Meta Kaolinite Phase



The nature of metakaolin and its structural characteristics are being dealt in this chapter. The first question is: what is occurring on dehydroxylation and what happens to the Si–O–Al linkages present between two layers constituting kaolinite? There are two probabilities. It may happen that kaolinite partially or fully decomposes with disruptions of Si–O–Al bonding during dehydroxylation and liberate-free silica (A) or it may remain as an alumino-silicate (A) compound which decomposes at the vicinity at 980 °C exotherm. Various researchers conducted different chemical dissolution experiments in order to reveal indirectly the chemical linkages existing if any between tetrahedral silica sheet and dehydroxylated alumina layer. Mainly chemical techniques were employed. Since simple X-ray study exhibited amorphous pattern. Thus, it was speculated that metakaolinite be an amorphous mixtures of silica and alumina or amorphous compound. Acid dissolution study showed that alumina layer in metakaolinite either present in highly distorted state or it becomes amorphous. On the other hand, sodium carbonate extraction study showed that silica and alumina packets are not present in free state. Accordingly, two views were prevailed in the olden days.


Alumina Layer Exothermic Peak Temperature Hydroxyl Water Aluminum Oxygen 27Al MASNMR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. F. Bergaya, P. Dion, J.–F. Alcover, C. Clinard, D. Tchoubar, TEM study of kaolinite thermal decomposition by controlled-rate analysis . J. Mater. Sci. 31, 5069–5075 (1996)Google Scholar
  2. G.W. Brindley, K. Hunter, Thermal reactions of nacrite and the formation of metakaolin, γ-alumina, and mullite. Mineral. Mag. 30(288), 574–584 (1955)Google Scholar
  3. G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: I, II, and III,. J. Am. Ceram. Soc. 42(7), 311–324 (1959)Google Scholar
  4. G.W. Brindley, H.A. McKinstry, The Kaolinite-Mullite reaction series: IV, the coordination of aluminum. J. Am. Ceram. Soc. 44(10), 506–507 (1961)Google Scholar
  5. G.W. Brindley and K. Robinson, Structure of Kaolinite. Miner. Mag. 27, 242–253 (1946)Google Scholar
  6. I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, high-temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)Google Scholar
  7. P.P. Budnikov, Ber. Dtsch. Keram.Ges. 16, 349 (1935) Google Scholar
  8. M. Bulens, A. Leonard, B. Delmon, spectroscopic investigations of the Kaolinite–Mullite reaction sequence. J. Am. Ceram. Soc. 61(1–2), 81–84 (1978)Google Scholar
  9. A. K. Chakraborty, D. K. Ghosh, Re-examination of the kaolinite to mullite reaction series. J. Am. Ceram. Soc. 61(3–4), 170–173 (1978b)Google Scholar
  10. F.W. Clarke, Constitution of the silicates. L7. S. Geol.Surury Bull. 125(7–109), 32 (1895)Google Scholar
  11. J.E. Comeforo, R.B. Fischer, W.F. Bradley, Mullitization of Kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)Google Scholar
  12. J.J. Comer, New electron-optical data on the Kaolinite–Mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)Google Scholar
  13. J.J. Comer, J.H. Koenig, S.C. Lyons, What are ceramic materials really like? “ceram. Ind .67(4), 125,148,150 No. 6, 96 (1956)Google Scholar
  14. E.B. Colegrave and G. R. Rigby, The Decomposition of kaolinite by heat. Trans. Brit. Ceram. Soc. 51(6), 355–367(1952)Google Scholar
  15. W.M. Carty and U. Senapati, Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J. Am. Ceram. Soc. 81(1), 3–20 (1998)Google Scholar
  16. W.L. De Keyser, R. Wollast and L. De Laet, Contribution to the study of OH groups in kaolin minerals, Intl. Clay Conf., Pergamon Press. 75–86 (1963d)Google Scholar
  17. W.L. De Keyser, Note concerning the exotherm reaction of Kaolinite and formation of spinel phase preceding that of Mullite. In International clay conference Pergamon press, pp. 91–96 (1963e)Google Scholar
  18. W. Eitel, H. Kedesdy, Elektronen-Mikroskopie und Eeugung silikatischer Metaphasen: IV, Der Metakaolin (Electron Microscopy and Diffraction of Silicate Metaphases: IV, Metakaoliu). Abhandl. preuss. Akad. Wiss. Math.-nattir w. KI. 5, 37–45 (1943)Google Scholar
  19. W. Eitel, H.O. Miiller, O.E. Radczewski, Ubermikroskopische Untersuchungen an Tonminerdlien (Ultramicroscopic Exaniination of Clay Minerals). Ber. deut. keram. Ges. 20(4), 165–180 (1939)Google Scholar
  20. F. Freund, Explanation of exothermal reaction of Kaolinite as a ‘Reaction of the Active State’. Ber. Deut. Keram. Ges. 37(51), 209–218 (1960)Google Scholar
  21. F. Freund, Kaolinite-metakaolinite, a model of a solid with Extremely high lattice defect concentrationsl. Ber. Dtsch. Keram. Ges. 44(I), 5–13 (1967)Google Scholar
  22. F. Freund, Infrared spectra of kaolinite, metakaolinite, and Al–Si spinel. Ber. Deut. Keram. Ges. 44(181), 392–397 (1967)Google Scholar
  23. M.C. Gastuche, F.Toussaint, J.J. Fripiat, R. Touilleaux, M. Van Meersche, Study of intermediate stages in the kaolin-metakaolin transformation. Clay Minerals Bull. 5(29), 227 (1962)Google Scholar
  24. M.C. Gastuche, J.J. Fripiat, Acid dissolution techniques applied to the determination of the structure of clay and controlled by physical methods. Science of Ceramics, ed. by G.H. Stewart (Academic Press, London,1963) p. 96Google Scholar
  25. K. Heide and M. Fo¨ ldvari, High temperature mass spectrometric gas release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochim. Acta 446, 106–12 (2006)Google Scholar
  26. J.F. Hyslop, Decomposition of clay by heat. Trans. Brit. Ceranz. Soc. 43(3), 49–51 (1944)Google Scholar
  27. J.F. Hyslop, H.B. Rooksby, Further note on crystalline break up of kaolin. Trans. Br. Ceram. Soc. 27(4), 299–302 (1928)Google Scholar
  28. I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand. 14(S), 615–627 (1935)Google Scholar
  29. S. Iwai, M. Tagai, T. Shimamnne, Procedure for Dickite structure modification by dehydration. Acta Cqstallogr. Sect. B: Struct. Crystallogr.Crysr. Chem. 27, 248–250 (1971)Google Scholar
  30. G. Keppeer, Sprechsaal 58, 614 (1925)Google Scholar
  31. O. Krause, H. Wohner, Uber Die Vorange Beim Bremmen Technischer Tone, Ber.Dtsch. Keram. Ges. 13, 485 (1932)Google Scholar
  32. G. Kubicki, R.E. Grim, A new method for thermal dehydration studies of clay Minerals. Min. Mag. 32, 53 (1959)Google Scholar
  33. J. Lemaitre, M. Bullens, B. Delmon, Influence of mineralizers on the 950ºC exothermic reaction of metakaolinite, in Proceedings of the International Clay Conference, ed. by S. W. Bailey (Applied Publishing Ltd., Wilmette, IL, Mexico City, Mexico, 1975), p. 539–44Google Scholar
  34. A.J. Leonard, Structural analysis of the transition phases in the Kaolinite–Mullite thermal sequence. J. Am. Ceram. Soc. 60(1–2), 37–43 (1977)Google Scholar
  35. K.J.D. MacKenzie, I.W.M. Brown, R.H. Meinhold, M.E. Bowden, Outstanding problems in the Kaolinite–Mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I, Metakaolinite. J. Am. Ceram. Soc. 68(6), 293–97 (1985)Google Scholar
  36. J.D.C. McConnell, S.G. Fleet, Electron optical study of the thermal decomposition of kaolinite. Clay Miner. 8, 279–290 (1970)CrossRefGoogle Scholar
  37. V. Mellor, I.I. Holdcroft, Chemical constitution of the kaolinite molecule. Trans. Ceram. Sor. (Engl.) 10, 94–120 (1911)Google Scholar
  38. B. Neumann, S. Kober, Sprechsaal 59, 607 (1926)Google Scholar
  39. R.H. Meinhold, K.L.D. Mackenzie, I.W.M. Brown, Thermal reactions of kaolinite studied by solid state 27Al and 29Si NMR. J. Mater. Sci. Lett. 4, 163–166 (1985)Google Scholar
  40. R.E. Newnham, A refinement of Dickite structure ad remarks o polymorphism in kaolin minerals. Miner. Mag. 32, 683 (1961)Google Scholar
  41. R. Pampuch, Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Pol. Akad. Nauk. Oddzial Krakowie, Kom, Nauk, Mineral, Pr. Mineral, 6, 53–70 (1966)Google Scholar
  42. R. Pampuch, Mechanism of topotaxial thermal decomposition reactions of layer lattice silicates and hydroxides. in proceeding 9th conference silicate Ind., Budapest, 1958, pp. 144–151Google Scholar
  43. H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the Kaolinite–Mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 57(2), 57–61 (1974)Google Scholar
  44. S.A.T. Redfern, The Kinetics of dehydroxylation of kaolinite. Clay Miner. 22, 447–456 (1987)Google Scholar
  45. R. Rieke and L. Mauve, Zur Frage des Nachweises der mineralischen Bestandteile der Kaoline (Indications as to Mineral Constituents of Kaolin). Ber. deut. keram. Ges. 23(141), 11–51(1942)Google Scholar
  46. F. Rinne, Rontgrnographischc Diagnostik heini Rrennen von Kalkstcin, Dolomit,Kaolin. und Glimmer (X-Ray Study of Calcined Calcite, Dolomite, Kaolinite, and Mica). Z. Krist. 61(1/2), 113 (1924)Google Scholar
  47. J. Rocha, J. Klinowski, 29Si and 27Al Magic-Angle-Spinning NMR studies of the thermal transformation of kaolinite. Phys. Chem. Minerals 17(2), 179–86 (1990)Google Scholar
  48. R. Roy, D.M. Roy, E.E. Francis, New data on thermal decomposition of Kaolinite and Halloysite. J. Am. Ceram. Soc. 38(6), 198–205 (1955)Google Scholar
  49. H. Salmong, Physikalischen und cheinischen Grundlagcn der Keramik (Physical and Chemical Principles of Ceramics), p. 73. Julius Springer, Berlin, 1933. 229 pp.; Ceram. Abstr. 13(4), 103 (1934)Google Scholar
  50. J. Sanz, A. Madani, J.M. Serratosa, J.S. Moya, S. Aza, 27Aluminum and 29Silicon-magic-angle spinning nuclear magnetic resonance study of the Kaolinite–Mullite transformation. J. Am. Ceram. Soc. 71(10), C-418–C-421 (1988)Google Scholar
  51. B. Sonuparlak, M. Sarikaya, I.A. Aksay, Spinel phase formation during the 980 °C exothermic reaction in the kaolinite-to-mullite reaction Series, J. Am. Ceram. Soc. 70(11), 837–842 (1987)Google Scholar
  52. V.S. Stubican, R. Roy, Isomorphous substitution and infrared spectra of the layer lattice silicates. Amer. Mineral. 46(1–2), 32–51 (1961)Google Scholar
  53. V. Stubican, Residual hydroxyl groups in the metakaolin range. Min. Mag. 32, 38–52 (1959)Google Scholar
  54. G. Tamman, W. Pape, Ilber Den Wasserverlust Des Kaolines and Seinverhat-en In Festen Zuden Carbonatem Und Oxyden Der Erdalkalien, in Z. Anorg. Allg. Chem. 127, 43–68 (1923)Google Scholar
  55. L. Trusilewicz, F. Ferna´ ndez-Martı´nez, V. Rahhal, R. Talero, TEM and SAED characterization of metakaolin pozzolanic activity. J. Am. Ceram. Soc. 95(9), 2989–2996 (2012)Google Scholar
  56. L. Tscheischwili, W. Biissern, W. Wevl, Uber den metakaolin (Metakaolin). Ber. deut. keranz. Ges. 20(61), 249–276 (1939)Google Scholar
  57. Y. Tsuzuki, K. Nagasawa, A. transitional stage to 980 ºC exotherm of Kaolin Minerals. Clay Sci. 3(5), 87–102 (1969)Google Scholar
  58. S. Udagawa, T. Nakada, M. Nakahira, Molecular structure of allophane as revealed by its thermal transformation. pp. 151 in Proc. Int.Clay Conf., Vol.1, Editor-in-chief Lisa Heller bisa Heller by Israil University Press, Gerusalem (1969). Google Scholar
  59. K.A. Vesterbcrg, Kaolin and its thermal changes. Arkh Krmi, Jlinrml. GcoE. 9(1141), 26 (1925)Google Scholar
  60. R. Wardle, G.W. Brindley, Dependence of wavelength of, AIKα radiation from Alumino–Silicates’on the A1-0 distance. Amer. 2 Mineral. 56(111–121), 2123–2128 (1971)Google Scholar
  61. T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda, H. Saito, 29Silicon 27Al-MAS/NMR study of the thermal transformations of kaolinite. Clay Miner 22, 37–48 (1987)Google Scholar

Further Readings

  1. H. Abe, Preparation of porous mulllite ceramics by leaching method. J. Ceram. Soc. Jap. 97, 604–611 (1989)Google Scholar
  2. H. Abe, Preparation of porous mulllite ceramics by leaching method, ( Part 2 , Effect of transition metaloxide on crystal growth of mullite. J. Ceram. Soc. Jap. 98, (1990)Google Scholar
  3. H. Abe, Preparation of porous mulllite ceramics by leaching method. J. Ceram. Soc. Jap. 44, 339–347 (1990)Google Scholar
  4. H. Katsuki, S. Furuta, H. Ichinose, H. Nakao, Preparation & some properties of porous ceramic sheet composed of needle-like mullite. J. Ceram. Soc. Jap. 96, 1081–1086 (1988)Google Scholar
  5. H. Katsuki, High temperature properties of neede like mullite obtained from New Zealand kaolin. J. Ceram. Soc. Jap. 97, 1521–1524 (1989)Google Scholar
  6. H. Katsuki, D. Matsuda, Preparation, some properties & application of needle-like mullite obtained from kaolin minerals, Fortschritts Berich-eta DKG 7, 122–129 (1992)Google Scholar
  7. LU Yinping, L.I. Kaiqi, LIU Qinfu, Study of preparation of mullite from desilicated kaolin. J. Chinese Ceramic Soc. 32(8) 1033–1035 (2004)Google Scholar
  8. S.M. Naga, I.M. Bakr, Effect of etching treatment on mullite – based bodies. Interceram. 51(6), 404–407 (2002)Google Scholar
  9. K. Okada , H. Kawashima, Y. Saito, S. Hayashi, A. Yasumori, New preparation method of mesoporous γ – alumina by selective leaching of calcined kaolin Minerals, J. Mater. Chem. 5, 1241–1244 (1995)Google Scholar
  10. R.M. Torres Sanchez, S.L. Perez De Vargas, E. Soto, E.I. Basadela, Influence of kaolinite crystalline structure in the production of γ-Al2O3 by alkaline lixiviation. Materials etters 57, 1167–1170 (2003)Google Scholar
  11. S. Yariv , E. Mendelovici and R.Villalba, The Study of the interaction between cesium chloride and kaolinite by thermal methodsGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Refractory Central Glass & Ceramic Research InstituteJadavpurIndia

Personalised recommendations