Topotaxy IN K-MK-AL/SI Spinel-Mullite Reaction Series

  • Akshoy Kumar Chakraborty


Grim (1953) first indicated that high temperature transformation of a material in some cases proceeds in an orderly manner. The structure of the new phase inherits directly from the parent material. It is assumed that oxygen network of the parent material may slightly be modified during heating. Only the cations diffuse and rearrange to develop a new crystal lattice.


Prefer Orientation Spinel Phase Orderly Manner Thermal Decomposition Product Geiger Counter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. W.F. Bradley, R.E. Grim, High-temperature thermal effects of clay and related materials. Am. Miner. 36(3/4), 182–201 (1951)Google Scholar
  2. G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: I, a survey of outstanding problems. J. Am. Ceram. Soc. 42(7), 311–314 (1959a)Google Scholar
  3. G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: II, metakaolin. J. Am. Ceram. Soc. 42(7), 314–318 (1959b)Google Scholar
  4. G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: III, the high-temperature phases. J. Am. Ceram. Soc. 42(7), 319–324 (1959c)Google Scholar
  5. A.K. Chakraborty, D.K. Ghosh, Study of phase transformation of Al2O3–SiO2 gel and kaolinitic clay. Trans. Ind. Ceram. Soc. 37(5), 192–200 (1978a)Google Scholar
  6. A.K. Chakraborty, D.K.Ghosh, Comment on the interpretation of the kaolinite–mullite reaction sequence from infra–red absorption spectra. J. Am. Ceram. Soc. 61(1–2), 90–91 (1978b) (Reply by H.J. Percival. ibid., 61 (1–2) 91 (1978))Google Scholar
  7. A.K. Chakraborty, D.K. Ghosh, Re-examination of the kaolinite to mullite reaction series. J. Am. Ceram. Soc. 61(3–4), 170–173 (1978c)Google Scholar
  8. C.Y. Chen, G.S. Lan, W.H. Tuan, Micro structural evolution of mullite during the sintering of kaolinite powder compacts. Ceram. Int. 26(7) 715–720 (2000)Google Scholar
  9. J.J. Comer, Electron microscope studies of mullite development in fired kaolinite. J. Am. Ceram. Soc. 43(7), 378–384 (1960)Google Scholar
  10. J.J. Comer, New Electron-optical data on the kaolinite–mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)Google Scholar
  11. J.E. Comeforo, R.B. Fischer, W.F. Brandley, Mullitization of kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)Google Scholar
  12. D.R. Dasgupta, Topotactic transformations. Ind. J. Earth Sci. 1(1), 60–72 (1974)Google Scholar
  13. R.E. Grim, Clay Mineralogy. (McGraw-Hill Book Co., New York, 1953)Google Scholar
  14. W.D. Johns, High-temperature phase changes in kaolinites. Mineral. Mag. 30(222), 186–198 (1953)Google Scholar
  15. S. Lee, Y.J. Kim, H-S. Moon, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J. Am. Ceram. Soc. 82(10), 2841–2848 (1999)Google Scholar
  16. S. Lee, Y.J. Kim, H.J. Lee, H-S. Moon, Electron-beam-induced phase transformations from metakaolinite to mullite investigated by EF-TEM and HRTEM. J. Am. Ceram. Soc. 84(9), 2096–2098 (2001)Google Scholar
  17. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959) (in J.D. Bernal; Topotaxi. Schw. Archiv. Jharb., 26, 69)Google Scholar
  18. J.D.C. McConnell, S.G. Fleet, Electron optical study of the thermal decomposition of kaolinite. Clay Miner. 8, 279–290 (1970)CrossRefGoogle Scholar
  19. C.J. McConville, W.E. Lee, J.H. Sharp, Micro structural evolution in fired kaolinite. Br. Ceram. Trans. 97(4), 162–168 (1998a)Google Scholar
  20. C. McConville, W.E. Lee, J.H. Sharp, Comparison of micro structural evolution in kaolinite powders and dense clay bodies. Br. Ceram. Proc. 58, 75–92 (1998b)Google Scholar
  21. J.S. Moya, C.J. Serna, J.E. Igesias, On the formation of mullite from kandites. J. Mater. Sci. 20, 32–36 (1985)Google Scholar
  22. K. Okada, N. Ostuka, J. Ossaka, Characterization of spinel phase formed in the kaolin–mullite thermal sequence. J. Am. Ceram. Soc. 69(10), C-251–C-253 (1986)Google Scholar
  23. F. Onike, G.D. Martin, A.C. Dunham, Time–temperature–transformation curves for kaolinite. Mater. Sci. Forum 7, 73–82 (1986)CrossRefGoogle Scholar
  24. J.M.A. Rincon, G. Thomas, J.S. Moya, Micro structural study of sintered mullet. J. Am. Ceram. Soc. 69(2), C-29-C-31 (1986)Google Scholar
  25. K.H. Schuller and H. Kromer, Primary mullite as a pseudomorph after kaolinite. in Proceedings of the International Clay Conference (Mexico City, 1975). ed. by S. W. Bailey, (Applied Publishing, Wilmette, IL, 1976) p. 533–538Google Scholar
  26. K. Srikrishna, G. Thomas, R. Martinez, M.P. Corral, S. Aza, J.S. Moya, Kaolinite–mullite reaction series: A TEM study. J. Mater. Sci. 25, 607–612 (1990)CrossRefGoogle Scholar
  27. Y. Tsuzuki, K. Nagasawa, A transitional stage to 980ºC exotherm of kaolin minerals. Clay Sci. 3(5), 87–102 (1969) (Kaolin Minerals)Google Scholar
  28. S. Udagawa, T. Nakada, M. Nakahira, Molecular structure of allophane as revealed by its thermal transformationin, in Proceedings of the International Clay Conference, ed. by Editor-in-chief Lisa Heller bisa Heller, vol. 1 (Israil University Press, Gerusalem, 1969), p. 151Google Scholar
  29. K. Von Gehlen, Oriented Formation of Mullite from Al–Si spinel in the transformation series Kaolinite–Mullite. Ber. Deut. Keram. Ges. 39(6), 315–320 (1962)Google Scholar
  30. A. Weiss, K.J. Range, J. Russow, The Al,Si-Spinel Phase from Kaoinite ( Isolation, Chemical Analysis, Orientation and Reactions to Its Low-Temperature Precursors), In Proceedings of the International Clay Conference, Tokyo, 1969, vol. 2 (Israel Universities Press, 1970), pp. 34–37Google Scholar
  31. A. Weiss, K.J. Range, J. Russow, The Al,Si-Spinel phase from kaoinite ( Isolation, chemical analysis, orientation and reactions to its low-temperature precursors), In Proceedings of the International Clay Conference, Tokyo, 1969, vol. 2 (Israel Universities Press, 1970), pp. 34–37Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Refractory Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations