Skip to main content

LH and hCG: Their Distinct Physiological Roles and Use in Ovarian Stimulation Protocols

  • Chapter
Ovarian Stimulation Protocols

Abstract

Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) have been used in diagnostics and therapeutics from biologically purified sources. Though both hormones function via the same receptor (LHCGR), mostly hCG has been used due to its widespread availability. Hence, in the mind of the practising physician, both molecules have been considered equal. The recent availability of recombinant LH has led us to reconsider the specificities of both hormones in terms of actions on the body.

LH and hCG play essential roles in the reproductive cycle. LH plays a key role in follicular maturation and the ovulation process, and hCG is the “pregnancy hormone.”

LH and hCG are different in terms of structure, expression, regulation, and function. LH and hCG fundamentally differ in their expression patterns and have complex and unique aspects. LH and hCG should be considered as hormone mixtures, the composition of which fluctuates during the course of the ovarian cycle and pregnancy and throughout the lifespan of men and women. Diverse isoforms have distinct functions, reflected by their relative abundance in normal and aberrant physiologic processes. Quantitative and qualitative distinctions in signaling cascades, activated by LH and hCG have been recently discovered; furthermore, the extragonadal activities are currently under exploration. Availability of recombinant LH and hCG as new therapeutic tools for use in specific clinical pro-fertility conditions could lead us to reconsider the specific indications for each of both molecular entities. The first part of this chapter reviews the current knowledge on both parent molecules, emphasizing their specificities and the consequences at the receptor level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritz MA, Speroff L. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  2. Rahman NA, Rao CV. Recent progress in luteinizing hormone/human chorionic gonadotrophin hormone research. Mol Hum Reprod. 2009;15:703–11.

    Article  CAS  PubMed  Google Scholar 

  3. Rao CV. Differential properties of human chorionic gonadotrophin and human luteinizing hormone binding to plasma membranes of bovine corpora lutea. Acta Endocrinol (Copenh). 1979;90:696–710.

    CAS  Google Scholar 

  4. Liu JH, Yen SS. Induction of midcycle gonadotropin surge by ovarian steroids in women: a critical evaluation. J Clin Endocrinol Metab. 1983;57:797–802.

    Article  CAS  PubMed  Google Scholar 

  5. Van de Wiele RL, Bogumil J, Dyrenfurth I, Ferin M, Jewelewicz R, Warren M, et al. Mechanisms regulating the menstrual cycle in women. Recent Prog Horm Res. 1970;26:63–103.

    Google Scholar 

  6. Reader SC, Robertson WR, Diczfalusy E. Microheterogeneity of luteinizing hormone in pituitary glands from women of pre- and postmenopausal age. Clin Endocrinol (Oxf). 1983;19:355–63.

    Article  CAS  Google Scholar 

  7. Wide L. Median charge and charge heterogeneity of human pituitary FSH, LH and TSH. II. Relationship to sex and age. Acta Endocrinol (Copenh). 1985;109:190–7.

    CAS  Google Scholar 

  8. Ding YQ, Huhtaniemi I. Preponderance of basic isoforms of serum luteinizing hormone (LH) is associated with the high bio/immune ratio of LH in healthy women and in women with polycystic ovarian disease. Hum Reprod. 1991;6:346–50.

    CAS  PubMed  Google Scholar 

  9. Ropelato MG, Garcia-Rudaz MC, Castro-Fernandez C, Ulloa-Aguirre A, Escobar ME, Barontini M, et al. A preponderance of basic luteinizing hormone (LH) isoforms accompanies inappropriate hypersecretion of both basal and pulsatile LH in adolescents with polycystic ovarian syndrome. J Clin Endocrinol Metab. 1999;84:4629–36.

    CAS  PubMed  Google Scholar 

  10. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol. 2010;8:102.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol. 2009;7:8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993;132:1387–95.

    CAS  PubMed  Google Scholar 

  13. Rao CV, Alsip NL. Use of the rat model to study hCG/LH effects on uterine blood flow. Semin Reprod Med. 2001;19:75–85.

    Article  CAS  PubMed  Google Scholar 

  14. Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab. 2002;87:5290–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kovalevskaya G, Birken S, Kakuma T, Ozaki N, Sauer M, Lindheim S, et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J Endocrinol. 2002;172:497–506.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki Y, Ladner DG, Cole LA. Hyperglycosylated human chorionic gonadotropin and the source of pregnancy failures. Fertil Steril. 2008;89:1781–6.

    Article  CAS  PubMed  Google Scholar 

  17. Birken S, Maydelman Y, Gawinowicz MA, Pound A, Liu Y, Hartree AS. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology. 1996;137:1402–11.

    CAS  PubMed  Google Scholar 

  18. Braunstein GD. Endocrine changes in pregnancy. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. Philadelphia: Elsevier Saunders; 2011. p. 581–660.

    Google Scholar 

  19. O’Connor JF, Kovalevskaya G, Birken S, Schlatterer JP, Schechter D, McMahon DJ, et al. The expression of the urinary forms of human luteinizing hormone beta fragment in various populations as assessed by a specific immunoradiometric assay. Hum Reprod. 1998;13:826–35.

    Article  PubMed  Google Scholar 

  20. Lambert A, Talbot JA, Anobile CJ, Robertson WR. Gonadotrophin heterogeneity and biopotency: implications for assisted reproduction. Mol Hum Reprod. 1998;4:619–29.

    Article  CAS  PubMed  Google Scholar 

  21. Burgon PG, Stanton PG, Robertson DM. In vivo bioactivities and clearance patterns of highly purified human luteinizing hormone isoforms. Endocrinology. 1996;137:4827–36.

    CAS  PubMed  Google Scholar 

  22. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23:141–74.

    Article  CAS  PubMed  Google Scholar 

  23. Puett D, Li Y, DeMars G, Angelova K, Fanelli F. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Mol Cell Endocrinol. 2007;260–262:126–36.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Menon KM, Menon B. Structure, function and regulation of gonadotropin receptors – a perspective. Mol Cell Endocrinol. 2012;356:88–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Anobile CJ, Talbot JA, McCann SJ, Padmanabhan V, Robertson WR. Glycoform composition of serum gonadotrophins through the normal menstrual cycle and in the post-menopausal state. Mol Hum Reprod. 1998;4:631–9.

    Article  CAS  PubMed  Google Scholar 

  26. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Li Z, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.

    Article  PubMed  Google Scholar 

  27. Eriksen MB, Brusgaard K, Andersen M, Tan Q, Altinok ML, Gaster M, et al. Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in Caucasian patients with PCOS or hirsutism as referral diagnosis. Eur J Obstet Gynecol Reprod Biol. 2012;163:39–42.

    Article  CAS  PubMed  Google Scholar 

  28. Mutharasan P, Galdones E, Penalver Bernabe B, Garcia OA, Jafari N, Shea LD, et al. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J Clin Endocrinol Metab. 2013;98:E185–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cole LA, Kardana A, Andrade-Gordon P, Gawinowicz MA, Morris JC, Bergert ER, et al. The heterogeneity of human chorionic gonadotropin (hCG). III The occurrence and biological and immunological activities of nicked hCG. Endocrinology. 1991;129:1559–67.

    Article  CAS  PubMed  Google Scholar 

  30. Gilchrist RL, Ryu KS, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem. 1996;271:19283–7.

    Article  CAS  PubMed  Google Scholar 

  31. Donadeu FX, Esteves CL, Doyle LK, Walker CA, Schauer SN, Diaz CA. Phospholipase Cbeta3 mediates LH-induced granulosa cell differentiation. Endocrinology. 2011;152:2857–69.

    Article  CAS  PubMed  Google Scholar 

  32. Ben-Ami I, Armon L, Freimann S, Strassburger D, Ron-El R, Amsterdam A. EGF-like growth factors as LH mediators in the human corpus luteum. Hum Reprod. 2009;24:176–84.

    Article  CAS  PubMed  Google Scholar 

  33. Palaniappan M, Menon KM. Human chorionic gonadotropin stimulates theca-interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of AKT/mTORC1 signaling pathway. Mol Endocrinol. 2010;24:1782–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Brown C, LaRocca J, Pietruska J, Ota M, Anderson L, Smith SD, et al. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKB alpha/Akt1. Biol Reprod. 2010;82:246–56.

    Article  CAS  PubMed  Google Scholar 

  35. Reizel Y, Elbaz J, Dekel N. Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol Endocrinol. 2010;24:402–11.

    Article  CAS  PubMed  Google Scholar 

  36. Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS One. 2012;7, e46682.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pakarainen T, Ahtiainen P, Zhang FP, Rulli S, Poutanen M, Huhtaniemi I. Extragonadal LH/hCG action–not yet time to rewrite textbooks. Mol Cell Endocrinol. 2007;269:9–16.

    Article  CAS  PubMed  Google Scholar 

  38. Rao CV. Human adrenal LH/hCG receptors and what they could mean for adrenal physiology and pathology. Mol Cell Endocrinol. 2010;329:33–6.

    Article  CAS  PubMed  Google Scholar 

  39. Strauss III JE, Barbieri RL. Yen & Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. 6th ed. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  40. Park SJ, Goldsmith LT, Weiss G. Age-related changes in the regulation of luteinizing hormone secretion by estrogen in women. Exp Biol Med (Maywood). 2002;227:455–64.

    CAS  Google Scholar 

  41. Garcia-Rudaz MC, Ropelato MG, Escobar ME, Veldhuis JD, Barontini M. Augmented frequency and mass of LH discharged per burst are accompanied by marked disorderliness of LH secretion in adolescents with polycystic ovary syndrome. Eur J Endocrinol. 1998;139:621–30.

    Article  CAS  PubMed  Google Scholar 

  42. Silfen ME, Denburg MR, Manibo AM, Lobo RA, Ferin M, Levine LS, et al. Early endocrine, metabolic, and sonographic characteristics of polycystic ovary syndrome (PCOS): comparison between nonobese and obese adolescents. J Clin Endocrinol Metab. 2003;88(10):4682–8.

    Article  CAS  PubMed  Google Scholar 

  43. Carmina E, Campagna AM, Lobo RA. A 20-year follow-up of young women with polycystic ovary syndrome. Obstet Gynecol. 2012;119:263–9.

    Article  PubMed  Google Scholar 

  44. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Elsevier Saunders; 2011.

    Google Scholar 

  45. Crochet JR, Shah AA, Schomberg DW, Price TM. Hyperglycosylated human chorionic gonadotropin does not increase progesterone production by luteinized granulosa cells. J Clin Endocrinol Metab. 2012;97:E1741–4.

    Article  CAS  PubMed  Google Scholar 

  46. Odell WD, Griffin J. Pulsatile secretion of human chorionic gonadotropin in normal adults. N Engl J Med. 1987;317:1688–91.

    Article  CAS  PubMed  Google Scholar 

  47. Lei ZM, Toth P, Rao CV, Pridham D. Novel coexpression of human chorionic gonadotropin (hCG)/human luteinizing hormone receptors and their ligand hCG in human fallopian tubes. J Clin Endocrinol Metab. 1993;77:863–72.

    CAS  PubMed  Google Scholar 

  48. Eblen A, Bao S, Lei ZM, Nakajima ST, Rao CV. The presence of functional luteinizing hormone/chorionic gonadotropin receptors in human sperm. J Clin Endocrinol Metab. 2001;86:2643–8.

    Article  CAS  PubMed  Google Scholar 

  49. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol. 2007;269:85–92.

    Article  CAS  PubMed  Google Scholar 

  50. Perrier d’Hauterive S, Berndt S, Tsampalas M, Charlet-Renard C, Dubois M, Bourgain C, et al. Dialogue between blastocyst hCG and endometrial LH/hCG receptor: which role in implantation? Gynecol Obstet Invest. 2007;64(3):156–60.

    Article  PubMed  Google Scholar 

  51. Zimmermann G, Ackermann W, Alexander H. Expression and production of human chorionic gonadotropin (hCG) in the normal secretory endometrium: evidence of CGB7 and/or CGB6 beta hCG subunit gene expression. Biol Reprod. 2012;86:87.

    Article  PubMed  Google Scholar 

  52. Lofrano-Porto A, Barra GB, Giacomini LA, Nascimento PP, Latronico AC, Casulari LA, et al. Luteinizing hormone beta mutation and hypogonadism in men and women. N Engl J Med. 2007;357(9):897–904.

    Article  CAS  PubMed  Google Scholar 

  53. Achard C, Courtillot C, Lahuna O, Méduri G, Soufir JC, Lière P, et al. Normal spermatogenesis in a man with mutant luteinizing hormone. N Engl J Med. 2009;36:1856–63.

    Article  Google Scholar 

  54. Nagirnaja L, Venclovas C, Rull K, Jonas KC, Peltoketo H, Christiansen OB, et al. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin beta-subunit. Mol Hum Reprod. 2012;18(8):379–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res. 2009;71:75–82.

    Article  CAS  PubMed  Google Scholar 

  56. Yariz KO, Walsh T, Uzak A, Spiliopoulos M, Duman D, Onalan G, et al. Inherited mutation of the luteinizing hormone/choriogonadotropin receptor (LHCGR) in empty follicle syndrome. Fertil Steril. 2011;96:e125–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9:188–91.

    CAS  PubMed  Google Scholar 

  58. Mannaerts B, Uilenbroek J, Schot P, De Leeuw R. Folliculogenesis in hypophysectomized rats after treatment with recombinant human follicle-stimulating hormone. Biol Reprod. 1994;51:72–81.

    Article  CAS  PubMed  Google Scholar 

  59. Devroey P, Mannaerts B, Smitz J, Coelingh Bennink H, Van Steirteghem A. Clinical outcome of a pilot efficacy study on recombinant human follicle-stimulating hormone (Org 32489) combined with various gonadotrophin-releasing hormone agonist regimens. Hum Reprod. 1994;9:1064–9.

    CAS  PubMed  Google Scholar 

  60. Hillier SG. Controlled ovarian stimulation in women. J Reprod Fertil. 2000;120:201–10.

    Article  CAS  PubMed  Google Scholar 

  61. Shoham Z. The clinical therapeutic window for luteinizing hormone in controlled ovarian stimulation. Fertil Steril. 2002;77:1170–7.

    Article  PubMed  Google Scholar 

  62. Hugues JN, Theron-Gerard L, Coussieu C, Pasquier M, Dewailly D, Cedrin-Durnerin I. Assessment of theca cell function prior to controlled ovarian stimulation: the predictive value of serum basal/stimulated steroid levels. Hum Reprod. 2010;25:228–34.

    Article  CAS  PubMed  Google Scholar 

  63. Thuesen LL, Smitz J, Loft A, Nyboe Andersen A. Endocrine effects of hCG supplementation to recombinant FSH throughout controlled ovarian stimulation for IVF: a dose response study. Clin Endocrinol. 2013;79:708–15.

    CAS  Google Scholar 

  64. Shima K, Kitayama S, Nakano R. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle. Obstet Gynecol. 1987;69:800–6.

    CAS  PubMed  Google Scholar 

  65. Rajaniemi HJ, Rönnberg L, Kauppila A, Ylöstalo P, Jalkanen M, Saastamoinen J, et al. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1981;52:307–13.

    Article  CAS  PubMed  Google Scholar 

  66. Calder MD, Caveney AN, Smith LC, Watson AJ. Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reprod Biol Endocrinol. 2003;1:14.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Jeppesen JV, Kristensen SG, Nielsen ME, Humaidan P, Dal Canto M, Fadini R, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97:E1524–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Guzman L, Adriaenssens T, Ortega-Hrepich C, Albuz FK, Mateizel I, Devroey P, et al. Human antral follicles <6mm: a comparison between in vivo maturation and in vitro maturation in non-hCG primed cycles using cumulus cell gene expression. Mol Hum Reprod. 2013;19:7–16.

    Article  CAS  PubMed  Google Scholar 

  69. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–4.

    Article  CAS  PubMed  Google Scholar 

  70. Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, et al. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod. 2010;25:2569–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev. 2002;61:234–48.

    Article  CAS  PubMed  Google Scholar 

  72. Weston AM, Zelinski-Wooten MB, Hutchison JS, Stouffer RL, Wolf DP. Developmental potential of embryos produced by in-vitro fertilization from gonadotrophin-releasing hormone antagonist-treated macaques stimulated with recombinant human follicle stimulating hormone alone or in combination with luteinizing hormone. Hum Reprod. 1996;11:608–13.

    Article  CAS  PubMed  Google Scholar 

  73. Oussaid B, Mariana JC, Poulin N, Fontaine J, Lonergan P, Beckers JF, et al. Reduction of the developmental competence of sheep oocytes by inhibition of LH pulses during the follicular phase with a GnRH antagonist. J Reprod Fertil. 1999;117:71–7.

    Article  CAS  PubMed  Google Scholar 

  74. Westergaard LG, Erb K, Laursen SB, Rasmussen PE, Rex S, Westergaard CG, et al. Concentrations of gonadotrophins and steroids in pre-ovulatory follicular fluid and serum in relation to stimulation protocol and outcome of assisted reproduction treatment. Reprod Biomed Online. 2004;8:516–23.

    Article  CAS  PubMed  Google Scholar 

  75. Andersen AN, Devroey P, Arce JC. Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod. 2006;21:3217–27.

    Article  CAS  PubMed  Google Scholar 

  76. Thuesen LL, Loft A, Egeberg AN, Smitz J, Petersen JH, Andersen AN. A randomized controlled dose–response pilot study of addition of hCG to recombinant FSH during controlled ovarian stimulation for in vitro fertilization. Hum Reprod. 2012;27:3074–84.

    Article  CAS  PubMed  Google Scholar 

  77. Platteau P, Andersen AN, Balen A, Devroey P, Sorensen P, Helmgaard L, et al. Similar ovulation rates, but different follicular development with highly purified menotrophin compared with recombinant FSH in WHO Group II anovulatory infertility: a randomized controlled study. Hum Reprod. 2006;21:1798–804.

    Article  CAS  PubMed  Google Scholar 

  78. Loumaye E, Coen G, Pampfer S, Vankrieken L, Thomas K. Use of a gonadotropin-releasing hormone agonist during ovarian stimulation leads to significant concentrations of peptide in follicular fluids. Fertil Steril. 1989;52:256–63.

    CAS  PubMed  Google Scholar 

  79. Balasch J, Penarrubia J, Fabregues F, Vidal E, Casamitiana R, Manau D, et al. Ovarian responses to recombinant FSH or HMG in normogonadotrophic women following pituitary desensitization by a depot GnRH-agonist for assisted reproduction. Reprod Biomed Online. 2003;7:35–42.

    Article  CAS  PubMed  Google Scholar 

  80. Bider D, Ben-Rafael Z, Shalev J, Goldenberg M, Mashiach S, Blankstein J. Pituitary and ovarian suppression rate after high dosage of gonadotropin-releasing hormone agonist. Fertil Steril. 1989;51:578–81.

    CAS  PubMed  Google Scholar 

  81. Meldrum DR, Wisot A, Hamilton F, Gutlay AL, Huynh D, Kempton W. Timing of initiation and dose schedule of leuprolide influence the time course of ovarian suppression. Fertil Steril. 1988;50:400–2.

    CAS  PubMed  Google Scholar 

  82. Albano C, Smitz J, Camus M, Riethmüller-Winzen H, Siebert-Weigel M, Diedrich K, et al. Hormonal profile during the follicular phase in cycles stimulated with a combination of human menopausal gonadotrophin and gonadotrophin-releasing hormone antagonist (Cetrorelix). Hum Reprod. 1996;11:2114–8.

    Article  CAS  PubMed  Google Scholar 

  83. Fowler PA, Sorsa-Leslie T, Harris W, Mason H. Ovarian gonadotrophin surge-attenuating factor (GnSAF): where are we after 20 years of research? Reproduction. 2003;126:689–99.

    Article  CAS  PubMed  Google Scholar 

  84. Andersen CY, Ziebe S. Serum levels of free androstenedione, testosterone and oestradiol are lower in the follicular phase of conceptional than of non-conceptional cycles after ovarian stimulation with a gonadotrophin-releasing hormone agonist protocol. Hum Reprod. 1992;7:1365–70.

    CAS  PubMed  Google Scholar 

  85. Hugues JN, Soussis J, Calderon I, Balasch J, Anderson RA, Romeu A, et al. Does the addition of recombinant LH in WHO group II anovulatory women over-responding to FSH treatment reduce the number of developing follicles? A dose-finding study. Hum Reprod. 2005;20:629–35.

    Article  CAS  PubMed  Google Scholar 

  86. Filicori M, Cognigni GE, Pocognoli P, Tabarelli C, Spettoli D, Taraborrelli S, et al. Modulation of folliculogenesis and steroidogenesis in women by graded menotrophin administration. Hum Reprod. 2002;17:2009–15.

    Article  CAS  PubMed  Google Scholar 

  87. Filicori M, Cognigni GE, Tabarelli C, Pocognoli P, Taraborrelli S, Spettoli D, et al. Stimulation and growth of antral ovarian follicles by selective LH activity administration in women. J Clin Endocrinol Metab. 2002;87:1156–61.

    Article  CAS  PubMed  Google Scholar 

  88. Hofmann GE, Bergh PA, Guzman I, Masuku S, Navot D. Premature luteinization is not eliminated by pituitary desensitisation with leuprolide acetate in women undergoing gonadotrophin stimulation who demonstrated premature luteinization in a prior gonadotrophin-only cycle. Hum Reprod. 1993;8:695–8.

    CAS  PubMed  Google Scholar 

  89. Ubaldi F, Camus M, Smitz J, Bennink HC, Van Steirteghem A, Devroey P. Premature luteinization in in vitro fertilization cycles using gonadotropin-releasing hormone agonist (GnRH-a) and recombinant follicle-stimulating hormone (FSH) and GnRH-a and urinary FSH. Fertil Steril. 1996;66:275–80.

    CAS  PubMed  Google Scholar 

  90. Chappel SC, Howles C. Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum Reprod. 1991;6:1206–12.

    CAS  PubMed  Google Scholar 

  91. Roy SK, Kurz SG, Carlson AM, DeJonge CJ, Ramey JW, Maclin VM. Transforming growth factor beta receptor expression in hyperstimulated human granulosa cells and cleavage potential of the zygotes. Biol Reprod. 1998;59:1311–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Lea Thuesen, Prof. A.N. Andersen, Dr. J.-C. Arce for fruitful discussions over the last years regarding the pharmacological use of hCG for ovarian stimulation.

Disclosure Statement

J.S. has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Smitz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Smitz, J. (2016). LH and hCG: Their Distinct Physiological Roles and Use in Ovarian Stimulation Protocols. In: Allahbadia, G., Morimoto, Y. (eds) Ovarian Stimulation Protocols. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1121-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1121-1_3

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1120-4

  • Online ISBN: 978-81-322-1121-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics