Skip to main content

Meta Kaolinite Phase

  • Chapter
  • First Online:
Phase Transformation of Kaolinite Clay

Abstract

The nature of metakaolin and its structural characteristics are being dealt in this chapter. The first question is: what is occurring on dehydroxylation and what happens to the Si–O–Al linkages present between two layers constituting kaolinite? There are two probabilities. It may happen that kaolinite partially or fully decomposes with disruptions of Si–O–Al bonding during dehydroxylation and liberate-free silica (A) or it may remain as an alumino-silicate (A) compound which decomposes at the vicinity at 980 °C exotherm. Various researchers conducted different chemical dissolution experiments in order to reveal indirectly the chemical linkages existing if any between tetrahedral silica sheet and dehydroxylated alumina layer. Mainly chemical techniques were employed. Since simple X-ray study exhibited amorphous pattern. Thus, it was speculated that metakaolinite be an amorphous mixtures of silica and alumina or amorphous compound. Acid dissolution study showed that alumina layer in metakaolinite either present in highly distorted state or it becomes amorphous. On the other hand, sodium carbonate extraction study showed that silica and alumina packets are not present in free state. Accordingly, two views were prevailed in the olden days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F. Bergaya, P. Dion, J.–F. Alcover, C. Clinard, D. Tchoubar, TEM study of kaolinite thermal decomposition by controlled-rate analysis . J. Mater. Sci. 31, 5069–5075 (1996)

    Google Scholar 

  • G.W. Brindley, K. Hunter, Thermal reactions of nacrite and the formation of metakaolin, γ-alumina, and mullite. Mineral. Mag. 30(288), 574–584 (1955)

    Google Scholar 

  • G.W. Brindley, M. Nakahira, The kaolinite–mullite reaction series: I, II, and III,. J. Am. Ceram. Soc. 42(7), 311–324 (1959)

    Google Scholar 

  • G.W. Brindley, H.A. McKinstry, The Kaolinite-Mullite reaction series: IV, the coordination of aluminum. J. Am. Ceram. Soc. 44(10), 506–507 (1961)

    Google Scholar 

  • G.W. Brindley and K. Robinson, Structure of Kaolinite. Miner. Mag. 27, 242–253 (1946)

    Google Scholar 

  • I.W.M. Brown, K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold, Outstanding problems in the kaolinite–mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II, high-temperature transformations of metakaolinite. J. Am. Ceram. Soc. 68(6), 298–301 (1985)

    Google Scholar 

  • P.P. Budnikov, Ber. Dtsch. Keram.Ges. 16, 349 (1935)

    Google Scholar 

  • M. Bulens, A. Leonard, B. Delmon, spectroscopic investigations of the Kaolinite–Mullite reaction sequence. J. Am. Ceram. Soc. 61(1–2), 81–84 (1978)

    Google Scholar 

  • A. K. Chakraborty, D. K. Ghosh, Re-examination of the kaolinite to mullite reaction series. J. Am. Ceram. Soc. 61(3–4), 170–173 (1978b)

    Google Scholar 

  • F.W. Clarke, Constitution of the silicates. L7. S. Geol.Surury Bull. 125(7–109), 32 (1895)

    Google Scholar 

  • J.E. Comeforo, R.B. Fischer, W.F. Bradley, Mullitization of Kaolinite. J. Am. Ceram. Soc. 31(9), 254–259 (1948)

    Google Scholar 

  • J.J. Comer, New electron-optical data on the Kaolinite–Mullite transformation. J. Am. Ceram. Soc. 44(11), 561–563 (1961)

    Google Scholar 

  • J.J. Comer, J.H. Koenig, S.C. Lyons, What are ceramic materials really like? “ceram. Ind .67(4), 125,148,150 No. 6, 96 (1956)

    Google Scholar 

  • E.B. Colegrave and G. R. Rigby, The Decomposition of kaolinite by heat. Trans. Brit. Ceram. Soc. 51(6), 355–367(1952)

    Google Scholar 

  • W.M. Carty and U. Senapati, Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J. Am. Ceram. Soc. 81(1), 3–20 (1998)

    Google Scholar 

  • W.L. De Keyser, R. Wollast and L. De Laet, Contribution to the study of OH groups in kaolin minerals, Intl. Clay Conf., Pergamon Press. 75–86 (1963d)

    Google Scholar 

  • W.L. De Keyser, Note concerning the exotherm reaction of Kaolinite and formation of spinel phase preceding that of Mullite. In International clay conference Pergamon press, pp. 91–96 (1963e)

    Google Scholar 

  • W. Eitel, H. Kedesdy, Elektronen-Mikroskopie und Eeugung silikatischer Metaphasen: IV, Der Metakaolin (Electron Microscopy and Diffraction of Silicate Metaphases: IV, Metakaoliu). Abhandl. preuss. Akad. Wiss. Math.-nattir w. KI. 5, 37–45 (1943)

    Google Scholar 

  • W. Eitel, H.O. Miiller, O.E. Radczewski, Ubermikroskopische Untersuchungen an Tonminerdlien (Ultramicroscopic Exaniination of Clay Minerals). Ber. deut. keram. Ges. 20(4), 165–180 (1939)

    Google Scholar 

  • F. Freund, Explanation of exothermal reaction of Kaolinite as a ‘Reaction of the Active State’. Ber. Deut. Keram. Ges. 37(51), 209–218 (1960)

    Google Scholar 

  • F. Freund, Kaolinite-metakaolinite, a model of a solid with Extremely high lattice defect concentrationsl. Ber. Dtsch. Keram. Ges. 44(I), 5–13 (1967)

    Google Scholar 

  • F. Freund, Infrared spectra of kaolinite, metakaolinite, and Al–Si spinel. Ber. Deut. Keram. Ges. 44(181), 392–397 (1967)

    CAS  Google Scholar 

  • M.C. Gastuche, F.Toussaint, J.J. Fripiat, R. Touilleaux, M. Van Meersche, Study of intermediate stages in the kaolin-metakaolin transformation. Clay Minerals Bull. 5(29), 227 (1962)

    Google Scholar 

  • M.C. Gastuche, J.J. Fripiat, Acid dissolution techniques applied to the determination of the structure of clay and controlled by physical methods. Science of Ceramics, ed. by G.H. Stewart (Academic Press, London,1963) p. 96

    Google Scholar 

  • K. Heide and M. Fo¨ ldvari, High temperature mass spectrometric gas release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochim. Acta 446, 106–12 (2006)

    Google Scholar 

  • J.F. Hyslop, Decomposition of clay by heat. Trans. Brit. Ceranz. Soc. 43(3), 49–51 (1944)

    Google Scholar 

  • J.F. Hyslop, H.B. Rooksby, Further note on crystalline break up of kaolin. Trans. Br. Ceram. Soc. 27(4), 299–302 (1928)

    Google Scholar 

  • I.H. Insley, R.H. Ewell, Thermal behavior of the kaolin minerals. J. Res. Natl. Bur. Stand. 14(S), 615–627 (1935)

    Google Scholar 

  • S. Iwai, M. Tagai, T. Shimamnne, Procedure for Dickite structure modification by dehydration. Acta Cqstallogr. Sect. B: Struct. Crystallogr.Crysr. Chem. 27, 248–250 (1971)

    Google Scholar 

  • G. Keppeer, Sprechsaal 58, 614 (1925)

    Google Scholar 

  • O. Krause, H. Wohner, Uber Die Vorange Beim Bremmen Technischer Tone, Ber.Dtsch. Keram. Ges. 13, 485 (1932)

    Google Scholar 

  • G. Kubicki, R.E. Grim, A new method for thermal dehydration studies of clay Minerals. Min. Mag. 32, 53 (1959)

    Google Scholar 

  • J. Lemaitre, M. Bullens, B. Delmon, Influence of mineralizers on the 950ºC exothermic reaction of metakaolinite, in Proceedings of the International Clay Conference, ed. by S. W. Bailey (Applied Publishing Ltd., Wilmette, IL, Mexico City, Mexico, 1975), p. 539–44

    Google Scholar 

  • A.J. Leonard, Structural analysis of the transition phases in the Kaolinite–Mullite thermal sequence. J. Am. Ceram. Soc. 60(1–2), 37–43 (1977)

    Google Scholar 

  • K.J.D. MacKenzie, I.W.M. Brown, R.H. Meinhold, M.E. Bowden, Outstanding problems in the Kaolinite–Mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I, Metakaolinite. J. Am. Ceram. Soc. 68(6), 293–97 (1985)

    Google Scholar 

  • J.D.C. McConnell, S.G. Fleet, Electron optical study of the thermal decomposition of kaolinite. Clay Miner. 8, 279–290 (1970)

    Article  CAS  Google Scholar 

  • V. Mellor, I.I. Holdcroft, Chemical constitution of the kaolinite molecule. Trans. Ceram. Sor. (Engl.) 10, 94–120 (1911)

    Google Scholar 

  • B. Neumann, S. Kober, Sprechsaal 59, 607 (1926)

    CAS  Google Scholar 

  • R.H. Meinhold, K.L.D. Mackenzie, I.W.M. Brown, Thermal reactions of kaolinite studied by solid state 27Al and 29Si NMR. J. Mater. Sci. Lett. 4, 163–166 (1985)

    Google Scholar 

  • R.E. Newnham, A refinement of Dickite structure ad remarks o polymorphism in kaolin minerals. Miner. Mag. 32, 683 (1961)

    Google Scholar 

  • R. Pampuch, Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Pol. Akad. Nauk. Oddzial Krakowie, Kom, Nauk, Mineral, Pr. Mineral, 6, 53–70 (1966)

    Google Scholar 

  • R. Pampuch, Mechanism of topotaxial thermal decomposition reactions of layer lattice silicates and hydroxides. in proceeding 9th conference silicate Ind., Budapest, 1958, pp. 144–151

    Google Scholar 

  • H.J. Percival, J.F. Duncan, P.K. Foster, Interpretation of the Kaolinite–Mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc. 57(2), 57–61 (1974)

    Google Scholar 

  • S.A.T. Redfern, The Kinetics of dehydroxylation of kaolinite. Clay Miner. 22, 447–456 (1987)

    Google Scholar 

  • R. Rieke and L. Mauve, Zur Frage des Nachweises der mineralischen Bestandteile der Kaoline (Indications as to Mineral Constituents of Kaolin). Ber. deut. keram. Ges. 23(141), 11–51(1942)

    Google Scholar 

  • F. Rinne, Rontgrnographischc Diagnostik heini Rrennen von Kalkstcin, Dolomit,Kaolin. und Glimmer (X-Ray Study of Calcined Calcite, Dolomite, Kaolinite, and Mica). Z. Krist. 61(1/2), 113 (1924)

    Google Scholar 

  • J. Rocha, J. Klinowski, 29Si and 27Al Magic-Angle-Spinning NMR studies of the thermal transformation of kaolinite. Phys. Chem. Minerals 17(2), 179–86 (1990)

    Google Scholar 

  • R. Roy, D.M. Roy, E.E. Francis, New data on thermal decomposition of Kaolinite and Halloysite. J. Am. Ceram. Soc. 38(6), 198–205 (1955)

    Google Scholar 

  • H. Salmong, Physikalischen und cheinischen Grundlagcn der Keramik (Physical and Chemical Principles of Ceramics), p. 73. Julius Springer, Berlin, 1933. 229 pp.; Ceram. Abstr. 13(4), 103 (1934)

    Google Scholar 

  • J. Sanz, A. Madani, J.M. Serratosa, J.S. Moya, S. Aza, 27Aluminum and 29Silicon-magic-angle spinning nuclear magnetic resonance study of the Kaolinite–Mullite transformation. J. Am. Ceram. Soc. 71(10), C-418–C-421 (1988)

    Google Scholar 

  • B. Sonuparlak, M. Sarikaya, I.A. Aksay, Spinel phase formation during the 980 °C exothermic reaction in the kaolinite-to-mullite reaction Series, J. Am. Ceram. Soc. 70(11), 837–842 (1987)

    Google Scholar 

  • V.S. Stubican, R. Roy, Isomorphous substitution and infrared spectra of the layer lattice silicates. Amer. Mineral. 46(1–2), 32–51 (1961)

    Google Scholar 

  • V. Stubican, Residual hydroxyl groups in the metakaolin range. Min. Mag. 32, 38–52 (1959)

    Google Scholar 

  • G. Tamman, W. Pape, Ilber Den Wasserverlust Des Kaolines and Seinverhat-en In Festen Zuden Carbonatem Und Oxyden Der Erdalkalien, in Z. Anorg. Allg. Chem. 127, 43–68 (1923)

    Google Scholar 

  • L. Trusilewicz, F. Ferna´ ndez-Martı´nez, V. Rahhal, R. Talero, TEM and SAED characterization of metakaolin pozzolanic activity. J. Am. Ceram. Soc. 95(9), 2989–2996 (2012)

    Google Scholar 

  • L. Tscheischwili, W. Biissern, W. Wevl, Uber den metakaolin (Metakaolin). Ber. deut. keranz. Ges. 20(61), 249–276 (1939)

    Google Scholar 

  • Y. Tsuzuki, K. Nagasawa, A. transitional stage to 980 ºC exotherm of Kaolin Minerals. Clay Sci. 3(5), 87–102 (1969)

    Google Scholar 

  • S. Udagawa, T. Nakada, M. Nakahira, Molecular structure of allophane as revealed by its thermal transformation. pp. 151 in Proc. Int.Clay Conf., Vol.1, Editor-in-chief Lisa Heller bisa Heller by Israil University Press, Gerusalem (1969).

    Google Scholar 

  • K.A. Vesterbcrg, Kaolin and its thermal changes. Arkh Krmi, Jlinrml. GcoE. 9(1141), 26 (1925)

    Google Scholar 

  • R. Wardle, G.W. Brindley, Dependence of wavelength of, AIKα radiation from Alumino–Silicates’on the A1-0 distance. Amer. 2 Mineral. 56(111–121), 2123–2128 (1971)

    Google Scholar 

  • T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda, H. Saito, 29Silicon 27Al-MAS/NMR study of the thermal transformations of kaolinite. Clay Miner 22, 37–48 (1987)

    Google Scholar 

Further Readings

  • H. Abe, Preparation of porous mulllite ceramics by leaching method. J. Ceram. Soc. Jap. 97, 604–611 (1989)

    Google Scholar 

  • H. Abe, Preparation of porous mulllite ceramics by leaching method, ( Part 2 , Effect of transition metaloxide on crystal growth of mullite. J. Ceram. Soc. Jap. 98, (1990)

    Google Scholar 

  • H. Abe, Preparation of porous mulllite ceramics by leaching method. J. Ceram. Soc. Jap. 44, 339–347 (1990)

    Google Scholar 

  • H. Katsuki, S. Furuta, H. Ichinose, H. Nakao, Preparation & some properties of porous ceramic sheet composed of needle-like mullite. J. Ceram. Soc. Jap. 96, 1081–1086 (1988)

    Google Scholar 

  • H. Katsuki, High temperature properties of neede like mullite obtained from New Zealand kaolin. J. Ceram. Soc. Jap. 97, 1521–1524 (1989)

    Google Scholar 

  • H. Katsuki, D. Matsuda, Preparation, some properties & application of needle-like mullite obtained from kaolin minerals, Fortschritts Berich-eta DKG 7, 122–129 (1992)

    Google Scholar 

  • LU Yinping, L.I. Kaiqi, LIU Qinfu, Study of preparation of mullite from desilicated kaolin. J. Chinese Ceramic Soc. 32(8) 1033–1035 (2004)

    Google Scholar 

  • S.M. Naga, I.M. Bakr, Effect of etching treatment on mullite – based bodies. Interceram. 51(6), 404–407 (2002)

    Google Scholar 

  • K. Okada , H. Kawashima, Y. Saito, S. Hayashi, A. Yasumori, New preparation method of mesoporous γ – alumina by selective leaching of calcined kaolin Minerals, J. Mater. Chem. 5, 1241–1244 (1995)

    Google Scholar 

  • R.M. Torres Sanchez, S.L. Perez De Vargas, E. Soto, E.I. Basadela, Influence of kaolinite crystalline structure in the production of γ-Al2O3 by alkaline lixiviation. Materials etters 57, 1167–1170 (2003)

    Google Scholar 

  • S. Yariv , E. Mendelovici and R.Villalba, The Study of the interaction between cesium chloride and kaolinite by thermal methods

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshoy Kumar Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Chakraborty, A.K. (2014). Meta Kaolinite Phase. In: Phase Transformation of Kaolinite Clay. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1154-9_19

Download citation

Publish with us

Policies and ethics