Skip to main content

Monitoring Ovarian Stimulation: Current Perspectives

  • Chapter
Book cover Ovarian Stimulation Protocols

Abstract

In the normal ovulatory cycle, the recruited cohort of antral follicles can be identified by cycle day 5–7, the dominant follicle emerges by day 8–12, grows approximately 1–3 mm per day thereafter (most rapidly over the 1–2 days immediately preceding ovulation), and measures approximately 20–24 mm in mean diameter when the luteinizing hormone (LH) surge occurs; lesser follicles rarely exceed approximately 14 mm in diameter. In 5–10 % of spontaneous cycles, two preovulatory follicles may develop. The ultrasound examination enables the follicle diameter and endometrial thickness to be measured, which evaluates the fecundity function by using blood-flow assessment and the combined three dimensional (3D) and blood-flow investigation.

Ovarian ultrasonography defines the size and number of follicles contributing to the measured estradiol (E2) level. Thus, in an ovulation induction cycle, ultrasound can tell us about the ovarian reserve and adequately monitor the process of downregulation, follicular and endometrial development, and timely administration of human chorionic hormone (hCG), with an increase in the overall pregnancy rates and decrease in the incidence of ovarian hyperstimulation syndrome (OHSS) and multiple pregnancy rate.

Baseline follicular stimulating hormone (FSH), antiMullerian hormone (AMH), and inhibin B levels on day 2 or 3 on menstrual cycle and dynamic tests can give information about the ovarian reserve. Monitoring LH, E2, and progesterone during ovulation induction can determine the follicular growth and its competency, predict poor and hyper-response, and diagnose premature LH surge, premature luteinization and luteal phase adequacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2 D:

2 Dimensional

3 D:

3 Dimensional

4 D:

4 Dimensional

AFC:

Antral follicle count

AMH:

Antimullerian hormone

ART:

Assisted reproductive technology

B:

Blood flow

BMI:

Body mass index

CC:

Clomiphene citrate

CCCT:

Clomiphene citrate challenge test

CL:

Corpus luteum

COS:

Controlled ovarian stimulation

E2:

Estradiol

EFORT:

Exogenous FSH ovarian reserve test

EP:

Ectopic pregnancy

ET:

Embryo transfer

FET:

Frozen embryo transfer

FI:

Flow index

FSH:

Follicular stimulating hormone

FVQ:

Flow vessel quotient

GnRH:

Gonadotropin-releasing hormone

GT:

Gonadotropins

hCG:

Human chorionic hormone

HRT:

Hormone replacement treatment

ICSI:

Intracytoplasmic sperm injection

IM:

Intramuscular

IR:

Implantation rate

IUI:

Intrauterine insemination

IUP:

Intrauterine pregnancy

IVF:

In vitro fertilization

LH:

Luteinizing hormone

LPD:

Luteal phase deficiency

LUF:

Luteinized unruptured follicle

MTX:

Methotrexate

NNT:

Numbers needed to treat

NPV:

Negative predictive value

OHSS:

Ovarian hyperstimulation syndrome

OI:

Ovulation induction

ORT:

Ovarian reserve test

P4:

Progesterone

PCOS:

Polycystic ovarian syndrome

PD:

Power Doppler

PDA:

Power Doppler angiography

PE:

Elevated progesterone

PFBF:

Perifollicular blood flow

PG:

Prostaglandin

PI:

Pulsatility index

POD:

Pouch of Douglas

PPV:

Positive predictive value

PSV:

Peak systolic velocity

PUL:

Pregnancy of unknown location

RI:

Resistance index

SC:

Subcutaneous

TAS:

Transabdominal scan

TVS:

Transvaginal ultrasound scan

USG:

Ultrasonography

VEGF:

Vascular endothelial growth factor

VFI:

Vascularization flow index

VI:

Vascularization index

References

  1. Jayaprakasan K, Campbell B, Hopkisson J, Johnson I, Raine-Fenning N. A prospective, comparative analysis of anti-Müllerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation. Fertil Steril. 2010;93(3):855–64.

    Article  CAS  PubMed  Google Scholar 

  2. Tomas C, Nuojua-Huttunen S, Martikainen H, et al. Pretreatment transvaginal ultrasound examination predicts ovarian responsiveness to gonadotrophins in in-vitro fertilization. Hum Reprod. 1997;12:220–3.

    Article  CAS  PubMed  Google Scholar 

  3. Sharara FI, McClamrock HD. High E2 levels and high oocyte yield are not detrimental to in vitro fertilization outcome. Fertil Steril. 1999;72:401–5.

    Article  CAS  PubMed  Google Scholar 

  4. Syrop CH, Wilhoite A, Van-Voorhis BJ. Ovarian volume: a novel outcome predictor for assisted reproduction. Fertil Steril. 1995;64:1167–71.

    CAS  PubMed  Google Scholar 

  5. Lass A, Skull J, McVeigh E, et al. Measurement of ovarian volume by transvaginal sonography prior to human menopausal gonadotrophin hyperstimulation can predict poor response of infertile patients in an IVF programme. Hum Reprod. 1997;12:294–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kupesic S, Kurjak A. Predictors of in vitro fertilization outcome by three-dimensional ultrasound. Hum Reprod. 2002;17(4):950–5.

    Article  CAS  PubMed  Google Scholar 

  7. Jun SH, Ginsburg ES, Racowsky C, Wise LA, Hornstein MD. Uterine leiomyomas and their effect on in vitro fertilization outcome: a retrospective study. J Assist Reprod Genet. 2001;18:139–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fleischer AC. New developments in the sonographic assessment of ovarian, uterine and breast vascularity. Semin Ultrasound CT MR. 2001;22:42–9.

    Article  CAS  PubMed  Google Scholar 

  9. Raine-Fenning NJ, Campbell BK, Clewes JS, Kendall NR, Johnson IR. The reliability of virtual organ computer-aided analysis (VOCAL) for the semiquantification of ovarian, endometrial and subendometrial perfusion. Ultrasound Obstet Gynecol. 2003;22:633–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hackelöer BJ, Robinson HP. Ultrasound examination of the growing ovarian follicle and of the corpus luteum during the normal physiologie menstrual cycle. Geburtshilfe Frauenheilkd. 1978;38:163–8.

    PubMed  Google Scholar 

  11. Eissa MK, Hudson K, Docker MF, Sawers RS, Newton JR. Ultrasound follicle diameter measurement: an assessment of inter observer and intra observer variation. Fertil Steril. 1985;44:751–4.

    CAS  PubMed  Google Scholar 

  12. Nayudu PL. Relationship of constructed follicular growth patterns in stimulated cycles to outcome after IVF. Hum Reprod. 1991;6:465–71.

    CAS  PubMed  Google Scholar 

  13. Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.

    Article  PubMed  Google Scholar 

  14. Mercé LT, Bau S, Barco MJ, Troyano J, Gay R, Sotos F, Villa A. Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the hCG day to predict the outcome in IVF/ICSI cycles. Hum Reprod. 2006;21:1218–26.

    Article  PubMed  Google Scholar 

  15. Serafini P, Batzofin J, Nelson J, Olive D. Sonographic uterine predictors of pregnancy in women undergoing ovulation induction for assisted reproductive treatments. Fertil Steril. 1994;62:815–22.

    CAS  PubMed  Google Scholar 

  16. Steer CV, Tan SL, Dillon D, Mason BA, Campbell S. Vaginal color Doppler assessment of uterine artery impedance correlates with immunohistochemical markers of endometrial receptivity required for the implantation of an embryo. Fertil Steril. 1995;63:101–8.

    CAS  PubMed  Google Scholar 

  17. Tekay A, Martikainen H, Jouppila P. Blood flow changes in uterine and ovarian vasculature, and predictive value of transvaginal pulsed colour Doppler ultrasonography in an in-vitro fertilization programme. Hum Reprod. 1995;10:688–93.

    CAS  PubMed  Google Scholar 

  18. Ng EHU, Chan CCW, Tang OS, Yeung WSB, Ho PC. The role of endometrial and subendometrial vascularity measured by three- dimensional power Doppler ultrasound in the prediction of pregnancy during frozen-thawed embryo transfer cycles. Hum Reprod. 2006;21:1612–7.

    Article  PubMed  Google Scholar 

  19. Palomba S, Russo T, Falbo A, Orio Jr F, Manguso F, Nelaj E, Tolino A, Colao A, Dale B, Zullo F. Clinical use of the perifollicular vascularity assessment in IVF cycles: a pilot study. Hum Reprod. 2006;21:1055–61.

    Article  PubMed  Google Scholar 

  20. O’Leary AJ, Griffiths AN, Evans J, Pugh ND. Perifollicular blood flow and pregnancy in superovulated intrauterine insemination (IUI) cycles: an observational comparison of recombinant follicle-stimulating hormone (FSH) and urinary gonadotropins. Fertil Steril. 2009;92(4):1366–8.

    Article  PubMed  CAS  Google Scholar 

  21. Borini A, Maccolini A, Tallarini A, Bonu MA, Sciajno R, Flamigni C. Perifollicular vascularity and its relationship with oocyte maturity and IVF outcome. Ann N Y Acad Sci. 2001;943:64–7.

    Article  CAS  PubMed  Google Scholar 

  22. Coulam CB, Bustillo M, Soenksen DM, Britten S. Ultrasonographic predictors of implantation after assisted reproduction. Fertil Steril. 1994;62:1004–10.

    CAS  PubMed  Google Scholar 

  23. Ayustawati, Shibahara H, Obara H, et al. Influence of endometrial thickness and pattern on pregnancy rates in in vitro fertilization-embryo transfer. Reprod Med Biol. 2002;1:17–21.

    Article  Google Scholar 

  24. Gonen Y, Casper RF, Jacobson W, Blankier J. Endometrial thickness and growth during ovarian stimulation: a possible predictor of implantation in in-vitro fertilization. Fertil Steril. 1989;52:446–50.

    CAS  PubMed  Google Scholar 

  25. Check JH, Nowroozi K, Choe J, Lurie D, Dietterich C. The effect of endometrial thickness and echo pattern on in vitro fertilization outcome in donor oocyte-embryo transfer cycle. Fertil Steril. 1993;59:72–5.

    CAS  PubMed  Google Scholar 

  26. Zhang X, Chen CH, Confino E, Barnes R, Milad M, Kazer RR. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005;83:336–40.

    Article  PubMed  Google Scholar 

  27. Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007;87:53–9.

    Article  PubMed  Google Scholar 

  28. Friedler S, Schenker JG, Herman A, Lewin A. The role of ultrasonography in the evaluation of endometrial receptivity following assisted reproductive treatments: a critical review. Hum Reprod Update. 1996;2:323–35.

    Article  CAS  PubMed  Google Scholar 

  29. Rabinowitz R, Laufer N, Lewin A, et al. The value of ultrasonographic endometrial measurement in the prediction of pregnancy following in vitro fertilization. Fertil Steril. 1986;45:824–8.

    CAS  PubMed  Google Scholar 

  30. Dietterich C, Check JH, Choe JK, Nazari A, Lurie D. Increased endometrial thickness on the day of human chorionic gonadotropin injection does not adversely affect pregnancy or implantation rates following in vitro fertilization-embryo transfer. Fertil Steril. 2002;77:781–6.

    Article  PubMed  Google Scholar 

  31. Turnbull LW, Lesny P, Killick SR. Assessment of uterine receptivity prior to embryo transfer: a review of currently available imaging modalities. Hum Reprod Update. 1995;1:505–14.

    Article  CAS  PubMed  Google Scholar 

  32. Ueno J, Oehninger S, Brzyski RG, Acoata AA, Philput CB, Muasher SJ. Ultrasonographic appearance of the endometrium in natural and stimulated in vitro fertilization cycles and its correlation with outcome. Hum Reprod. 1991;6:901–4.

    CAS  PubMed  Google Scholar 

  33. Abdalla HI, Brooks AA, Johnson MR, Kirkland A, Thomas A, Studd JWW. Endometrial thickness: a predictor of implantation in ovum recipients. Hum Reprod. 1994;9:363–5.

    CAS  PubMed  Google Scholar 

  34. Shapiro H, Cowell Casper RF. Use of vaginal ultrasound for monitoring endometrial preparation in a donor oocyte program. Fertil Steril. 1993;59:1055–8.

    CAS  PubMed  Google Scholar 

  35. El-Toukhy T, Coomarasamy A, Khairy M, et al. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertil Steril. 2008;89:832–9.

    Article  PubMed  Google Scholar 

  36. Jokubkiene L, Sladkevicius P, Rovas L, Valentin L. Assessment of changes in volume and vascularity of the ovaries during the normal menstrual cycle using three-dimensional power Doppler ultrasound. Hum Reprod. 2006;21:2661–8.

    Article  PubMed  Google Scholar 

  37. Fanchin R, Righini C, Olivennes F, Taylor S, de Ziegler D, Frydman R. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1989;13(7):1968–74.

    Article  Google Scholar 

  38. RaineFenning NJ, Campbell BK, Kendall NR, Clewes JS, Johnson IR. Quantifying the changes in endometrial vascularity throughout the normal menstrual cycle with three-dimensional power Doppler angiography. Hum Reprod. 2004;19:330–8.

    Article  CAS  Google Scholar 

  39. Zaidi J, Campbell S, Pittrof R, Kyei-Mensah A, Shaker A, Jacobs HS, Tan SL. Contraception: ovarian stromal blood flow in women with polycystic ovaries—a possible new marker for diagnosis? Hum Reprod. 1995;10(8):1992–6.

    CAS  PubMed  Google Scholar 

  40. Applebaum M. The uterine biophysical profile. Ultrasound Obstet Gynecol. 1995;5(1):67–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ng EH, Yeung WS, Ho PC. Endometrial and sub endometrial vascularity are significantly lower in patients with endometrial volume 2.5 ml or less. Reprod Biomed Online. 2009;18:262–8.

    Article  PubMed  Google Scholar 

  42. Ng EHY, Chan CCW, Tang OS, Yeung WSB, Ho PC. Comparison of endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound between stimulated and natural cycles in the same patients. Hum Reprod. 2004;19:2385–90.

    Article  PubMed  Google Scholar 

  43. Ng EHY, Chan CCW, Tang OS, Yeung WSB, Ho PC. The role of endometrial and subendometrial blood flows measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during IVF treatment. Hum Reprod. 2006;21:164–70.

    Article  PubMed  Google Scholar 

  44. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound in patients with small intramural uterine fibroids during IVF treatment. Hum Reprod. 2005;20:501–6.

    Article  PubMed  Google Scholar 

  45. Ng EHY, Chan CCW, Tang OS, Yeung WSB, Ho PC. Endometrial and subendometrial vascularity is higher in pregnant patients with livebirth following ART than in those who suffer a miscarriage. Hum Reprod. 2007;22(4):1134–41.

    Article  PubMed  Google Scholar 

  46. Steer CV, Campbell S, Tan SL, et al. The use of transvaginal color flow imaging after in vitro fertilization to identify optimum uterine conditions before embryo transfer. Fertil Steril. 1992;57:372–6.

    CAS  PubMed  Google Scholar 

  47. Nakai A, Yokota A, Koshino T, Araki T. Assessment of endometrial perfusion with Doppler ultrasound in spontaneous and stimulated menstrual cycles. J Nippon Med Sch. 2002;69:328–32.

    Article  PubMed  Google Scholar 

  48. Yokota A, Nakai A, Oya A, Koshino T, Araki T. Changes in uterine and ovarian arterial impedance during the periovulatory period in conception and nonconception cycles. J Obstet Gynaecol Res. 2000;26:435–40.

    Article  CAS  PubMed  Google Scholar 

  49. Raine-Fenning N, Jayaprakasan K, Deb S, Clewes J, Joergner I, Bonaki SD, Johnson I. Automated follicle tracking improves measurement reliability in patients undergoing ovarian stimulation. Reprod Biomed Online. 2009;18(5):658–63.

    Article  CAS  PubMed  Google Scholar 

  50. Deb S, Batcha M, Campbell BK, Jayaprakasan K, Clewes JS, Hopkisson JF, Raine-Fenning NJ. The predictive value of the automated quantification of the number and size of small antral follicles in women undergoing ART. Hum Reprod. 2009;24(9):2124–32.

    Article  CAS  PubMed  Google Scholar 

  51. Al-Inany HG, Youssef MA, Aboulghar M, Broekmans F, Sterrenburg M, Smit J, et al. Gonadotrophin-releasing hormone antagonists for assisted re- productive technology. Cochrane Database Syst Rev. 2011;(5):CD001750.

    Google Scholar 

  52. Devroey P, Polyzos NP, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.

    Article  PubMed  Google Scholar 

  53. Hill MJ, Levens ED, Levy G, Ryan ME, Csokmay JM, DeCherney AH, et al. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis. Fertil Steril. 2012;97:1108–14.e1.

    Article  CAS  PubMed  Google Scholar 

  54. te Velde ER, Pearson PL. The variability of female reproductive aging. Hum Reprod Update. 2002;8:141–54.

    Article  Google Scholar 

  55. Thadhani R, Mutter WP, Wolf M, Levine RJ, Taylor RN, Sukhatme VP, Karumanchi SA. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab. 2004;89(2):770–5.

    Article  CAS  PubMed  Google Scholar 

  56. Esposito MA, Coutifaris C, Barnhart KT. A moderately elevated day 3 FSH concentration has limited predictive value, especially in younger women. Hum Reprod. 2002;17:118–23.

    Article  CAS  PubMed  Google Scholar 

  57. Thum MY, Abdalla HI, Taylor D. Relationship between women’s age and basal follicle-stimulating hormone levels with aneuploidy risk in in vitro fertilization treatment. Fertil Steril. 2008;90:315–21.

    Article  CAS  PubMed  Google Scholar 

  58. Massie JA, Burney RO, Milki AA, Westphal LM, Lathi RB. Basal follicle-stimulating hormone as a predictor of fetal aneuploidy. Fertil Steril. 2008;90:2351–5.

    Article  PubMed  Google Scholar 

  59. Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, et al. Executive summary: stages of reproductive aging workshop (STRAW). Fertil Steril. 2001;76:874–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lambalk CB. Value of elevated basal follicle-stimulating hormone levels and the differential diagnosis during the diagnostic subfertility work-up. Fertil Steril. 2003;79:489–90.

    Article  PubMed  Google Scholar 

  61. Galey-Fontaine J, Cédrin-Durnerin I, Chaïbi R, Massin N, Hugues JN. Age and ovarian reserve are distinct predictive factors of cycle outcome in low responders. Reprod Biomed Online. 2005;10(1):94–9.

    Article  PubMed  Google Scholar 

  62. Bancsi LF, Broekmans FJ, Mol BW, Habbema JD, te Velde ER. Performance of basal follicle-stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: a meta-analysis. Fertil Steril. 2003;79:1091–100.

    Article  PubMed  Google Scholar 

  63. Roberts JE, Spandorfer S, Fasouliotis SJ, Kashyap S, Rosenwaks Z. Taking a basal follicle-stimulating hormone history is essential before initiating in vitro fertilization. Fertil Steril. 2005;83:37–41.

    Article  PubMed  Google Scholar 

  64. Jayaprakasan K, Campbell B, Hopkisson J, Clewes J, Johnson I, Raine-Fenning N. Establishing the intercycle variability of three-dimensional ultrasonographic predictors of ovarian reserve. Fertil Steril. 2008;90(6):2126–32.

    Article  PubMed  Google Scholar 

  65. Abdalla H, Thum MY. Repeated testing of basal FSH levels has no predictive value for IVF outcome in women with elevated basal FSH. Hum Reprod. 2006;21:171–4.

    Article  CAS  PubMed  Google Scholar 

  66. Jain T, Soules MR, Collins JA. Comparison of basal follicle-stimulating hormone versus the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril. 2004;82:180–5.

    Article  CAS  PubMed  Google Scholar 

  67. Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod. 2005;20:923–7.

    Article  CAS  PubMed  Google Scholar 

  68. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3, are predictive of in vitro fertilization outcome. Fertil Steril. 1989;51:651–4.

    CAS  PubMed  Google Scholar 

  69. Bukulmez O, Arici A. Assessment of ovarian reserve. Curr Opin Obstet Gynecol. 2004;16(3):231–7.

    Article  PubMed  Google Scholar 

  70. Muttukrishna S, McGarrigle H, Wakim R, Khadum I, Ranieri DM, Serhal P. Antral follicle count, anti-mullerian hormone and inhibin B: predictors of ovarian response in assisted reproductive technology? BJOG. 2005;112:1384–90.

    Article  CAS  PubMed  Google Scholar 

  71. Seifer DB, MacLaughlin DT, Christian BP, Feng B, Shelden RM. Early follicular serum mullerian-inhibiting substance levels are associated with ovarian re- sponse during assisted reproductive technology cycles. Fertil Steril. 2002;77:468–71.

    Article  PubMed  Google Scholar 

  72. McIlveen M, Skull JD, Ledger WL. Evaluation of the utility of multiple endocrine and ultrasound measures of ovarian reserve in the prediction of cycle cancellation in a high-risk IVF population. Hum Reprod. 2007;22:778–85.

    Article  CAS  PubMed  Google Scholar 

  73. Tinkanen H, Bläuer M, Laippala P, Tuohimaa P, Kujansuu E. Correlation between serum inhibin B and other indicators of the ovarian function. Eur J Obstet Gynecol Reprod Biol. 2001;94(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  74. Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod. 2007;22:1837–40.

    Article  CAS  PubMed  Google Scholar 

  75. La Marca A, Stabile G, Artenisio AC, Volpe A. Serum anti-Mullerian hormone throughout the human menstrual cycle. Hum Reprod. 2006;21:3103–7.

    Article  PubMed  Google Scholar 

  76. Hehenkamp WJ, Looman CW, Themmen AP, de Jong FH, Te Velde ER, Broekmans FJ. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrinol Metab. 2006;91:4057–63.

    Article  CAS  PubMed  Google Scholar 

  77. Lee TH, Liu CH, Huang CC, Wu YL, Shih YT, Ho HN, Lee MS. Serum anti-Müllerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod. 2008;23(1):160–7.

    Article  CAS  PubMed  Google Scholar 

  78. Kwee J, Schats R, McDonnell J, Schoemaker J, Lambalk CB. The clomiphene citrate challenge test versus the exogenous follicle-stimulating hormone ovarian reserve test as a single test for identification of low responders and hyperresponders to in vitro fertilization. Fertil Steril. 2006;85(6):1714–22.

    Article  PubMed  Google Scholar 

  79. Mikhail G. Sex steroids in blood. Clin Obstet Gynaecol. 1967;10:29–39.

    Article  CAS  Google Scholar 

  80. Baird D, Fraser IS. Concentration of oestrone and oestradiol in follicular fluid and ovarian venous blood of women. Clin Endocrinol. 1975;4:259–66.

    Article  CAS  Google Scholar 

  81. McNatty KP, Baird DT, Bolton A, Chambers P, Corker CS, Mclean H. Concentration of oestrogens and androgens in human ovarian venous plasma and follicular fluid throughout the menstrual cycle. J Endocrinol. 1976;71:77–85.

    Article  CAS  PubMed  Google Scholar 

  82. Hillier SG, Reichert Jr LE, Van Hall EV. Control of preovulatory follicular estrogen biosynthesis in the human ovary. J Clin Endocrinol Metab. 1981;52:847–56.

    Article  CAS  PubMed  Google Scholar 

  83. Chikazawa K, Araki S, Tamada T. Morphological and endocrinological studies on follicular development during the human menstrual cycle. J Clin Endocrinol Metab. 1986;62:305–13.

    Article  CAS  PubMed  Google Scholar 

  84. Huang C-C, Lien Y-R, Chen H-F, Chen M-J, Shieh C-J, Yao Y-L, Chang C-H, Chen S-U, Yang Y-S. The duration of pre-ovulatory serum progesterone elevation before hCG administration affects the outcome of IVF/ICSI cycles. Hum Reprod. 2012;27(7):2036–45.

    Article  CAS  PubMed  Google Scholar 

  85. Melo MA, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohí J. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod. 2006;21:1503–7.

    Article  CAS  PubMed  Google Scholar 

  86. Segal S, Glatstein I, McShane P, Hotamisligil S, Ezcurra D, Carson R. Premature luteinization and in vitro fertilization outcome in gonadotropin/gonadotropin-releasing hormone antagonist cycles in women with polycystic ovary syndrome. Fertil Steril. 2009;91:1755–9.

    Article  CAS  PubMed  Google Scholar 

  87. Elnashar AM. Progesterone rise on the day of HCG administration (premature luteinization) in IVF: an overdue update. J Assist Reprod Genet. 2010;27:149–55.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Venetis CA, Kolibianakis EM, Bosdou JK, Tarlatzis BC. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update. 2013;19(5):433–57.

    Article  CAS  PubMed  Google Scholar 

  89. Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27:357–63.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen–thawed embryo transfer in normal responders. Fertil Steril. 2011;96:344–8.

    Article  PubMed  Google Scholar 

  91. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Embryo cryopreservation rescues cycles with premature luteinization. Fertil Steril. 2010;93:636–41.

    Article  CAS  PubMed  Google Scholar 

  92. Kolibianakis EM, Bourgain C, Papanikolaou EG, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of follicular phase by delaying hCG administration results in a higher incidence of endometrial advancement on the day of oocyte retrieval in GnRH antagonist cycles. Hum Reprod. 2005;20(9):2453–6.

    Article  CAS  PubMed  Google Scholar 

  93. Filicori M, Santoro N, Merriam GR, Crowley Jr WF. Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab. 1986;62:1136–44.

    Article  CAS  PubMed  Google Scholar 

  94. Soules MR, Steiner RA, Clifton DK, Cohen NL, Aksel S, Bremner WJ. Progesterone modulation of pulsatile luteinizing hormone secretion in normal women. J Clin Endocrinol Metab. 1984;58:378–83.

    Article  CAS  PubMed  Google Scholar 

  95. Nippoldt TB, Reame NE, Kelch RP, Marshall JC. The roles of estradiol and progesterone in decreasing luteinizing hormone pulse frequency in the luteal phase of the menstrual cycle. J Clin Endocrinol Metab. 1989;69:67–76.

    Article  CAS  PubMed  Google Scholar 

  96. Wehrenberg WB, Wardlaw SL, Frantz AG, Ferin M. Beta-Endorphin in hypophyseal portal blood: variations throughout the menstrual cycle. Endocrinology. 1982;111:879–81.

    Article  CAS  PubMed  Google Scholar 

  97. Niswender GD, Reimers TJ, Diekman MA, Nett TM. Blood flow: a mediator of ovarian function. Biol Reprod. 1976;14:64–81.

    Article  CAS  PubMed  Google Scholar 

  98. Miyazaki T, Tanaka M, Miyakoshi K, Minegishi K, Kasai K, Yoshimura Y. Power and colour Doppler ultrasonography for the evaluation of thevasculature of the human corpus luteum. Hum Reprod. 1998;13:2836–41.

    Article  CAS  PubMed  Google Scholar 

  99. Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80:1–29.

    CAS  PubMed  Google Scholar 

  100. Jarvela¨ IY, Niinima¨ki M, Martikainen H, Ruokonen A, Tapanainen JS. Ovarian response to the human chorionic gonadotrophin stimulation test in normal ovulatory women: the impact of regressing corpus luteum. Fertil Steril. 2007;87:1122–30.

    Article  PubMed  CAS  Google Scholar 

  101. Hazzard TM, Stouffer RL. Angiogenesis in ovarian follicular and luteal development. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:883–900.

    Article  CAS  PubMed  Google Scholar 

  102. Sugino N, Kashida S, Takiguchi S, Karube A, Kato H. Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2000;85:3919–24.

    CAS  PubMed  Google Scholar 

  103. Wulff C, Dickson SE, Duncan WC, Fraser HM. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod. 2001;16:2515–24.

    Article  CAS  PubMed  Google Scholar 

  104. Wulff C, Wilson H, Rudge JS, Wiegand SJ, Lunn SF, Fraser HM. Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). J Clin Endocrinol Metab. 2001;86:3377–86.

    CAS  PubMed  Google Scholar 

  105. XIE HN, Hata K, Manabe A, Ozaki T, Eda Y, Takahashi K, Miyazaki K. Associations between Doppler ultrasound-derived luteal blood flow indices and function hormonal profile in spontaneous and stimulated cycles. J Med Ultrason. 2001;28:139–46.

    Article  Google Scholar 

  106. Miro F, Aspinall LJ. The onset of the initial rise in follicle-stimulating hormone during the human menstrual cycle. Hum Reprod. 2005;20:96–100.

    Article  CAS  PubMed  Google Scholar 

  107. Mais V, Cetel NS, Muse KN, Quigley ME, Reid RL, Yen SSC. Hormonal dynamics during luteal-follicular transition. J Clin Endocrinol Metab. 1987;64:1109–14.

    Article  CAS  PubMed  Google Scholar 

  108. Messinis IE, Koutsoyiannis D, Milingos S, Tsahalina E, Seferiadis K, Lolis D, Templeton AA. Changes in pituitary response to GnRH during the luteal-follicular transition of the human menstrual cycle. Clin Endocrinol (Oxf). 1993;38:159–63.

    Article  CAS  Google Scholar 

  109. Roseff SJ, Bangah ML, Kettel LM, Vale W, Rivier J, Burger HG, Yen SSC. Dynamic changes in circulating inhibin levels during the luteal-follicular transition of the human menstrual cycle. J Clin Endocrinol Metab. 1989;69:1033–9.

    Article  CAS  PubMed  Google Scholar 

  110. Groome NP, Illingworth PJ, O’Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81:1401–5.

    CAS  PubMed  Google Scholar 

  111. Järvelä IY, Ruokonen A, Tekay A. Effect of rising hCG levels on the human corpus luteum during early pregnancy. Hum Reprod. 2008;23(12):2775–81.

    Article  PubMed  CAS  Google Scholar 

  112. Verhaegen J, Gallos ID, van Mello NM, Abdel-Aziz M, Takwoingi Y, Harb H, Coomarasamy A. Accuracy of single progesterone test to predict early pregnancy outcome in women with pain or bleeding: meta-analysis of cohort studies. BMJ Br Med J. 2012;345.

    Google Scholar 

  113. Condous G, Okaro E, Bourne T. The conservative management of early pregnancy complications: a review of the literature. Ultrasound Obstet Gynecol. 2003;22:420–30.

    Article  CAS  PubMed  Google Scholar 

  114. Diamond MP, DeCherney AH, Baretto P, Lunenfeld B. Multiple consecutive cycles of ovulation inductions with human menopausal gonadotropins. Gynecol Endocrinol. 1989;3:237.

    Article  CAS  PubMed  Google Scholar 

  115. Silverberg KM, Klein NA, Burns WN, Schenken RS, Olive DL. Consecutive versus alternating cycles of ovarian stimulation using human menopausal gonadotrophins. Hum Reprod. 1992;7:940.

    CAS  PubMed  Google Scholar 

  116. Akin JW, Shepard MK. The effects of baseline ovarian cysts on cycle fecundity in controlled ovarian hyperstimulation. Fertil Steril. 1993;59:453.

    CAS  PubMed  Google Scholar 

  117. Shoham Z, Di Carlo C, Patel A, Conway GS, Jacobs HS. Is it possible to run a successful ovulation induction program based solely on ultrasound monitoring? The importance of endometrial measurements. Fertil Steril. 1991;56:836.

    CAS  PubMed  Google Scholar 

  118. Dickey RP, Olar TT, Taylor SN, Curole DN, Matulich EM. Relationship of endometrial thickness and pattern to fecundity in ovulation induction cycles: effect of clomiphene citrate alone and with human menopausal gonadotropin. Fertil Steril. 1993;59:756.

    CAS  PubMed  Google Scholar 

  119. Reuter KL, Cohen S, Furey L, Baker S. Sonographic appearance of the endometrium and ovaries during cycles stimulated with human menopausal gonadotropin. J Reprod Med. 1996;41:509.

    CAS  PubMed  Google Scholar 

  120. Isaacs Jr JD, Wells CS, Williams DB, Odem RR, Gast MJ, Strickler RC. Endometrial thickness is a valid monitoring parameter in cycles of ovulation induction with menotropins alone. Fertil Steril. 1996;65:262.

    PubMed  Google Scholar 

  121. Klopper A, Aiman J, Besser M. Ovarian steroidogenesis resulting from treatment with menopausal gonadotropin. Eur J Obstet Gynecol Reprod Biol. 1974;4:25–30.

    Article  CAS  PubMed  Google Scholar 

  122. Ozturk O, Bhattacharya S, Saridogan E, Janiaux E, Templeton A. Role of utero-ovarian vascular impedance: predictor of ongoing pregnancy in an IVF-enbryo transfer programme. Reprod Biomed Online. 2004;9:299–305.

    Article  PubMed  Google Scholar 

  123. Mendez Lozano DH, Fraydman N, Levaillant JM, Fay S, Fraydman R, Fanchin R. The 3D vascular status of the follicle after hCG administration is qualitatively rather than quantitatively associated with its reproductive competence. Hum Reprod. 2007;22:1095–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri Patil MD, DGO, FCPS, DFP, FICOG .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Patil, M. (2016). Monitoring Ovarian Stimulation: Current Perspectives. In: Allahbadia, G., Morimoto, Y. (eds) Ovarian Stimulation Protocols. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1121-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1121-1_2

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1120-4

  • Online ISBN: 978-81-322-1121-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics