Reasons for First and Second Exothermic Peaks

  • Akshoy Kumar Chakraborty


Metakaolinite is a poorly crystalline material. It is formed from kaolinite by absorption of heat energy and thus it is conceivable that it is metastable with high free energy content.


Exothermic Peak Spinel Phase Transformation Plasticity Spinel Formation Mullite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. M. Bellotto, High temperature phase transformation in kaolinite: the influence of disorder and kinetics on the reaction path. Mater. Sci. Forum 166–169, 3–20 (1994)Google Scholar
  2. G.R. Blair, A.C.D. Chaklader, Firing versus reactive hot-pressing. J. Therm. Anal. 4, 311–322 (1971)Google Scholar
  3. G.R. Blair, A.C.D. Chaklader, Kaolinite-mullite series: firing versus reactive hot-pressing. J. Therm Anal 4, 311–322 (1972)CrossRefGoogle Scholar
  4. W.F. Bradley, R.E. Grim, High-temperature thermal effects of clay and related materials. Am. Mineral. 36(3/4) 182–201 (1951)Google Scholar
  5. G.W. Brindley, M. Nakahira, The kaolinite-mullite reaction series: I, II, and III,. J. Am. Ceram. Soc. 42(7), 311–324 (1959)Google Scholar
  6. I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, high- temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)Google Scholar
  7. T.G. Carruthers, T.A. Wheat, in Hot Pressing of Kaolin and of Mixtures of Alumina and Silica. Proceedings Britain Ceramic Society, vol. 3, p. 259 (1965)Google Scholar
  8. A.C.D. Chaklader, L.G. McKenzie, Am.Ceram.Soc.Bull. 43, 892 (1964)Google Scholar
  9. A.C.D.Chaklader, L.G. McKenzie, J. Am. Ceram. Soc. 49, (1966)Google Scholar
  10. A.C.D. Chaklader, Flow properties of clay minerals during phase transformation. Cent. Glass. Ceram. Res. Bull. 23(1), 5–14 (1976)Google Scholar
  11. A.K. Chakraborty, D.K. Ghosh, Re-examination of the kaolinite to mullite reaction series. J. Am. Ceram. Soc. 61(3–4), 170–173 (1978)Google Scholar
  12. A.K. Chakraborty, Resolution of thermal peaks of kaolinite by TMA and DTA. J. Am. Ceram. Soc. 75(7), 2013–2047 (1992)CrossRefGoogle Scholar
  13. A.K. Chakraborty, Application of TMA and DTA studies on the crystallization behavior of SiO2 in thermal transformation of kaolinite. J. Therm. Anal. 39, 280–299 (1993)Google Scholar
  14. A.K. Chakraborty, New data on thermal effects of kaolinite in the high temperature region. J. Therm. Anal. 71, 799–808 (2003)Google Scholar
  15. A.K. Chakraborty, D.K. Ghosh, Re-examination of the decomposition of kaolinite. J. Am. Ceram. Soc. 60(3–4), 165–166 (1977)Google Scholar
  16. A.K. Chakraborty, D.K. Ghosh, Comment on the Interpretation of the Kaolinite-Mullite Reaction Sequence from Infra-Red Absorption Spectra. J. Am. Ceram. Soc. 61(1–2), 90–91 (1978)CrossRefGoogle Scholar
  17. A.K. Chakraborty, D.K. Ghosh, Re-examination of the kaolinite to mullite reaction series. J. Am. Ceram. Soc. 61(3–4), 170–173 (1978)Google Scholar
  18. A.K. Chakraborty, D.K. Ghosh, Kaolinite-mullite reaction series. The development and significance of a binary aluminosilicate phase. J. Am. Ceram. Soc. 74(6), 1401–1406 (1991)CrossRefGoogle Scholar
  19. A.K. Chakraborty, D.K. Ghosh, On the origin of the exothermic peak in the thermogram of a kaolinitic clay : spinel versus β– quartz crystallization, Cent. Glass & Ceram. Res. Instt. Bull. 23(1), 38–40 (1976)Google Scholar
  20. J.E. Comeforo, R.B. Fischer, W.F. Bradley, Mullitization of kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)Google Scholar
  21. J.J. Comer, New electron-optical data on the kaolinite–mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)Google Scholar
  22. F. Freund, Die Deutungder Exothermen Reaktio Des Kaolinite Als Reaktio Des Aktiven Zustandes. Ber. Deut. Keram. Ges. 37, 209–218 (1960)Google Scholar
  23. F. Freund, Kaolinite-Metakaolinite, a model of a solid with extremely high lattice defect concentrations. Ber. Dtsch. Keram. Ges. 44(I) 5–13 (1967)Google Scholar
  24. H.D. Glass, High-temperature phases from kaolinite and halloysite. Am. Mineral. 39, 193–207 (1954)Google Scholar
  25. I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand. 14[S], 615–627 (1935)Google Scholar
  26. W.D. Johns, High-temperature phase changes in kaolinites. Mineral. Mag. 30(222) 186–198 (1953)Google Scholar
  27. S. Lee, Y.J. Kim, H.J. Lee, H-S. Moon, Electron-beam-induced phase transformations from metakaolinite to mullite investigated by EF-TEM and HRTEM. J. Am. Ceram. Soc. 84(9) 2096–2098 (2001)Google Scholar
  28. J. Lemaitre, M. Bullens, B. Delmon, in Influence of Mineralizers on the 950°C Exothermic Reaction of Metakaolinite, ed by S. W. Bailey. Proceedings of the International Clay Conference, Mexico City, Mexico, July 1975 (Applied Publishing Ltd., Wilmette, 1975), pp. 539–544Google Scholar
  29. A.J. Leonard, Structural analysis of the transition phases in the kaolinite–mullite thermal sequence, J. Am. Ceram. Soc. 60(1–2), 37–43 (1977)Google Scholar
  30. K.J.D. MacKenzie, Comment on differential thermal calorimetric determination of the thermodynamic properties of kaolinites. J. Am. Ceram. Soc. 54(3), 174 (1971)Google Scholar
  31. S. Majumder, B. Mukherjee, J. Am. Ceram. Soc. 69(8), C-201 (1983)Google Scholar
  32. J.S. Moya, C.J. Serna, J.E. Iglesias, On the formation of mullite from kandaties. J. Mater. Sci. 20, 32–36 (1985)Google Scholar
  33. P.S. Nicholson, R.M. Fulrath, Differential thermal calorimetric determination of the thermodynamic properties of kaolinite. J. Am. Ceram. Soc. 53(5), 237–240 (1970)Google Scholar
  34. H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the kaolinite–mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 57(2), 57–61 (1974)Google Scholar
  35. R. Roy, D.M. Roy, E.E. Francis, New data on thermal decomposition of kaolinite and halloysite. J. Am. Ceram. Soc. 38(6), 198–205 (1955)Google Scholar
  36. K. Range, J.Russow, G.Oehinger ad A.Weiss, Ber. Dt. Keram. Ges. 47, 545 (1970)Google Scholar
  37. N. C. Schieltz, M. R. Soleman, in Thermodynamics of various high temperature transformation of kaolinite, ed. by E. Ingerson. Proceedings of 13th National Conference on Clays, Madison, Wisconsin, (Pergamon press, Monograph, 1966) No. 25, p. 419–425Google Scholar
  38. M. R. Soliman, Thermodynamics of various high temperature reactions of kaoinite , In Clays and Clay Mineras, Pro.12th Natl. Conf.19, Editor –in- Chief, Earl Ingerson, (Pergamon Press, Oxford ,N.Y., 1961) p. 247Google Scholar
  39. B. Sonuparlak, M. Sarikaya, I.A. Aksay, Spinel phase formation during the 980°C exothermic reaction in the kaolinite-to-mullite reaction series, J. Am. Ceram. Soc. 70(11), 837–842 (1987)Google Scholar
  40. K. Srikrishna, G. Thomas, R. Martinez, M.P. Corral, S. Aza, J.S. Moya, Kaolinite–mullite reaction series: a TEM study. J. Mater. Sci. 25, 607–612 (1990)CrossRefGoogle Scholar
  41. Y. Tsuzuki, K. Nagasawa, A transitional stage to 980°C exotherm of kaolin minerals. Clay Sci. 3(5), 87–102 (1969)Google Scholar
  42. F.M. Wahl, R.E. Grim. High temperature DTA and XRD studies of reactions. Twelfth National Conference on Clays and Clay Minerals, pp. 69–81 (1964)Google Scholar
  43. K.J. Weiss, Range, J. Russow, in The Al,Si-Spinel Phase from Kaoinite ( Isolation, Chemical Analysis, Orientation and Reactions to Its Low-Temperature Precursors). Proceedings of the International Clay Conference, vol. 2. Tokyo, 1969, (Israel Universities Press 1970) p. 34–37Google Scholar
  44. T. A. Wheat, Ph.D. Thesis, (Uiversity of Leeds, U.K., 1967) Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Refractory Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations