Advertisement

Zinc Oxide: The Versatile Material with an Assortment of Physical Properties

  • E. Senthil Kumar
  • Shubra Singh
  • M. S. Ramachandra Rao
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 180)

Abstract

Zinc oxide has the potential to replace GaN as the next-generation white light emitting diode material. This wide bandgap semiconductor with an excitonic binding energy of ~60 meV has been researched extensively in the last decade due to its immense potentiality for blue/UV light emitting devices. ZnO lattice is amenable to doping with transition metal ions (TM) and 4f-elements. Such a doping activity in ZnO has been mainly aimed at the realization of n and p-type conductivity and room temperature diluted magnetic semiconducting behavior. Several doping studies have been attempted in order to get an insight into the changes in physical properties with the emphasis on fabricating of all ZnO pn junctions for white light/UV emission. The challenge is to obtain highly stable p-ZnO with doping. Our group has been working on doping studies in ZnO. Ni doping shows a dramatic decrease in resistivity in polycrystalline ZnO. Stable and low resistive p-type conduction in ZnO was not possible with monovalent ion (Li, Ag etc.) doping. Recent work indicated the possibility of inducing shallow holes into ZnO lattice using co-doping route. We used Li and Ni co-doping to realize a low resistive, p-type and magnetic ZnO. Aligned 1-dimensional ZnO nanowires can also be obtained using PLD and other methods. Our research group at IIT Madras has been working closely with Kyushu University and other partner universities in Japan to make research in ZnO a worthwhile attempt aimed at device applications. We will present, in this chapter, overall physical properties of ZnO with our important results related to the doping aspects in ZnO.

Keywords

Room Temperature Ferromagnetism Pulse Laser Deposition Technique Dilute Magnetic Semiconductor Material Double Exchange Mechanism Room Temperature Electrical Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

S. Singh would like to acknowledge Dr. M. Kottaisamy from Materials Science Research Centre, IIT Madras for the useful discussion on synthesis techniques of nanostructures.

References

  1. 1.
    S. Nakamura, T. Mukai, M. Senoh, High-power GaN pn junction blue light emitting diodes. Jpn. J. Appl. Phys. 30, L1998–L2001 (1991)ADSGoogle Scholar
  2. 2.
    A.M. Haase, J. Qiu, J.M. Depuydt, H. Cheng, Blue-green laser diodes. Appl. Phys. Lett. 59, 1272–1274 (1991)ADSGoogle Scholar
  3. 3.
    A.J. Edmond, H.S. Kang, C.H. Carter, Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC. Phys. B 185, 453–460 (1993)ADSGoogle Scholar
  4. 4.
    C.K. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, S.P. DenBaars, Improved electroluminescence on nonpolar m-plane InGaN/GaN quantum wells LEDs. Phys. Status Solidi (RRL) 1, 125–127 (2007)ADSGoogle Scholar
  5. 5.
    S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139–L142 (1992)ADSGoogle Scholar
  6. 6.
    S. Nakamura, M. Senoh, T. Mukai, P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Jpn. J. Appl. Phys. 32, L8–L11 (1993)ADSGoogle Scholar
  7. 7.
    B.G. Stringfellow, M.G. Craford, Applications for High-brightness Light-Emitting Diodes (Academic Press, London, 1997)Google Scholar
  8. 8.
    T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005)ADSGoogle Scholar
  9. 9.
    G.C. Granqvist, Window coatings for the future. Thin Solid Films 193, 730–741 (1990)ADSGoogle Scholar
  10. 10.
    T. Minami, H. Nanto, S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 23, L280–L282 (1984)ADSGoogle Scholar
  11. 11.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films. Appl. Phys. Lett. 80, 1529–1531 (2002)ADSGoogle Scholar
  12. 12.
    T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films. Appl. Phys. Lett. 78, 1237–1239 (2001)ADSGoogle Scholar
  13. 13.
    Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, C.J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88, 241108 (2006)ADSGoogle Scholar
  14. 14.
    D.H. Li, S.F. Yu, A.P. Abiyasa, C. Yuen, S.P. Lau, H.Y. Yang, E.S.P. Leong, Strain dependence of lasing mechanisms in ZnO epilayers. Appl. Phys. Lett. 86, 261111 (2005)ADSGoogle Scholar
  15. 15.
    H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, R.P.H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73, 3656–3658 (1998)ADSGoogle Scholar
  16. 16.
    A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G. Wong, Y. Matsumoto, H. Koinuma, Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 77, 2204–2206 (2000)ADSGoogle Scholar
  17. 17.
    S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide. Phys. Rev. Lett. 92, 155504 (2004)ADSGoogle Scholar
  18. 18.
    H. Ohono, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)ADSGoogle Scholar
  19. 19.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)ADSGoogle Scholar
  20. 20.
    L.Z. Wang, J. Song, Piezoelectric Nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)ADSGoogle Scholar
  21. 21.
    H. Morkoc, U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag GmbH & Co, Wienheim, 2007)Google Scholar
  22. 22.
    M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga, T. Mizoguchi, The formation of a rock-salt type ZnO thin film by low-level alloying with MgO. J. Phys.: Condens. Matter. 16, 3801–3806 (2004)ADSGoogle Scholar
  23. 23.
    C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, New York, 2006)Google Scholar
  24. 24.
    A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102, 071101 (2007)ADSGoogle Scholar
  25. 25.
    I. Ivanov, J. Pollmann, Electronic structure of ideal and relaxed surfaces of ZnO: a prototype ionic wurtzite semiconductor and its surface properties. Phys. Rev. B. 24, 7275–7296 (1981)ADSGoogle Scholar
  26. 26.
    G.D. Mahan, Intrinsic defects in ZnO varistors. J. Appl. Phys. 54, 3825 (1983)ADSGoogle Scholar
  27. 27.
    J.W. Hoffman, I. Lauder, Diffusion of oxygen in single crystal zinc oxide Trans. Faraday Soc. 66, 2346c (1970)Google Scholar
  28. 28.
    E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Electrical properties and non-stoichiometry in ZnO single crystals. Phys. Status Solidi A 66, 635 (1981)ADSGoogle Scholar
  29. 29.
    K.I. Hagemark, Defect structure of Zn-doped ZnO. J. Solid State Chem. 16, 293 (1976)ADSGoogle Scholar
  30. 30.
    D.C. Look, J.W. Hemsky, J.R. Sizelove, Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552 (1999)ADSGoogle Scholar
  31. 31.
    F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys. Rev. Lett. 91, 205502 (2003)ADSGoogle Scholar
  32. 32.
    Y. Sun, P. Xu, C. Shi, F. Xu, H. Pan, E. Lu, A FP–LMTO study on the native shallow donor in ZnO. J. Electron Spectrosc. Relat. Phenom. 114–116, 1123 (2001)Google Scholar
  33. 33.
    F.A. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B. 61, 15019–15027 (2000)ADSGoogle Scholar
  34. 34.
    C.G. Van de Walle, Defect analysis and engineering in ZnO. Phys. B 308–310, 899 (2001)Google Scholar
  35. 35.
    S.B. Zhang, S.H Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)Google Scholar
  36. 36.
    F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, Energetics of native defects in ZnO. J. Appl. Phys. 90, 824 (2001)ADSGoogle Scholar
  37. 37.
    C.G. Van de Walle, Hydrogen as a cause of doping in Zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)ADSGoogle Scholar
  38. 38.
    J.Y. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, B.H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor. Appl. Phys. Lett. 88, 062107 (2006)ADSGoogle Scholar
  39. 39.
    C.E. Lee, K.J. Chang, Possible p-type doping with group-I elements in ZnO. Phys. Rev. B 70, 1152010 (2004)Google Scholar
  40. 40.
    J.S. Choi, C.H. Yo, Study of the nonstoichiometric composition op zinc oxide. J. Phys. Chem. Solids 37, 1149 (1976)ADSGoogle Scholar
  41. 41.
    A.W. Sleight, R. Wang, Nonstoichiometry and Doping of Zinc Oxide. MRS Proceedings 453, 323. doi: 10.1557/PROC-453-323 (1996)
  42. 42.
    S.A.M. Lima, F.A. Sigoli, M. Jafelicci Jr, M.R. Davolos, Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3, 749 (2001)Google Scholar
  43. 43.
    A. Janotti, C.G. Van de Walle, Fundamentals of ZnO as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)ADSGoogle Scholar
  44. 44.
    H. Kato, K. Miyamoto, T. Yao, Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 42, 2241–2244 (2003)ADSGoogle Scholar
  45. 45.
    K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, H. Takasu, Improvement of electrical properties in ZnO thin films grown by radical source (RS)-MBE. Phys. Status Solidi A 180, 287–292 (2000)ADSGoogle Scholar
  46. 46.
    C.D. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO. Solid State Commun. 105, 399–401 (1998)ADSGoogle Scholar
  47. 47.
    Y.S. Kim, C.H. Park, Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: Origin of n-type doping. Phys. Rev. Lett. 102, 086403 (2009)ADSGoogle Scholar
  48. 48.
    Y.S. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, K.S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn. J. Appl. Phys. 36, L1078–L1081 (1997)ADSGoogle Scholar
  49. 49.
    S. Yata, Y. Nakashima, T. Kobayashi, Improved crystallinity of ZnO thin films grown by the Aurora PLD method. Thin Solid Films 445, 259–262 (2003)ADSGoogle Scholar
  50. 50.
    M.B. Ataev, A.M. Bagamadova, A.M. Djabrailov, V.V. Mamedov, R.A. Rabadanov, Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD. Thin Solid Films 260, 19–20 (1995)ADSGoogle Scholar
  51. 51.
    B.S. Zhang, S.H. Wei, A. Zunger, A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J. Appl. Phys. 83, 3192–3196 (1998)ADSGoogle Scholar
  52. 52.
    T. Yamamoto, H. Katayama-Yoshida, Unipolarity of ZnO with a wide band gap and its solution using codoping method. J. Crys. Growth 214, 552–555 (2000)ADSGoogle Scholar
  53. 53.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. ohtani, T. Mahino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light emitting diode based on ZnO. Nat. Mater. 4, 42–46 (2005)ADSGoogle Scholar
  54. 54.
    R.J. Duclerea, M. Novotnyb, A. Meaneya, R.O. Hairea, E. McGlynna, M.O. Henrya, J.P. Mosniera, Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition. Superlattices Microstruct. 38, 397–404 (2005)ADSGoogle Scholar
  55. 55.
    H.S. Jeong, D.G. Yoo, D.Y. Kim, N.E. Lee, J.H. Boo, Physical properties and etching characteristics of metal (Al, Ag, Li) doped ZnO films grown by RF magnetron sputtering. Thin Solid Films 516, 6598–6603 (2008)ADSGoogle Scholar
  56. 56.
    L.J. Lyons, A. Janotti, C.G. Van de Walle, Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett. 95, 252105 (2009)ADSGoogle Scholar
  57. 57.
    H.C. Park, S.B. Zhang, S.H. Wei, Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys. Rev. B. 66, 073202 (2002)ADSGoogle Scholar
  58. 58.
    K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light emitting diodes on ZnO substrates. Appl. Phys. Lett., 97, 013501 (2010)Google Scholar
  59. 59.
    M.T. Barnes, K. Olson, C.A. Wolden, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett. 86, 112112 (2005)ADSGoogle Scholar
  60. 60.
    T. Yamamoto, Codoping for the fabrication of p-ZnO. Thin Solid Films 420, 100–106 (2002)ADSGoogle Scholar
  61. 61.
    M.J. Bian, X.M. Li, X.D. Gao, W.D. Yu, L.D. Chen, Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett. 84, 501–543 (2004)ADSGoogle Scholar
  62. 62.
    G.M. Wardle, J.P. Goss, P.R. Briddon, Theory of Li in ZnO: A limitation for Li based p-type doping. Phys. Rev. B 71, 155205 (2005)ADSGoogle Scholar
  63. 63.
    L.W. Liu, M. Shamsa, I. Calizo, A.A. Balandin, V. Ralchenko, A. Popovich, A. Saveliev, Thermal conduction in nanocrystalline diamond films: effects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89, 171915 (2006)ADSGoogle Scholar
  64. 64.
    S. Shubra, N. Rama, M.S. Ramachandra Rao, Influence of d–d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88, 222111 (2006)ADSGoogle Scholar
  65. 65.
    D.O. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, Surfactant-assisted synthesis of Co- and Li-doped ZnO nanocrystalline samples showing room-temperature ferromagnetism. Adv. Mater. 18, 1857–1860 (2006)Google Scholar
  66. 66.
    G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations. Comput. Mater. Sci. 43, 489–494 (2008)Google Scholar
  67. 67.
    E. Senthil Kumar, S. Venkatesh, M.S. Ramachandra Rao, Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni) codoped ZnO thin films. Appl. Phys. Lett. 96, 232504 (2010)ADSGoogle Scholar
  68. 68.
    C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci: Mater. Elec. 16, 555–597 (2005)Google Scholar
  69. 69.
    H.A.M. Macdonald, P. Schiffer, N. Samarth, Ferromagnetic semiconductors: moving beyond (Ga, Mn) As. Nat. Mater. 4, 195–202 (2005)ADSGoogle Scholar
  70. 70.
    J.X. Wang, I.A. Buyanova, F. Zhao, D. Lagarde, A. Balocchi, X. Marie, C.W. Tu, J.C. Harmand, W.M. Chen, Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nat. Mater. 8, 198–202 (2009)ADSGoogle Scholar
  71. 71.
    Z. Lu, H.S. Hsu, Y. Tzeng, J.C.A. Huang, Carrier mediated ferromagnetism in single crystalline (Co, Ga) codoped ZnO films. Appl. Phys. Lett. 94, 152507 (2009)ADSGoogle Scholar
  72. 72.
    D. Chiba, K. Takamura, F. Matsukura, H. Ohno, Effect of low temperature annealing on (Ga, Mn)As trilayer structures. Appl. Phys. Lett. 82, 3020 (2003)ADSGoogle Scholar
  73. 73.
    K.J. Furdyna, Diluted magnetic semipconductors. J. Appl. Phys. 64, R29–R64 (1988)ADSGoogle Scholar
  74. 74.
    C. Zener, Interaction between the d-shells of the transition metals. II Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)ADSGoogle Scholar
  75. 75.
    K. Sato, H.K. Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)ADSGoogle Scholar
  76. 76.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerold, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)ADSGoogle Scholar
  77. 77.
    T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films. Phys. E 10, 260–264 (2001)Google Scholar
  78. 78.
    K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 89, 7284–7286 (2001)ADSGoogle Scholar
  79. 79.
    R. Janisch, P. Gopal, N.A. Spaldin, Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys.: Condens. Matter. 17, R657–R689 (2005)ADSGoogle Scholar
  80. 80.
    P.D. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Appl. Phys. Lett. 82, 239–241 (2003)ADSGoogle Scholar
  81. 81.
    Z. Yan, Y. Ma, D. Wang, J. Wang, Z. Gao, L. Wang, P. Yu, T. Song, Impact of annealing on morphology and ferromagnetism of ZnO nanorods. Appl. Phys. Lett. 92, 081911 (2008)ADSGoogle Scholar
  82. 82.
    M.C. Souza, I.C. Lima, M.A. Boselli, Carrier induced ferromagnetism in Mn doped ZnO: Mante Carlo simulations. Appl. Phys. Lett. 92, 152511 (2008)ADSGoogle Scholar
  83. 83.
    L.D. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Magnetic properties of n-type Cu doped ZnO thin films. Appl. Phys. Lett. 90, 142502 (2007)ADSGoogle Scholar
  84. 84.
    B.Y. Zhang, S. Li, G.K.L. Goh, S. Tripathy, Hydrothermal epitaxy of ZnO:Co diluted magnetic single crystalline thin films. Appl. Phys. Lett. 93, 102510 (2008)ADSGoogle Scholar
  85. 85.
    P.B. Zhang, N.T. Binh, K. Wakatsuki, Y. Sekawa, Y. Yamada, N. Usami, M. Kawazaki, H. Koinuma, Formation of highly oriented ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 84, 4098–4010 (2004)ADSGoogle Scholar
  86. 86.
    T. Zhu, W.S. Zhan, W.G. Wang, J.Q. Xiao, Room temperature ferromagnetism in two step prepared Co doped ZnO bulks. Appl. Phys. Lett. 89, 022508 (2006)ADSGoogle Scholar
  87. 87.
    B. Martínez, F. Sandiumenge, L. Balcells, J. Arbiol, F. Sibieude, C. Monty, Role of the microstructure on the magnetic properties of Co-doped ZnO nanoparticles. Appl. Phys. Lett. 83, 103113 (2005)ADSGoogle Scholar
  88. 88.
    X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, W. Shi, Doping concentration dependence of room temperature ferromagnetism for Ni doped ZnO thin films. Appl. Phys. Lett. 88, 062508 (2006)ADSGoogle Scholar
  89. 89.
    H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Role of point defects in room temperature ferromagnetism of Cr doped ZnO. Appl. Phys. Lett. 91, 072511 (2007)ADSGoogle Scholar
  90. 90.
    H.S. Liu, H.S. Hsu, C.R. Lin, C.S. Lue, J.C.A. Huang, Effect of hydrogenated annealing on structural defects, conductivity and magnetic properties of V doped ZnO powders. Appl. Phys. Lett. 90, 222505 (2007)ADSGoogle Scholar
  91. 91.
    S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, Room temperature ferromagnetism in C implanted ZnO. Appl. Phys. Lett. 93, 232507 (2008)ADSGoogle Scholar
  92. 92.
    S.T. Herng, S.P. Lau, C.S. Wei, L. Wang, B.C. Zhao, M. Tanemura, Y. Akaike, Stable room temperature ferromagnetism in p-type carbon doped ZnO nanoneedles. Appl. Phys. Lett. 95, 133103 (2009)ADSGoogle Scholar
  93. 93.
    M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80, 035331 (2009)ADSGoogle Scholar
  94. 94.
    K. Potzger, S. Zhou, J. Grenzer, M. Helm, J. Fassbender, An easy mechanical way to create ferromagnetic defective ZnO. Appl. Phys. Lett. 92, 182504 (2008)ADSGoogle Scholar
  95. 95.
    S. Shionoya, W.M. Yen (ed.), Phosphor Hand Book (CRC Press, Boca Raton, 1999), p. 565Google Scholar
  96. 96.
    R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, Y. Bando, Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110, 19147 (2006)Google Scholar
  97. 97.
    B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001)ADSGoogle Scholar
  98. 98.
    M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992)Google Scholar
  99. 99.
    Z.V. Mordkovich, H. Hayashi, M. Haemori, T. Fukumura, M. Kawasaki, Discovery and optimization of new ZnO-based phosphors using a combinatorial method. Adv. Funct. Mater. 13, 519 (2003)Google Scholar
  100. 100.
    J.H. Egehaaf, D. OelKrug, Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. J. Cryst. Growth 161, 190 (1996)ADSGoogle Scholar
  101. 101.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68(3), 403 (1996)ADSGoogle Scholar
  102. 102.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)ADSGoogle Scholar
  103. 103.
    Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder. Appl. Phys. Lett. 77, 2322 (2000)ADSGoogle Scholar
  104. 104.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)ADSGoogle Scholar
  105. 105.
    O. Vigil, L. Vaillant, F. Cruz, G. Santana, A.M. Acevedo, G.C. Puente, Spray pyrolysis deposition of cadmium–zinc oxide thin films. Thin Solid Films 361, 53–55 (2001)Google Scholar
  106. 106.
    I.Y. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, B.M. Ataev, Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 83, 2943–2945 (2003)ADSGoogle Scholar
  107. 107.
    H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Current injection emission from a transparent pn junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475–477 (2000)ADSGoogle Scholar
  108. 108.
    Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, A pn homojunction light emitting diode formed by As ion implantation. Appl. Phys. Lett. 93, 253107 (2008)ADSGoogle Scholar
  109. 109.
    S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu, Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 183106 (2008)ADSGoogle Scholar
  110. 110.
    D. Hofstetter, R. Théron, A.H. El-Shaer, A. Bakin, A. Waag, Demonstration of a ZnO/MgZnO-based one-dimensional photonic crystal multiquantum well laser. Appl. Phys. Lett. 93, 101109 (2008)ADSGoogle Scholar
  111. 111.
    K.H. Liang, S.F. Yu, H.Y. Yang, Directional and controllable edge emitting ZnO ultraviolet random laser diodes. Appl. Phys. Lett. 91, 101116 (2010)ADSGoogle Scholar
  112. 112.
    X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)ADSGoogle Scholar
  113. 113.
    B. Liu, H.C. Zeng, Room temperature solution synthesis of mono dispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196–4204 (2004)Google Scholar
  114. 114.
    C.J. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Grácio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92, 023113 (2008)ADSGoogle Scholar
  115. 115.
    T. Ghoshal, S. Kar, S. Chaudhuri, Synthesis and optical properties of nanometer to micrometer wide hexagonal cones and columns of ZnO. J. Crys. Growth 293, 438–446 (2006)ADSGoogle Scholar
  116. 116.
    R.O. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition. Appl. Phys. A 89, 141–144 (2007)ADSGoogle Scholar
  117. 117.
    J. Nause, B. Nemeth, Pressurized melt growth of ZnO boules. Semicond. Sci. Technol. 20, S45–S48 (2005)ADSGoogle Scholar
  118. 118.
    K. Maeda, M. Sato, I. Niikura, T. Fukuda, Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 20, S49 (2005)ADSGoogle Scholar
  119. 119.
    M.E. Kaidashev et al., High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition Appl. Phys. Lett. 82, 3901 (2003)ADSGoogle Scholar
  120. 120.
    T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93, 7673 (2003)ADSGoogle Scholar
  121. 121.
    K. Miyamoto, M. Sano, H. Kato, T. Yao, High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 265, 34 (2004)ADSGoogle Scholar
  122. 122.
    A. Ohmoto, A. Tsukazaki, Pulsed laser deposition of thin films and superlattices based on ZnO. Semicond. Sci. Technol. 20, S1 (2005)ADSGoogle Scholar
  123. 123.
    E.J. Jaffe, A.C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B 48, 7903–7909 (1993)ADSGoogle Scholar
  124. 124.
    U. Rossler, Energy bands of hexagonal II–VI semiconductors. Phys. Rev. 184, 733–738 (1969)ADSGoogle Scholar
  125. 125.
    T.Y. Chen, C.L. Cheng, Y.F. Chen, Giant white and blue light emission from Al2O3 and ZnO nanocomposites. Nanotechnology 19, 445707 (2008)ADSGoogle Scholar
  126. 126.
    X.P. Gao, Z.L. Wang, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108, 7534–7537 (2004)Google Scholar
  127. 127.
    S.B. Kang, S.J. Pearton, F. Ren, Low temperature (<100 °C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 90, 083104 (2007)ADSGoogle Scholar
  128. 128.
    R.W. Kelsall, I.W. Hamley, M. Geoghegan, Nano Science and Technology (Wiley, 2004)Google Scholar
  129. 129.
    G.J. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, Q.L. Liang, Low resistive, stable p-type ZnO thin films realized using a Li–N dual acceptor doping method. Appl. Phys. Lett. 88, 222114 (2006)ADSGoogle Scholar
  130. 130.
    G.J. Lu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Z.L. Wang, S. Fujita, ZnO quantum dots synthesized by a vapor phase transport process. Appl. Phys. Lett. 88, 063110 (2006)ADSGoogle Scholar
  131. 131.
    M.C. Tarun, M.Z. Iqbal, M.D. McCluskey, Nitrogen is a deep acceptor in ZnO. AIP Adv. 1, 022105 (2011)ADSGoogle Scholar
  132. 132.
    Y.J. Zhang, P.J. Li, H. Sun, X. Shen, T.S. Deng, K.T. Zhu, Q.F. Zhang, J.L. Wu, Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Appl. Phys. Lett. 93, 021116 (2008)ADSGoogle Scholar
  133. 133.
    J.L. Zhao, W. Zhang, X.M. Li, J.W. Feng, X. Shi, Convergence of the formation energies of intrinsic point defects in wurtzite ZnO: first-principles study by projector augmented wave method. J. Phys.: Condens. Matter 18, 1495 (2006)ADSGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • E. Senthil Kumar
    • 1
  • Shubra Singh
    • 2
  • M. S. Ramachandra Rao
    • 1
  1. 1.Department of Physics, Nano Functional Materials Technology Centre, and Materials Science Research CentreIndian Institute of Technology (IIT) MadrasChennaiIndia
  2. 2.Crystal Growth CentreAnna UniversityChennaiIndia

Personalised recommendations