, 7673 (2003)

    ADS  Google Scholar 

  121. K. Miyamoto, M. Sano, H. Kato, T. Yao, High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 265, 34 (2004)

    ADS  Google Scholar 

  122. A. Ohmoto, A. Tsukazaki, Pulsed laser deposition of thin films and superlattices based on ZnO. Semicond. Sci. Technol. 20, S1 (2005)

    ADS  Google Scholar 

  123. E.J. Jaffe, A.C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B 48, 7903–7909 (1993)

    ADS  Google Scholar 

  124. U. Rossler, Energy bands of hexagonal II–VI semiconductors. Phys. Rev. 184, 733–738 (1969)

    ADS  Google Scholar 

  125. T.Y. Chen, C.L. Cheng, Y.F. Chen, Giant white and blue light emission from Al2O3 and ZnO nanocomposites. Nanotechnology 19, 445707 (2008)

    ADS  Google Scholar 

  126. X.P. Gao, Z.L. Wang, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108, 7534–7537 (2004)

    Google Scholar 

  127. S.B. Kang, S.J. Pearton, F. Ren, Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 90, 083104 (2007)

    ADS  Google Scholar 

  128. R.W. Kelsall, I.W. Hamley, M. Geoghegan, Nano Science and Technology (Wiley, 2004)

    Google Scholar 

  129. G.J. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, Q.L. Liang, Low resistive, stable p-type ZnO thin films realized using a Li–N dual acceptor doping method. Appl. Phys. Lett. 88, 222114 (2006)

    ADS  Google Scholar 

  130. G.J. Lu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Z.L. Wang, S. Fujita, ZnO quantum dots synthesized by a vapor phase transport process. Appl. Phys. Lett. 88, 063110 (2006)

    ADS  Google Scholar 

  131. M.C. Tarun, M.Z. Iqbal, M.D. McCluskey, Nitrogen is a deep acceptor in ZnO. AIP Adv. 1, 022105 (2011)

    ADS  Google Scholar 

  132. Y.J. Zhang, P.J. Li, H. Sun, X. Shen, T.S. Deng, K.T. Zhu, Q.F. Zhang, J.L. Wu, Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Appl. Phys. Lett. 93, 021116 (2008)

    ADS  Google Scholar 

  133. J.L. Zhao, W. Zhang, X.M. Li, J.W. Feng, X. Shi, Convergence of the formation energies of intrinsic point defects in wurtzite ZnO: first-principles study by projector augmented wave method. J. Phys.: Condens. Matter 18, 1495 (2006)

    ADS  Google Scholar 

Download references

Acknowledgments

S. Singh would like to acknowledge Dr. M. Kottaisamy from Materials Science Research Centre, IIT Madras for the useful discussion on synthesis techniques of nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ramachandra Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Senthil Kumar, E., Singh, S., Ramachandra Rao, M.S. (2014). Zinc Oxide: The Versatile Material with an Assortment of Physical Properties. In: Rao, M., Okada, T. (eds) ZnO Nanocrystals and Allied Materials. Springer Series in Materials Science, vol 180. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1160-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1160-0_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1159-4

  • Online ISBN: 978-81-322-1160-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics