Advertisement

Mullite Phase

  • Akshoy Kumar Chakraborty
Chapter

Abstract

Sequential phase development that occurs on heating different kaolinites was done by other researchers based mainly on X-ray diffraction and TEM analysis data of heated kaolinites.

Keywords

Fume Silica Spinel Phase Mullite Formation Mullite Crystal Spinel Type Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. S.O. Agrell, J.V. Smith, Cell dimension, solid solution, polymorphism, and identification of mullite and sillimanite. J. Am. Ceram. Soc. 43, 69–76 (1960)Google Scholar
  2. A.I. Avgustinik, M.F. Nazarenko, and V.A. Sviridenko, The effect of valance and radious of the cation of mineralizers on the process of mullitizatio. Zh. Priklad. Khim. 27, 782 (1954)Google Scholar
  3. M. Bellotto, High temperature phase transformation in kaolinite: the influence of disorder and kinetics on the reaction path. Mater. Sci. Forum 166169, 3–20 (1994)Google Scholar
  4. G.W. Brindley, J. Lemaitre, Thermal oxidation and reduction of clay minerals, in Chemistry of Clay and Clay Minerals, ed. by A.C.D. Newman (Longman Scientific and Technical, Essex, 1987), pp. 319–70Google Scholar
  5. G.W. Brindley, M. Nakahira, The kaolinite-mullite reaction series: I, II, and III, J. Am. Ceram. Soc. 42(7), 311–324 (1959)Google Scholar
  6. I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, High-temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)Google Scholar
  7. P.P. Budnikov, K.M. Shmukler, Effect of Mineralizers on the Process of Mullitization of Clays, Kaolins, and Synthetic Mas. Zh. Priklad. Khim. 19, 1029 (1946)Google Scholar
  8. M. Bulens, A. Leonard, B. Delmon, Spectroscopic investigations of the kaolinite–mullite reaction sequence. J. Am. Ceram. Soc. 61(1–2), 81–84 (1978)Google Scholar
  9. T.G. Carruthers, B. Scott, Reactive hot pressing on kaolinite. Trans. Brit. Ceram. Soc. 67, 185 (1968)Google Scholar
  10. T.G. Carruthers, T.A. Wheat, Hot pressing of kaolin and of mixtures of alumina and silica. Proc. Br. Ceram. Soc. 3, 259 (1965)Google Scholar
  11. W.E. Cameron, Composition and cell dimensions of mullite, ceram. Bull. 56(11), 1003–1011 (1977)Google Scholar
  12. A.K. Chakraborty, Resolution of thermal peaks of kaolinite by TMA and DTA. J. Am. Ceram. Soc 75(7), 2013–2047 (1992)CrossRefGoogle Scholar
  13. A.K. Chakraborty, Application of TMA and DTA studies on the crystallization behavior of SiO2 in thermal transformation of kaolinite. J. Thermal Anal. 39, 280–299 (1993)Google Scholar
  14. A.K. Chakraborty, S. Das, Measurement of structural parameters of kaolinite formed in an Indian kaolinite. Clay Sci. 12(4), 235–242 (2004)Google Scholar
  15. A.K. Chakraborty and D.K. Ghosh, Interpretation on the changes of co -ordination number of Al in the thermal changes of kaolinite, Clay Science, 8, 45–57 (1991a)Google Scholar
  16. A.K. Chakraborty, D.K. Ghosh, Kaolinite–mullite reaction series. The development and significance of a binary aluminosilicate phase. J. Am. Ceram. Soc. 74(6), 1401–1406 (1991b)CrossRefGoogle Scholar
  17. A.K. Chakraborty, D.K. Ghosh, Comment on the Interpretation of the kaolinite–mullite reaction sequence from infra-red absorption spectra. J. Am. Ceram. Soc. 61(1–2), 90–91 (1978a)Google Scholar
  18. A.K. Chakraborty and D.K. Ghosh, Re - examination of the kaolinite to mullite reaction series, J. Am. Ceram. Soc. 61(3–4), 170–173 (1978b)Google Scholar
  19. A.K. Chakraborty and D.K. Ghosh, Study of phase transformation of Al2O3 – SiO2 gel and kaolinitic clay, Trans. Ind. Ceram. Soc. 37(5), 192–200 (1978c)Google Scholar
  20. A.K. Chakraborty, New DTA on the thermal analysis of diphasic mullite gel. J. Therm. Analysis, 46, 1413–1419 (1996a)Google Scholar
  21. A.K. Chakraborty, DTA Characterisation of three types of Al2O3-SiO2 gels made from TEOS-Al(OBu)3 mixture with variation of water, Ceram. Int. 22, 463–469 (1996b)Google Scholar
  22. A.K. Chakraborty, D.K. Ghosh, P. Kundu, Comment on “Structural characterization of the spinel phase in the kaolin–mullite research series through lattice energy”. J. Am. Ceram. Soc. 68(8), C-200–C-201 (1986)Google Scholar
  23. A.K. Chakraborty, S. Das, S. Gupta, Evidence for two stage mullite formation during thermal decomposition of kaolinite. Brit. Ceram. Trans. 102(4), 33–37 (2003)Google Scholar
  24. S.P. Chaudhuri, X-ray study of induced mullitization of clay. Trans. Indian Ceram. Soc 28, 24 (1969)Google Scholar
  25. J.E. Comeforo, R.B. Fischer, W.F. Bradley, Mullitization of kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)Google Scholar
  26. J.J. Comer, Electron microscope studies of mullite development in fired kaolinite. J. Am. Ceram. Soc. 43(7):378–384 (1960)Google Scholar
  27. J.J. Comer, New electron-optical data on the kaolinite–mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)Google Scholar
  28. W.I. DeKeyser, Reactions at the point of contact between SiO2 and Al2O3, in Science of Ceramics, vol. 2, ed. by G.H. Stewart (Academic Press, London, 1965), pp. 243–257Google Scholar
  29. A. Djemai, G. Calas, J.P. Muller, R.A. Condrate, Role of Structural Fe(III) and iron oxide nanophases in mullite coloration. J. Am. Ceram. Soc. 84(7), 1627–1631 (2001)Google Scholar
  30. J.F. Duncan, K.J.D. Mackenzie, P.K. Foster, Kinetics and mechanism of high-temperature reactions of kaolinite minerals. J. Am. Ceram. Soc. 52(2), 74–77 (1969)Google Scholar
  31. S. Durovic, A Statistical model for the crystal structure of mullite, Kristallografiya 7, 339 (1962)Google Scholar
  32. F. Freund, Infrared spectra of kaolinite, metakaolinite, and Al-Si spinel. Ber. Deut. Keram. Ges. 44(181), 392–397 (1967a)Google Scholar
  33. F. Freund, Kaolinite-metakaolinite, a model of a solid with extremely high lattice defect concentrations. Ber. Dtsch. Keram. Ges. 44(I), 5–13 (1967b)Google Scholar
  34. J. Grofcsik, F. Tamas, Mullite, Its Structure, Formation and Significance (Akademiai Kiado, Publishing House of the Hungarian Academy of Sciences, Budapest, 1961), p. 109Google Scholar
  35. A.F. Gualtieri, M. Bellotto, G. Artioli, J.M. Clark, Kinetic study of the kaolinite-mullite reaction sequence. II. Mullite Formation. Phys. Chem. Miner 22, 215–222 (1995)CrossRefGoogle Scholar
  36. D.W. Hoffman, R. Roy, S. Komarneni, Diphasic xerogels, a new class of materials: phases in the system Al2O3- SiO2. J. Am. Ceram. Soc 67(7), 468–471 (1984)CrossRefGoogle Scholar
  37. S.M. Johnson, J.A. Pask, Role of impurities on formation of mullite from kaolinite and AI, O,-SiO2 mixtures. Am. Ceram. Soc. Bull. 61, 838–842 (1982)Google Scholar
  38. W.D. Kingery, Itroduction to Ceramics, (John Wiley & Sons, Inc., New York, 1960) p.324Google Scholar
  39. A.J. Leonard, Structural analysis of the transition phases in the kaolinite–mullite thermal sequence. J. Am. Ceram. Soc. 60(1–2), 37–43 (1977)Google Scholar
  40. A.J. Leonard, M.J. Genet, J. Lemaitre, M. Bulens, B. Delmon, Reply to the Comment on “Structural analysis of the transition phases in kaolinite–mullite thermal sequence”. J. Am. Ceram. Soc. 62(9–10), 529–531 (1979)Google Scholar
  41. S.T. Lundin, Studies on triaxial white ware bodies. Almqnist Wiksall, Stockholm, Sweden. 32, 103 (1959) Google Scholar
  42. K.J.D. MacKenzie, The effect of impurities on the formation of mullite from kaolinite-type minerals: I, The effect of exchangeable cations. Trans. Br. Ceram. Soc. 68(3), 97–101 (1969)Google Scholar
  43. S. Majumdar, B. Mukherjee, Reply to the Comment on “ Structural characterization of the spinel phase in the kaolin-mullite research series through lattice energy”. J. Am. Ceram. Soc. 69(8), C-201 (1986)Google Scholar
  44. I.J. McCom, M.M. Rebbeck, M. Rachmawati ad S.M. Faeta-Boada, Development of microstructure of fired Ecuadorean clay. Brit. Ceram. Tran. 98(50), 213–218 (1999)Google Scholar
  45. T.D McGee, Contn. of fireclays at high temperatures: I, Methods of analysis; II, Mineralogical composition, III, Deformation characteristics. J. Am. Ceram. Soc. 49(2), 83–94 (1966)Google Scholar
  46. R.H. Meinhold, K.L.D. Mackenzie, I.W.M. Brown, Thermal reactions of kaolinite studied by solid state 27Al and 29Si NMR. J. Mater. Sci. Lett 4, 163–166 (1985)CrossRefGoogle Scholar
  47. H. Moore, M.R. Prasad, The effects of various mineralizing agents in promoting recrystallization in mixtures of clay–alumina during es. J. Soc. Glass Tech. 39, 314T (1955)Google Scholar
  48. K. Murthy, F.A. Hummel, X-ray study of the solid solution of TiO2, Fe2O3, and Cr2O3 in mullite (3Al2O3.2SiO2). J. Am. Ceram. Soc. 43, 267 (1960)Google Scholar
  49. M. Niwa, N. Katada, Y. Murakami, Thin silica layer on alumina: evidence of the acidity in the monolayer. J. Phys. Chem. 94(16), 6441–45 (1990)Google Scholar
  50. C.L. Norton, Jr., Can.Pat.366784, 15 June 1937Google Scholar
  51. K. Okada, N. Ostuka, J. Ossaka, Characterization of spinel phase formed in the kaolin–mullite thermal sequence. J. Am. Ceram. Soc. 69(10), C-251–C-253 (1986)Google Scholar
  52. K. Okada, N. Otsuka, S. Somiya, Review of mullite synthesis routes in Japan. Ceram. Bul. 70(10), 1633–1640 (1991)Google Scholar
  53. F. Onike, G.D. Martin, A.C. Dunham, Time–temperature–transformation curves for kaolinite. Mater. Sci. Forum 7, 73–82 (1986)CrossRefGoogle Scholar
  54. V.R. Palmeri, Mullite formation by decomposition of kaolinite. J. Soc. Glass Tech 36, 25–28N (1952)Google Scholar
  55. C.W. Parmelee, A.R. Rodriguez, Catalytic mullitization of kaolinite by metallic oxide. J. Am. Ceram. Soc. 25, I (1942)Google Scholar
  56. H.J. Percival, Reply to the Comment on the “ Interpretation of the kaolinite-mullite reaction sequence from infra-red absorption spectra”. J. Am. Ceram. Soc. 61(1–2), 91 (1978)Google Scholar
  57. H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the kaolinite–mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 57 (2), 57–61 (1974)Google Scholar
  58. A.J. Perrotta and J. E. Young, Silica-free phases with mullite-type structure. J. Am. Ceram. Soc. 57(9), 405–407 (1974)Google Scholar
  59. P. Prabhakaram, Exchangeable cations and the high-temperature reactions of Kaolinite. Trans. Br. Ceram. Soc. 67, 105–24 (1968)Google Scholar
  60. Y. Saito, T. Takei, S. Hayashi, A. Yasumori, K. Okada, Effect of Amorphous and Crystallie SiO2 Additives on γ-Al2O3- to- α-Al2O3 Phase Transitions. J. Am. Ceram. Soc 81(8), 2197–2200 (1998)CrossRefGoogle Scholar
  61. J. Sanz, A. Madani, J.M. Serratosa, J.S. Moya, S. Aza, 27Aluminum and 29Silicon-magic-angle spinning nuclear magnetic resonance study of the kaolinite–mullite transformation. J. Am. Ceram. Soc. 71(10), C-418–C-421 (1988)Google Scholar
  62. H. Schneider, T. Rymon-Lipinski, Occurrence of pseudo tetragonal mullite. J. Am. Ceram. Soc. 71(3), C-162–C-164 (1988)Google Scholar
  63. K.H. Schuller, H. Kromer, Primary mullite as a pseudomorph after kaolinite, in Proceedings of the International Clay Conference, Mexico City, 1975, ed. by S.W. Bailey (Applied Publishing, Wilmette, 1976), pp. 533–538Google Scholar
  64. N. Soro, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, J.P. Laval, P. Blanchart, ‘Role of iron in mullite formation from kaolins by Mo¨ssbauer Spectroscopy and Rietveld Refinement. J. Am. Ceram. Soc. 86(1), 129–34 (2003)Google Scholar
  65. W.G. Staley, G.W. Brindley, Development of noncrystalline material in subsolidus reactions between SiO2 and Al2O3. J. Am. Ceram. Soc. 52, 616–19 (1969)Google Scholar
  66. S. Tomura, Y. Shibasaki, H. Mizuta and T. Maeda, Yogo. Kyokai Shi. 98, 917 (1986)Google Scholar
  67. F. Vaughan, Energy changes when kaolin minerals are heated. Clay Miner. Bull. 2(13), 265–274 (1955)Google Scholar
  68. V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, Mullitisation behavior of South Indian Clays. Ceram. Int. 28(5), 557–564 (2002)Google Scholar
  69. K. Von Gehlen, Oriented formation of mullite from Al – Si Spinel in the transformation series Kaolinite – Mullite . Ber. Deut. Keram. Ges. 39(6), 315–320 (1962)Google Scholar
  70. F.M. Wahl, R.E. Grim, High temperature DTA and XRD studies of reactions. Twelfth national conference on clays and clay minerals, pp. 69–81 (1964)Google Scholar
  71. K. Wang, M.D. Sacks, Mullite formation by endothermic reaction of α-alumina/silica microcomposite particles. J. Am. Ceram. Soc. 79(1), 12–16 (1996)Google Scholar
  72. A. Weiss, K.J. Range, J. Russow, The Al, Si-spinel phase from kaolinite (isolation, chemical analysis, orientation and reactions to its low-temperature precursors), in Proceedings of the International Clay Conference, Tokyo, 1969, vol. 2 (Israel Universities Press, Jerusalem, 1970), pp. 34–37Google Scholar
  73. G.K. Willamson, W.H. Hall, Acta. Met. 1, 22 (1953)Google Scholar
  74. B.E. Yoldas, Thermal stabilization of an active alumina and effect of dopants on the surface area. J. Mater. Sci 11, 465–470 (1976)CrossRefGoogle Scholar
  75. B.E. Yoldas, Effect of ultrastructure on crystallization of mullite. J. Mater. Sci 27(24), 6667–6672 (1992)CrossRefGoogle Scholar

Further Readings

  1. H.R. Baharvandi and A.M. Hadian, Investigation on addition of kaolinite on sintering behavior and mechanical properties of B4C. J. Mater.Eng. Perform. 18(4), 433–7 (2009)Google Scholar
  2. I.M. Bakr, and S.M. Naga, Role of B2O3 in formation mullite from kaolinite and α – Al2O3 mixtures. Brit . Ceram .Trans. 101(3), 133–136 (2002)Google Scholar
  3. V. Balek and M. Murat, The Emanation thermal analysis of kaolinite clay minerals. Thermochim. Acta, 282/283, 385–97 (1996)Google Scholar
  4. S.P. Banerjee and N.R. Sircar, Sintered Mullite for High Alumina Refractories. in Proc. of the Seminar o High Alumina Refractories, ed. by N.R. Sircar, Ind. (Refractory Makers Association, Kolkata, 1973) p. 60–64Google Scholar
  5. W.E. Blodgett,High-strength alumina porcelains. Am. Ceram. Soc . Bull. 40, 74–77 (1961)Google Scholar
  6. S.P. Chaudhuri, Influence of mineralizers on the constitution of hard porcelain: I Mineralogical composition. Ceram. Bull. 53(2), 169–71 (1974)Google Scholar
  7. S.P. Chaudhuri, Influence of mineralizers on the constitution of hard porcelain: II, Microstructures. Am. Ceram. Soc. Bull. 53(3), 251–54 (1974)Google Scholar
  8. S.P. Chaudhuri, Ceramic properties of hard porcelain in relation to mineralogical composition and microstructure: VI, Thermal shock resistance and thermal expansion. Trans. Indian Ceram. Soc. 34(1), 30–34 (1975)Google Scholar
  9. S.P. Chaudhuri and P. Sarkar, Constitution of porcelain before and after heat treatment: I, mineralogical composition. J. Eur. Ceram. Soc. 15, 1031–35 (1995)Google Scholar
  10. C.Y. Chen, G.S. Lan, and W.H. Tuan, Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20(14–15), 2519–2525 (2000)Google Scholar
  11. Y.F. Chen, M.C. Wang, and M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24(8), 2389–97 (2004)Google Scholar
  12. F.H. Clews, H.M. Richardson, and A.T. Green, Action of alkalis on refractory materials : XVI, Cone-deformation study of Certain alkali –silica- alumina –ferric oxide mixtures. Trans. Brit. Ceram.Soc. 44(2), 21–24 (1945)Google Scholar
  13. J. Dubois, M. Murat, A. Amroune, X. Carbonneau, and R. Gardon, High temperature transformation in kaolinite: The role of the crystallinity and of the firing atmosphere. Appl. Clay Sci. 10, 187–98 (1995)Google Scholar
  14. G.M. Gad and R. Barrett, High-temperature break down of mullite and other alumino – silicates in presence of alkalis. Trans. Brit. Ceram. Soc. 49(11), 470–91 (1950)Google Scholar
  15. W.H. Hawkes, The Production of Synthetic Mullite, Trans. Brit. Ceram. Soc. 61, 689–703 (1962)Google Scholar
  16. A.W.H. Hawkes, 37–42 Symposium on High –Alumina Refractories, 37. the Production of synthetic mullite. Trans. Brit. Ceram. Soc. 61(11), 689–703 (1962)Google Scholar
  17. M. Heraiz, A. Merrouche and N. Saheb, Effect of MgO addition & sintering parameters on mullite formation through reaction sintering kaolin and alumina. Adv. Appl. Ceram. 105(6), 285–284 (2006)Google Scholar
  18. K. Kamano, Preparation of mullite ceramics from kaolin and luminous minerals (Part 1) Effects of grain size & grinding of raw materials . J. Ceram. Soc. Jap. 102, 78–83 (1994)Google Scholar
  19. S. Kawi, A High Surface – area silica – clay composite material. Mat. Lett. 38, 351–55 (1999)Google Scholar
  20. H.S. Kim and P. Nicholson, Use of mixed-rare-earth oxide in the preparation of reaction-bonded mullite at 1300ºC. J. Am. Ceram. Soc. 85(7), 1730–4 (2002)Google Scholar
  21. W.E. Lee, and Y. Iqbal, Influence of mixing on mullite formation in porcelain. J. Eur. Ceram. Soc. 21(14), 2583–86 (2001)Google Scholar
  22. J. Lemaitre and B. Delmon, Effect of mineralizers on properties of kaolin bodies. Am. Ceram. Soc. Bull. 59(2), 235–38 (1980)Google Scholar
  23. W. Li, K. Lu, and J. Walz, Effects of added kaolinite on sintering of freeze-cast kaolinite–silica nanocomposite I. Microstructure and phase transformation.J. Am. Ceram. Soc. 95(3), 883–891 (2012)Google Scholar
  24. W. Li, K. Lu, and J. Walz, Formation, structure and properties of freeze-cast kaolinite-silica nanocomposites. J. Am. Ceram. Soc. 94(4), 1256–1264 (2010)Google Scholar
  25. K.C. Liu , Microstructure & microanalysis of mullite processed by reaction sintered of kaolin – alumina mixture. Ceram. Today – Tomorrow’s Ceram. Pt. 66A. ed. by P. Vincenzini, (Amst, Elsvr. 1991) p. 177 – 186Google Scholar
  26. K.C. Liu, G.Thomas, A. Cabalero, J.S. Moya, S. de Aza, Time – temperature – transformation curves for kaolinite – α - Al2O3 . J. Am. Ceram. Soc. 77, 1545–1552 (1994)Google Scholar
  27. Y. Iqbal and W.E. Lee, Fired porcelain microstructures revisited. J. Am.Ceram. Soc. 82(12) 3584–90 (1999)Google Scholar
  28. Y. Iqbal and W.E. Lee, Micro structural evolution in triaxial porcelain. J. Am Ceram. Soc. 83(12) 3121–27 (2000)Google Scholar
  29. T. Lundin, Electron microscopy of whiteware bodies. Trans. Int. Ceram.Congr. 4, 383–90 (1954)Google Scholar
  30. S.T. Lundin, Microstructure of porcelain. Natl. Bur. Stand. (U.S.), Misc Publ. 257, 93–106 (1964)Google Scholar
  31. L. Mattyasovszky-Zsolnay, Mechanical strength of porcelain. J. Am. Ceram. Soc. 40, 299–306 (1957)Google Scholar
  32. O. Matsuda, Effect of alumina and glass on formation of needle like mullite from kaolinite. J. Ceram. Soc. Jap. 100, 725–730 (1992)Google Scholar
  33. F. Nadachowski , The Assessment of the phase composition of fireclay refractories based on ternary phase diagrams. Refractories J. 4, 126–131 (1965)Google Scholar
  34. C.L. Norton, The Influence of time on maturing temperature of white ware bodies: II. J. Am. Ceram. Soc. 14, 192–206 (1969)Google Scholar
  35. K. Okada, N. Watanabe, K.V. Jha , Y. Kameshima, A. Yasumori, and K.J.D. MacKenzie, Effect of grinding and firing conditions on CaAl2Si2O8 phase by solid formation of kaolinite with CaCO3. Appl. Clay Sci. 23(5–6), 329–336 (2003)Google Scholar
  36. A.D. Papargyris and R.D. Cooke, Structure and mechanical properties of kaolin based ceramics. Br. Ceram. Trans. 95(3), 107–20 (1996)Google Scholar
  37. D.S. Perera and G. Allott, Mullite morphology in fired kaolinite / halloysite clays. J. Mater. Sci. Lett. 4, 1270–1272 (1985)Google Scholar
  38. N.V. Pitak and R.M. Fedoruk, Formation of kaolin refractories heated to different gaseous atmospheres. Refractories, 34, 454–457 (1993)Google Scholar
  39. N.V. Pitak, Mullite based on Novosdtsa Kaolin, Commercial alumina. Inorganic Mater. 10(4), 650–651 (1974)Google Scholar
  40. N.V. Pitak, R.S. Shulyak and Z.D. Zhukov, Molten kaolin & its properties. Ogneupory, 2, 32–39 (1977)Google Scholar
  41. N.V. Pitak, Morphological character of mullite : An important factor for evaluating quality of refractories. Industrial Ceramics, 3(8), 7–8 (1997)Google Scholar
  42. Pranab Das, Role of magnesium compounds on mullitization of clay –alumina mixtures. Trans. Ind.Ceram. Soc., 39, 113–118 (1980)Google Scholar
  43. P. Rado, The Strange case of hard porcelain. Trans. Br. Ceram. Soc. 71(4), 131–39 (1971)Google Scholar
  44. H. Rager, H. Schneider and H. Graetsch, Chromium incorporation in mullite. Am. Mineral. 75, 392–397 (1990)Google Scholar
  45. H.R. Rezaie, W.M. Rainforth, and W.E. Lee, Mullite evolution in ceramics derived from kaolinite, kaolinite with added α - Al2O3 and sol–gel precursors. B rit. Ceram. Trans. 96(5), 181–87 (1997)Google Scholar
  46. J.M.A. Rincon, G. Thomas and J.S. Moya, Micro structural study of sintered mullite. J. Am. Ceram. Soc. 69(2), C-29–C-31 (1986)Google Scholar
  47. A.R. Rossini, Mulitization of mixtures of kaolinite clay & aluminum hydroxides. Bol. Soc. Espan. Ceram. 9, 579– 91 (1970)Google Scholar
  48. A. Roy, Bauxite, Principle raw material for alumina & refractories. Ind. Ceram, 37, 215–21 (1994)Google Scholar
  49. C. Sane and R.L. Cook, Effect of grinding and firing treatment on the crystalline and glass content and the physical properties of whiteware bodies. J. Am. Ceram. Soc. 34, 145 (1951)Google Scholar
  50. J.E. Schroeder, Inexpensive high-strength electrical porcelain. Am.Ceram. Soc. Bull. 57, 526 (1978)Google Scholar
  51. K.H. Schuller, Reactions between mullite and glassy phase in porcelains. Trans. Br. Ceram. Soc. 63, 102–17 (1964)Google Scholar
  52. K.H. Schuller, Reactions between mullite and glassy phase in porcelains. Trans. Br. Ceram. Soc. 63(2), 102–17 (1964)Google Scholar
  53. G.P. Souza, E. Rambaldi, A. Tucci, L. Esposito, and W.E. Lee, Micro structural variations in porcelain stoneware tiles as a function of flux system. J. Am. Ceram. Soc. 87(10), 1959–66 (2004)Google Scholar
  54. E.C. Subbarao, Sintered mullite from china clay-alumina mixtures. Trans. Ind. Ceram. Soc. 37(6), 225–235 (1978)Google Scholar
  55. T.Tarvornpanich, G.P. Souza, and W.E. Lee, Micro structural evolution on firing soda–lime–silica glass fluxed white wares. J. Am. Ceram. Soc. 88(5), 1302–8 (2005)Google Scholar
  56. T. Tarvornpanich, Recycled colourless soda–lime–silica glass as an alternative flux in white wares, Ph.D. Thesis, (University of Sheffield, U.K., 2007)Google Scholar
  57. T. Tarvornpanich, G. P. Souza, and W. E. Lee, Micro structural evolution in clay-based ceramics I: Single components and binary mixtures of clay, flux, and quartz filler. J. Am. Ceram. Soc. 91, 2264–71 (2008)Google Scholar
  58. T. Tarvornpanich, G. P. Souza, and W. E. Lee, Micro structural evolution in clay-based ceramics II: Ternary and quaternary mixtures of clay, flux, and quartz filler. J. Am. Ceram. Soc. 91(7), 2272–80 (2008)Google Scholar
  59. S. Venkataramani, Clay–Alumina Mixtures, Trans. Ind. Ceram. Soc. 39, 113–118 (1980)Google Scholar
  60. A. G. Verduch, The Formation of mullite from Serecite & its mixture with alumina & kaolin. in Science of Ceramics. ed. by G. H. Stewart, vol- 1, (Acad. Press for Brit. Ceram. Soc., London, 1962) p. 285Google Scholar
  61. V. Viswabaskaran, F. D. Gnanam, and M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)Google Scholar
  62. V. Viswabaskaran, F. D. Gnanama, and M. Balasubramanian, Effect of MgO, Y2O3 and boehmite additives on the sintering behavior of mullite formed from kaolinite-reactive alumina. J. Mater. Process. Technol. 142(1), 275–281 (2003)Google Scholar
  63. J. White, Chemistry of high alumina bauxite –based refractories. With special reference to effects of TiO2- A Review. Trans. Brit . Ceram. Soc. 81(40), 109–111 (1982)Google Scholar
  64. K.-H. Yang, J.-H. Wu, C.-S. Hsi, and H.-Y. Luw, Morphologically textured mullite in sintered tape-cast kaolin. J. Am. Ceram. Soc. 94(3), 938–44 (2011)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Division Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations