Thermal Methods

  • Akshoy Kumar Chakraborty


Heating a substance causes a variety of changes. According to International confederation on thermal analysis (ICTA), a group of techniques are being used to correlate the temperature variation with some physical properties of the substance. Thermal analysis technique shows some curves which is a measure of property as a function of temperature and that is characteristic of a particular substance.


Exothermic Peak Endothermic Reaction Mullite Formation Exothermic Peak Temperature Differential Thermocouple 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. P.L. Arens, A study of differential thermal analysis of clay and clay minerals, Gravenage, Wageningen, Netherland, 1951, Excelsiors Fotd—offset’s. Soc. Sci. 72(5), 406 (1951)Google Scholar
  2. E.F. Aglietti, J.M. Porto-López, E. Pereira, Mechanochemical effects in Kaolinite grinding, part I: Textural and physicochemical aspects. Int. J. Miner. Process. 16, 125–133 (1986)CrossRefGoogle Scholar
  3. E.F. Aglietti, J.M. Porto-Lo´pez, E. Pereira. Mechanochemical effects in kaolinite grinding, Part II: Structural aspects. ibid.16, 135–146 (1986)Google Scholar
  4. W.F. Bradley, R.E. Grim, High-temperature thermal effects of clay and related materials. Am. Mineral. 36(3/4), 182–201 (1951)Google Scholar
  5. D.S. Belyankin, in Mullite, Its Structure, Formation and Significance, ed. by J. Grofcsik, F. Tamas and A. Kiado (Publishing House of the Hungarian Academy of Sciences 1961, Budapest 1932), pp. 70Google Scholar
  6. M. Bulens, B. Delmon, The exothermic reaction of metakaolinite in the presence of mineralizers: influence of crystallinity. Clays Clay Miner. 25(4), 271–277 (1977)Google Scholar
  7. M. Bellotto, High temperature phase transformation in kaolinite: the influence of disorder and kinetics on the reaction path. Mater. Sci. Forum, 166–169, 3–20 (1994)Google Scholar
  8. E.B. Colegrave and G.R. Rigby, The Decomposition of kaoliite by heat. Trans. Brit. Ceram. Soc. 51(6), 355–367(1952)Google Scholar
  9. A.K. Chakraborty and D.K. Ghosh, Kaolinite–Mullite Reaction Series. Cent. Glass & Ceram. Res. Instt. Bull. 23(2), 86–88 (1976)Google Scholar
  10. A.K. Chakraborty, Resolution of thermal peaks of Kaolinite by TMA and DTA. J. Am. Ceram. Soc. 75(7), 2013–2047 (1992)CrossRefGoogle Scholar
  11. A.K. Chakraborty, Application of TMA and DTA studies on the crystallization behavior of SiO2 in thermal transformation of Kaolinite. J. Therm. Anal. 39, 280–299 (1993)Google Scholar
  12. A.K. Chakraborty, DTA study of preheated Kaolinite in the mullite formation region. Thermochima Acta 398(1–2), 203–209 (2003)CrossRefGoogle Scholar
  13. C.Y. Chen, G.S. Lan, W.H. Tuan, Micro structural evolution of Mullite during the sintering of Kaolinite powder compacts. Ceram. Int. 26(7), 715–720 (2000)Google Scholar
  14. R.D. Dragsdorf, H.E. Kissinger, A.T. Perkins, An x-ray study of the decomposition of kaolinite. Soil Sci. Soc. Am. J. 71, 439–448 (1951)Google Scholar
  15. W.L. De Keyser, Silicate Industries, vol. 24. pp. 117 and190 (1959)Google Scholar
  16. W.L. De Keyser, Differential thermo balance. Nature [London] 172, 364 (1953)CrossRefGoogle Scholar
  17. W.L. De Keyser, Contribution to the study of Mullite. Ber. Dtsch. Keram. Ges. 40, 304–315 (1963a)Google Scholar
  18. W.L. De Keyser, R. Wollast, L. De Laet, Contribution to the study of OH groups In kaolin minerals. International Clay Conference (Pergamon Press, 1963b), pp. 75–86Google Scholar
  19. W.L. De Keyser, Note concerning the exotherm reaction of kaolinite & formation of spinel phase preceding that of mullite. International Clay Conference (Pergamon Press, 1963c), pp. 91–96Google Scholar
  20. L. Erdey, F. Paulik, J. Paulik, Differential thermogravimetry. Nature 174, 885–886 (1954)Google Scholar
  21. F. Freund, Die Deutungder Exothermen Reaktio Des Kaolinite Als Reaktio Des Aktiven Zustandes, Ber. Deut. Keram. Ges. 37, 209–218 (1960a)Google Scholar
  22. F. Freund, Explanation of exothermal reaction of kaolinite as a ‘Reaction of the Active State’. Ber. Deut. Keram. Ges. 37(51), 209–218 (1960b)Google Scholar
  23. W.H. Flank, Behavior of kaolinite pellets at elevated temperature. Clays Clay Miner. 20(1), 1–18 (1979)Google Scholar
  24. R.E. Grim and R.A. Rowland, Differential thermal analysis of clays & shales, A control of prospecting method. J. Am. Ceram. Soc. 27(3), 65–76 (1944)Google Scholar
  25. R.W. Grimshaw, E. Heaton, R.L. Roberts, Refractory clays 11. Trans. Br. Ceram. Soc. 44, 76–92 (1945)Google Scholar
  26. R.E. Grim, Differential thermal curves of prep. Mixtures of clay minerals. Am. Mineral. 32(9, 10), 493–501 (1947)Google Scholar
  27. R.M. Gruver, E.C. Henry, H. Heysteck, Suppression of thermal reactions in Kaolinite. Am. Min. 34, 869 (1949)Google Scholar
  28. J. Gerad-Hirne, C. Lamy, Identification of clays by differential thermal analysis. Bull. Soc. France Ceram. 26–40 (1951)Google Scholar
  29. H.D. Glass, High-temperature phases from kaolinite and halloysite. Am. Mineral. 39, 193–207 (1954)Google Scholar
  30. R.B. Graf , F.M. Wahl and R.E. Grim, Phase transformations in silica-alumina-magnesia mixtures as examined by continuous X-ray diffraction : 1. Talc-kaolinite composition. Amer. Min. 47, 1273–1283 (1962)Google Scholar
  31. F. González García, M.T. Ruiz Abrio and M.G. Rodríguez, Effects of dry grinding on two kaolins of different degrees of crystallinity. Clay Miner. 26(4) 549–565 (1991)Google Scholar
  32. H.S. Houldsworth and J.W. Cobb, Behavior of fireclays, bauxites etc on heating. I. Trans. Brit Ceram. Soc. 22, 111–137, 344–348 (1923)Google Scholar
  33. J.F. Hyslop, A. McMurdo, The thermal expansion of some clay mineral. Trans. Ceram. Soc. (England) 37, 180–186 (1938)Google Scholar
  34. R.A. Heindl, L.E. Meng, Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. J. Res. Natl. Bureau. Stand. 23(9), 427–441 (1939)Google Scholar
  35. C.G. Harman, F. Fraulini, Properties of Kaolinite as a function of its particle size. J. Am. Ceram. Soc. 23, 252–259 (1940)CrossRefGoogle Scholar
  36. T. Haase, K. Winter, Influence of grinding on the ceramic properties of kaolin (in Fr.). Bull. Soc. Fr. Ceram. 44, 13–19 (1959)Google Scholar
  37. I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand. 14(S), 615–627 (1935)Google Scholar
  38. A. La Iglesium, A.J. Anzar, Crystallinity variations in Kaolinite induced by grinding and pressure treatments. J. Mater. Sci. 31, 4671–4677 (1996)Google Scholar
  39. S.M. Johnson, J.A. Pask, J.S. Moya, Influence of impurities on high-temperature reactions of Kaolinite. J. Am. Ceram. Soc. 65(1), 31–35 (1982)Google Scholar
  40. W.P. Kelly and H. Jenny, Reaction of crystal structure to base exchange and its bearing on base exchange. soil sci. 41, 367–382 (1936)Google Scholar
  41. G. Kulbicki, R.E. Grim, A new method for thermal dehydration studies of clay minerals. Min. Mag. 32, 53 (1959)CrossRefGoogle Scholar
  42. T.A. Korneva, T.S. Yusupov, High-temperature behavior of Kaolinite after super-fine grinding, in Proceedings of the First European Symposium on Thermal Analysis (Heyden, London, 1976), pp. 336–339Google Scholar
  43. S. Kawai, M. Yoshida, G. Hashizume, Preparation of mullite from Kaoline by dry grinding, J. Am. Ceram. Soc. Jpn. 98, 669–674 (1990)Google Scholar
  44. E. Kristóf, A.Z. Juhász, I. Vassányi, The effect of mechanical treatment on the crystal structure and thermal behavior of Kaolinite. Clays Clay Miner. 41(5) 608–612 (1993)Google Scholar
  45. H. Le Chatlier, De 1’Action de la Chaleur sur les Argiles” (“Concerning the Action of Heat on Clays”). Bull. SOC. Fr. Mineral. 10, 204–211 (1887)Google Scholar
  46. W.D. Laws, J.B. Page, Changes produced in Kaolinite by dry grinding. Soil Sci. Soc. Am. J. 62, 319–336 (1946)Google Scholar
  47. J. Lemaitre, M. Bullens, B. Delmon, Influence of mineralizers on the 950 °C exothermic reaction of metakaolinite, in Proceedings of the International Clay Conference (Mexico City, Mexico, July 1975), ed. by S.W. Bailey (Applied Publishing Ltd., Wilmette, 1975), pp. 539–544Google Scholar
  48. M. Lomeli, L.M. Flores-Velez, I. Esparza, R. Torres, O. Domínguez, Catalytic effect of CaF2 nanoparticles on sintering behavior of kaolin-based materials. J. Am. Ceram. Soc. 92(7) 1526–1533 (2009)Google Scholar
  49. J. Meneret, Bul. Cer. Fr. 35, 3 (1957)Google Scholar
  50. R.C. Mackenzic, Thermal Methods, Differential Thermal. Investigation of Clays (The Mineralogical Society, London, 1957), p. 22Google Scholar
  51. J.G. Miller, T.D. Oulton, Prototropy in Kaolinite during percussive grinding. Clays Clay Miner. 18(6), 313–323 (1970)Google Scholar
  52. F.H. Norton, Critical study of differentia thermal method for Identification clay minerals. J. Am. Ceram. Soc. 22, 54–63 (1939)CrossRefGoogle Scholar
  53. P.G. Nutting, Some standard thermal dehydratiom curves of minerals. U.S. Geol. Surv. Profess. Paper. 197E, 197–216 (1943)Google Scholar
  54. I. Rhode, Keram. Rundschau 35, 414–415 (1927)Google Scholar
  55. C.S. Ross and P.F. Kerr, The Kaolin Mineral. U.S. Geol. Surv. Profess. Paper. 165E, (1930)Google Scholar
  56. A.N. Sokoloff, Molekulares Zerfall Vo Kaolinites Anfang Du Gluhens, Tonind. Ztg. 36, 1107–1110 (1912)Google Scholar
  57. Y.A. Samoilov, Thermal curves of minerals. Bull. Acad. Sci. Petrograde 1759, 1768 (1915)Google Scholar
  58. S. Spiel, L.H. Berkelheimer, J.A. Pask, B. Davis, Differential thermal analysis—its applications to behavior clays and other aluminous minerals. U.S. Bur. Mines. Tech. 664 (1945)Google Scholar
  59. Sedletski, in Mullite, Its Structure, Formation and Significance, ed. by J. Grofcsik, F. Tamas and A. Kiado (Publishing House of the Hungarian Academy of Sciences 1961, Budapest 1949), pp. 70, X-ray characteristic of Monothermite, pp 70Google Scholar
  60. W.J. Smothers, Y. Chiang, and A. Wilson, Bibliography of differential thermal analysis. Univ.Ark. Inst. Sci. Technol. Res. Ser. 31 (1951)Google Scholar
  61. T. Sudo, K. Nagasawa, M. Amafuji, M. Kimura, S. Honda, T. Muto, Studies of Japans clay minerals. J. Geol. Soc. Jpn 58, 115–130 (1952)CrossRefGoogle Scholar
  62. P. Spinedi, O. Franciosi, Thermo Diff. Precis. Anal. React. Sci. 22, 2323–2339 (1952)Google Scholar
  63. R.L. Stone, Differential thermal analysis of kaolin group mineral under controlled partial pressure of H2O. J. Am. Ceram. Soc. 35(1), 90 (1952)Google Scholar
  64. R.L. Stone and R.A. Rowland, in: Thermoanalytical Methods of Investigation, ed. by P.D. Garn, 1965. (Academic Press, New York, 1955), p. 297Google Scholar
  65. K.H. Schuller and H. Kromer, Primary mullite as a pseudomorph after Proceedings of the International Clay Conference (Mexico City, 1975), ed. by S.W. Bailey. (Applied Publishing, Wilmette, IL, 1976) p. 533–38 Google Scholar
  66. G. Suraj, C.S.P. Iyer, S. Rugmini, and M. Lalithambika, The effect of micronization on kaolinites and their sorption behavior. Appl. Clay Sci. 12(2) 111–30 (1997)Google Scholar
  67. P.J. Sánchez-Soto, M.C.J. de Haro, L.A. Pérez-Maqueda, I. Varona, J.L. Pérez-Rodríguez, Effects of dry grinding on the structural changes of Kaolinite powders. J. Am. Ceram. Soc. 83(7) 1649–1657 (2000)Google Scholar
  68. G. Tamman, W. Pape, Ilber Den Wasserverlust Des Kaolines and Seinverhat-en In Festen Zuden Carbonatem Und Oxyden Der Erdalkalien. Z. Anorg. Allg. Chem. 127, 43–68 (1923)Google Scholar
  69. Y. Tsuzuki, K. Nagasawa, A transitional stage to 980 °C exotherm of kaolin minerals. Clay Sci. 3(5), 87–102 (1969)Google Scholar
  70. S. Udagawa, T. Nakada, M. Nakahira, Molecular structure of allophane as revealed by its thermal transformation, in Proceedings of International Clay Conference, vol. 1, ed. by L. Heller, B Heller (Israil University Press, Gerusalem, 1969), p. 151Google Scholar
  71. C.J. Van Nieuwenberg, H.A.J. Pieters, Rehydration of Metakaolin and the synthesis of Kaolin. Ber. Beut. Keram.Ges. 10, 260–263 (1929)Google Scholar
  72. F. Vaughn, Energy changes when kaolin minerals are heated. Clay Mineral Bull. 2(13), 265–274 (1955)Google Scholar
  73. F. Vaughn, Trans. Brit Ceram. Soc. 57, 38 (1958)Google Scholar
  74. R. Wohlin, Thermische analyse Von Tonen and Bauxiten. Silikatz 1, 225 (1913)Google Scholar
  75. F.M. Wahl, R.E. Grim, High temperature DTA and XRD studies of reactions, in Twelfth National Conference on Clays and Clay Minerals, pp. 69–81 (1964)Google Scholar
  76. R.R. West, in Ceramics, ed. by R.C. Mackenzie. Differential Thermal Analysis, Fundamental Aspects, vol. 1 (Academic Press, London, 1970), pp. 149–179Google Scholar
  77. T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda, and H. Saito, 29Siand 27Al- MAS/NMR study of the thermal transformations of kaolinite. ClayMiner. 22, 37–48 (1987)Google Scholar
  78. T. Yamauchi, S. Kato, Thermal analysis of raw clays. J. Jpn. Ceram. Assn. 50, 303 (1943)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Refractory Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations