Spinel Phase

  • Akshoy Kumar Chakraborty


The problem regarding the composition of spinel phase still remains.


Spinel Phase Synthetic Mixture Unit Cell Size Lattice Parameter Measurement Mullite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. I.A. Aksay, M. Sarikaya, B. Sonuparlak, Reply to the comment on spinel formation during 980 °C exothermic reaction in the kaolinite–mullite reaction series. J. Am. Ceram. Soc. 72(8), 1571 (1989)CrossRefGoogle Scholar
  2. W.F. Bradley, R.E. Grim, High-temperature thermal effects of clay and related materials. Am. Miner. 36(3/4), 182–201 (1951)Google Scholar
  3. W. L. Bragg, Atomic Structure of Minerals. Ithaca, (Cornell Univ. Press, N.Y.1937) p. 33, 144, 257Google Scholar
  4. G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: I, II, and III,. J. Am. Ceram. Soc. 42(7), 311–324 (1959)CrossRefGoogle Scholar
  5. I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, high-temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)CrossRefGoogle Scholar
  6. P. B. Budnikov and B. A. Khizh, Mullitizationof refractory grog, Ber. Detsch. Keram. Ges. 10(10), 445–448 (1929) Google Scholar
  7. A.K. Chakraborty and D.K. Ghosh, Supplementary alkali extraction studies of 980°C heated kaolinite by X – ray diffraction analysis, J. Mater. Sci., 27(8), 2075–2082 (1992)Google Scholar
  8. A.K. Chakraborty, D.K. Ghosh, Comment on the interpretation of the kaolinite–mullite reaction sequence from infra-red absorption spectra. J. Am. Ceram. Soc. 61(1–2), 90–91 (1978a)CrossRefGoogle Scholar
  9. A.K.Chakraborty and D.K.Ghosh, Re - examination of the kaolinite to mullite reaction series, J. Am. Ceram. Soc., 61(3–4), 170–173 (1978b)Google Scholar
  10. A.K. Chakraborty, D.K. Ghosh, Comment on structural analysis of the transition phases in kaolinite–mullite thermal sequence. J. Am. Ceram. Soc. 62(9–10), 529 (1979)CrossRefGoogle Scholar
  11. A.K. Chakraborty and D.K. Ghosh, Comment on spinel formation during 980°C exothermic reaction in the kaolinite – mullite reaction series, J. Am. Ceram. Soc., 72(8), 1569–1570 (1989)Google Scholar
  12. A.K. Chakraborty, D.K. Ghosh, Kaolinite–mullite reaction series. The development and significance of a binary aluminosilicate phase. J. Am. Ceram. Soc. 74(6), 1401–1406 (1991)CrossRefGoogle Scholar
  13. A.K. Chakraborty, D.K. Ghosh, P. Kundu, Comment on structural characterization of the spinel phase in the kaolin–mullite research series through lattice energy. J. Am. Ceram. Soc. 68(8), 200–201 (1986)Google Scholar
  14. L. Changling, Discovery of Al–Si spinel nature. Yogo Kyokai Shi. 13(2), 190–197 (1985)Google Scholar
  15. E.B. Colegrave, G.R. Rigby, The decomposition of kaolinite by heat. Trans. Brit. Ceram. Soc. 51(6), 355–367 (1952)Google Scholar
  16. J.E. Comeforo, R.B. Fischer, W.F. Bradley, Mullitization of kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)CrossRefGoogle Scholar
  17. J.J. Comer, New electron-optical data on the kaolinite–mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)CrossRefGoogle Scholar
  18. W. Eitel, H. Kedesdy, Elektronen-Mikroskopie und Eeugung silikatischer Metaphasen: IV, Der Metakaolin (Electron Microscopy and Diffraction of Silicate Metaphases: IV, Metakaoliu), Abhandl. preuss. Akad. Wiss. Math.-nattir w. KI., NO. 5, pp. 37–45 (1943)Google Scholar
  19. F. Freund, Kaolinite-metakaolinite, a model of a solid with extremely high lattice defect concentrations. Ber. Dtsch. Keram. Ges. 44(I) 5–13 (1967)Google Scholar
  20. H.D. Glass, High-temperature phases from kaolinite and halloysite. Am. Mineral. 39, 193–207 (1954)Google Scholar
  21. J.F. Hyslop, Decomposition of clay by heat. Trans. Brit. Ceranz. Soc. 43(3), 49–51 (1944)Google Scholar
  22. J.F. Hyslop, H.B. Rooksby, Effect of heat on crystalline break up of kaolin. Trans. Br. Ceram. Soc. 27(4), 93–96 (1928a)Google Scholar
  23. J.F. Hyslop, H.B. Rooksby, Further note on crystalline break up of kaolin. Trans. Br. Ceram. Soc. 27(4), 299–302 (1928b)Google Scholar
  24. I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand 14(S), 615–627 (1935)CrossRefGoogle Scholar
  25. C.M. Jantzen, Formation of zeolite during caustic dissolution of fibre glass: implications for studies of kaolinite to mullite transformation. J. Am. Ceram. Soc. 73(12), 3708–3711 (1990)CrossRefGoogle Scholar
  26. A.H. Jay, An X-ray study of alumino-silicate refractories. Trans. Brit. Ceram. Soc. 35, 455–463 (1939)Google Scholar
  27. W.D. Johns, High-temperature phase changes in kaolinites. Miner. Mag. 30(222), 186–198 (1953)Google Scholar
  28. S.M. Johnson, J.A. Pask, Role of impurities on formation of mullite from kaolinite and AI, O,-SiO2 mixtures. Am. Ceram. Soc. Bull. 61, 838–842 (1982)Google Scholar
  29. A.J. Leonard, Structural analysis of the transition phases in the kaolinite–mullite thermal sequence. J. Am. Ceram. Soc. 60(1–2), 37–43 (1977)CrossRefGoogle Scholar
  30. A.J. Leonard, M.J. Genet, J. Lemaitre, M. Bulens, Reply to the Comments On structural analysis of transition phases in kaolinite - mullite thermal sequence, J. Am. Ceram. Soc., 9–10, 529–531, (1979)Google Scholar
  31. A.J. Leonard, Personal commuication (1980)Google Scholar
  32. J. Lemaitre, M. Bullens, B. Delmon, in Influence of Mineralizers on the 950 °C Exothermic Reaction of Metakaolinite, ed. by S.W. Bailey. Proceedings of the International Clay Conference (Mexico City, Mexico, July 1975). Applied Publishing Ltd., Wilmette, IL, pp. 539–544 (1975)Google Scholar
  33. F.K. Lotgering, J. Inorganic Nucl. Chem (in J.D. Bernal; Topotaxi. Schw. Archiv. Jharb., 26, 69) 9, 113 (1959)Google Scholar
  34. M. Lomeli, L. Maria Flores-Velez, I. Esparza, R. Torres, O. Domínguez, Catalytic effect of CaF2 nanoparticles on sintering behavior of kaolin-based materials. J. Am. Ceram. Soc. 92(7), 1526–1533 (2009)CrossRefGoogle Scholar
  35. S.T. Lundin, Studies on triaxial white ware bodies. Almqnist Wiksall, Stockholm, Sweden. 32,103 (1959)Google Scholar
  36. K.J.D. MacKenzie , J.S. Hartman and K. Okada, MAS NMR evidence for the presence of silicon in the alumina spinel from thermally transformed kaolinite, J. Am. Ceram. Soc. 79(11), 2980–2982 (1987)Google Scholar
  37. T.N. Mc Vay, C.I. Thompson, X-ray investigation of effect of heat on China clays. J. Am. Ceram. Soc. 11(11), 839–841 (1928)Google Scholar
  38. J.S. Moya, C.J. Serna, J.E. Iglesias, On the formation of mullite from Kandaties. J. Mater. Sci. 20, 32–36 (1985)CrossRefGoogle Scholar
  39. B. Mullet and H. Schneider, Reaction sintering of slip cast Quartz plus α- Al2O3, in Formation of Mullite from Kaolinite and Related Minerals. ed. by H. Schneider, K. Okada and J. Pask, Mullite and Mullite Ceramics, (John Wiley & Sons Ltd, Chichester, 1994) p. 154Google Scholar
  40. K. Okada, N. Ostuka, J. Ossaka, Characterization of spinel phase formed in the kaolin–mullite thermal sequence. J. Am. Ceram. Soc. 69(10), C-251–C-253 (1986)CrossRefGoogle Scholar
  41. R. Pampuch, Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Pol. Akad. Nauk. Oddzial Krakowie, Kom, Nauk, Mineral, Pr. Mineral, 6, 53–70 (1966)Google Scholar
  42. H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the kaolinite–mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 57(2), 57–61 (1974)CrossRefGoogle Scholar
  43. O. E. Radczewski, Electron optical investigations of the decomposition of clay minerals. Tonind. Ztg. 77, 291 (1953)Google Scholar
  44. H.M. Richardson, F.G. Wilde, X-ray study of the crystalline phases that occur in fired clays. Trans. Brit. Ceram. Soc. 51(7), 367–400 (1952)Google Scholar
  45. J.M.A. Rincon, G. Thomas, J.S. Moya, Micro structural study of sintered mullet. J. Am. Ceram. Soc. 69(2), 29–31 (1986)CrossRefGoogle Scholar
  46. R. Roy, D.M. Roy, E.E. Francis, New data on thermal decomposition of kaolinite and halloysite. J. Am. Ceram. Soc. 38(6), 198–205 (1955)CrossRefGoogle Scholar
  47. N.C. Schieltz, M.R. Soleman, in Thermodynamics of Various High Temperature Transformation of Kaolinite, ed. by E. Ingerson. Proceedings of 13th National Conference on Clays, Madison, Wisconsin, Pergamon press, Monograph, No. 25, pp. 419–425 (1966)Google Scholar
  48. P.J. Sánchez-Soto, M. del Carmen, J. de Haro, L.A. Pérez-Maqueda, I. Varona, J.L. Pérez-Rodríguez, Effects of dry grinding on the structural changes of kaolinite powders. J. Am. Ceram. Soc. 83(7), 1649–1657 (2000)CrossRefGoogle Scholar
  49. B. Saruhan, W. Albers and H. Schneider, Reaction sintering of Quartz, Cristobalite and SiO2 glass with α-Al2O3 to mullite. in Formation of Mullite from Kaolinite and Related Minerals. ed. by H. Schneider, K. Okada and J. Pask, Mullite and Mullite Ceramics, (John Wiley & Sons Ltd, Chichester, 1994) p. 154Google Scholar
  50. M. Schmucker, W. Albers and H. Schneider, Mullite formation by reaction sintering of Quartz and α – Al2O3 – A TEM Study. J. Euro. Ceram. Soc. 14, 511–15 (1994)Google Scholar
  51. M. Slaughter, W.D. Keller, High temperature transformation from impure kaolin clays. Am. Ceram. Soc. Bull. 38, 703–707 (1959)Google Scholar
  52. B. Sonuparlak, M. Sarikaya, I.A. Aksay, Spinel phase formation during the 980 °C exothermic reaction in the kaolinite-to-mullite reaction series. J. Am. Ceram. Soc. 70(11), 837–842 (1987)CrossRefGoogle Scholar
  53. K. Srikrishna, G. Thomas, R. Martinez, M.P. Corral, S. Aza, J.S. Moya, Kaolinite–mullite reaction series: a TEM study. J. Mater. Sci. 25, 607–612 (1990)CrossRefGoogle Scholar
  54. G. Tamman, W. Pape, Ilber Den Wasserverlust Des Kaolines & Seinverhat-en In Festen Zuden Carbonatem Und Oxyden Der Erdalkalien. Z. Anorg. Allg. Chem. 127, 43–68 (1923)Google Scholar
  55. L. Tscheischwili, W. Biissern, W. Wevl, Uber den Metakaolin (Metakaolin), Ber. deut. keranz. Ges. 20(61), 249–276 (1939)Google Scholar
  56. Y. Tsuzuki, K. Nagasawa, A transitional stage to 980ºC exotherm of kaolin minerals. Clay Sci. 3(5), 87–102 (1969)Google Scholar
  57. S. Udagawa, T. Nakada, M. Nakahira, in Molecular Structure of Allophane as Revealed by Its Thermal Transformation, in Proceedings of International Clay Conference, vol. 1, Editor-in-chief Lisa Heller bisa Heller by Israil University Press, Gerusalem, pp. 151 (1969)Google Scholar
  58. F. Vaughan, Energy changes when kaolin minerals are heated. Clay Mineral Bull. 2(13) 265–274 (1955)Google Scholar
  59. F.M. Wahl, R. E. Grim, High temperature DTA and XRD studies of reactions, in 12th National Conference on Clays and Clay Minerals, p. 69–81 (1964)Google Scholar
  60. A.F. Wells, Structural Inorganic Chemistry. 2nd edn. (Oxford, Claredon Press, 1950) p. 571Google Scholar
  61. H. Yamada and S. Kimura, Studies on coprecipitates of alumina and silica gels and their transformation at higher temperature. J. Ceram. Assn. Japan. 70(3), 65–71 (1962)Google Scholar
  62. A. Zwetsch, Rontgenunter suchungen in der keramik. Ber. Dtsch. Ges. 15(6), (1934)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Refractory Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations