Skip to main content

Regulatory Principles of Follicular Development

  • Chapter
Book cover Ovarian Stimulation Protocols
  • 1281 Accesses

Abstract

Controlled ovarian stimulation (COS) is one of the key issues for the successful outcome of in vitro fertilization (IVF). Although retrieval of multiple oocytes is aimed at in COS, the regulatory principle governing the sequential program of follicular development in natural cycles is likely to be similar to those in stimulated cycles. In addition to the conventional pituitary-ovarian axis, the oocyte itself has now become a novel regulatory factor in folliculogenesis. As the entire process of follicular development proceeds stepwise from preantral to preovulatory stages under the influence of a functional interplay among these regulators, belonging to the hypothalamo-pituitary-ovarian axis, each with specific roles, the author intends to describe fundamental principles governing folliculogenesis first and then to propose a rational and realistic idea of selecting the most appropriate stimulation protocol of the indicated ones, tailored to meet the patients ovarian reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter RN, et al. Induction of ovulation for in-vitro fertilization using buserelin and gonadotropins. Lancet. 1984;2(8414):1284–5.

    Article  CAS  PubMed  Google Scholar 

  2. Oktay K, et al. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82(11):3748–51.

    CAS  PubMed  Google Scholar 

  3. Aaltonen J, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84(8):2744–50.

    CAS  PubMed  Google Scholar 

  4. Matzuk MM, et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.

    Article  CAS  PubMed  Google Scholar 

  5. Vitt UA, Hsueh AJ. Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Mol Cell Endocrinol. 2001;183(1–2):171–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hickey TE, et al. Androgen augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulose cells. Biol Reprod. 2005;73(4):825–32.

    Article  CAS  PubMed  Google Scholar 

  7. Orisaka M, et al. Growth differentiation factor-9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology. 2009;150(6):2740–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol. 2002;53(1–2):171–80.

    Article  CAS  PubMed  Google Scholar 

  9. Shimasaki S, et al. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.

    Article  CAS  PubMed  Google Scholar 

  10. McNatty KP, et al. Bone morphogenetic protein-15 and growth differentiation factor-9 co-operate to regulate granulose cell function. Reproduction. 2005;129(4):473–80.

    Article  CAS  PubMed  Google Scholar 

  11. Horie K, et al. Immunohistochemical localization of androgen receptor in the human ovary throughout the menstrual cycle in relation to oestrogen and progesterone receptor expression. Hum Reprod. 1992;7(2):184–90.

    CAS  PubMed  Google Scholar 

  12. Tetsuka M, Hillier SG. Differential regulation of aromatase and androgen receptor in granulosa cells. J Steroid Biochem Mol Biol. 1997;61(3–6):233–9.

    Article  CAS  PubMed  Google Scholar 

  13. Vendola KA, et al. Androgen stimulates early stages of follicular growth in the primate ovary. J Clin Invest. 1998;101(12):2622–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Parrot JA, Skinner MK. Kit-ligand/system cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140(9):4262–71.

    Google Scholar 

  15. Weenen C, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  16. Pellat L, et al. Anti-Mullerian hormone and polycystic ovary syndrome: a mountain too high? Reproduction. 2010;139(5):825–33.

    Article  Google Scholar 

  17. Ferraretti AP, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.

    Article  CAS  PubMed  Google Scholar 

  18. Brown JB. Pituitary control of ovarian function-concepts derived from gonadotrophin therapy. Aust N Z J Obstet Gynaecol. 1978;18(1):47–54.

    Article  CAS  Google Scholar 

  19. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9(2):188–91.

    CAS  PubMed  Google Scholar 

  20. Otsuka F, et al. Bone morphogenetic protein-15 inhibits follicle stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001;276(14):11387–92.

    Article  CAS  PubMed  Google Scholar 

  21. Tajima K, et al. Ovarian theca cells in follicular function. Reprod Biomed Online. 2007;15(5):591–609.

    Article  CAS  PubMed  Google Scholar 

  22. Kondo H, et al. Immunological evidence for the expression of the Fas antigen in the infant and adult human ovary during follicular regression and atresia. J Clin Endocrinol Metab. 1996;81(7):2702–10.

    CAS  PubMed  Google Scholar 

  23. Segaloff DL, et al. Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization. Mol Endocrinol. 1990;4(12):1856–65.

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda S, et al. Effect of estrogen on the expression of luteinizing hormone-human chorionic gonadotropin receptor messenger ribonucleic acid in cultured rat granulose cells. Endocrinology. 2008;149(4):1524–33.

    Article  CAS  PubMed  Google Scholar 

  25. Armstrong DT, et al. Regulation of follicular estrogen biosynthesis. In: Midgely AR et al., editors. Ovarian follicular development and function. New York: Raven; 1979. p. 169–82.

    Google Scholar 

  26. Mori T, et al. Functional and structural relationships in steroidogenesis in vitro by human ovarian follicles during maturation and ovulation. J Clin Endocrinol Metab. 1978;47(5):955–66.

    Article  CAS  PubMed  Google Scholar 

  27. Tetsuka M, Hillier SG. Androgen receptor gene expression in rat granulosa cells: the role of follicle stimulating hormone (FSH) and steroid hormones. Endocrinology. 1996;137(10):4392–7.

    CAS  PubMed  Google Scholar 

  28. Robker R, Richards J. Hormone induced proliferation and differentiation of granulose cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol. 1998;12(7):924–40.

    Article  CAS  PubMed  Google Scholar 

  29. Groome NP, et al. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81(4):1401–5.

    CAS  PubMed  Google Scholar 

  30. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1(2):81–7.

    CAS  PubMed  Google Scholar 

  31. Mori T, et al. Meiosis-facilitating effects in vivo of antiserum to estrone on follicular oocytes in immature oocytes treated with gonadotropins. Biol Reprod. 1979;20(4):681–8.

    Article  CAS  PubMed  Google Scholar 

  32. Filicori M, et al. Current concepts and novel applications of LH activity in ovarian stimulation. Trends Endocrinol Metab. 2003;14(6):267–73.

    Article  CAS  PubMed  Google Scholar 

  33. Pradeep PK, et al. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology. 2002;143(8):2930–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tesarik J, Mendosa C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80(4):1438–43.

    CAS  PubMed  Google Scholar 

  35. Younis JS, et al. Increased progesterone/estradiol ratio in the late follicular phase could be related to low ovarian reserve in in vitro fertilization-embryo transfer cycles with a long gonadotropin-releasing hormone agonist protocol. Fertil Steril. 2001;76(2):294–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fleming R, Jenkins J. The source and implications of progesterone rise during the follicular phase of assisted reproduction cycles. Reprod Biomed Online. 2010;21(4):446–9.

    Article  CAS  PubMed  Google Scholar 

  37. Bosch E, et al. Impact of luteinizing hormone administration on gonadotropin-releasing hormone antagonist cycles: an age-adjusted analysis. Fertil Steril. 2011;95(3):1031–6.

    Article  CAS  PubMed  Google Scholar 

  38. Fournet N, et al. Transforming growth factor-β inhibits ovarian 17α-hydroxylase activity by a direct noncompetitive mechanism. Endocrinology. 1996;137(1):166–74.

    CAS  PubMed  Google Scholar 

  39. Smitz J, et al. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum Reprod. 2007;22(3):676–87.

    Article  CAS  PubMed  Google Scholar 

  40. Hillier SG. Regulatory functions for inhibin and activin in human ovaries. J Endocrinol. 1991;131(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  41. Devroey P, et al. A randomized assessor-blind trial comparing highly purified hMG and recombinant FSH in a GnRH antagonist cycle with compulsory single-blastocyst transfer. Fertil Steril. 2012;97(3):561–71.

    Article  CAS  PubMed  Google Scholar 

  42. Andersen AN, et al. Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod. 2006;21(12):3217–27.

    Article  CAS  PubMed  Google Scholar 

  43. Filicori M, et al. Modulation of folliculogenesis and steroidogenesis in women by graded menotrophin administration. Hum Reprod. 2002;17(8):2009–15.

    Article  CAS  PubMed  Google Scholar 

  44. Wolfenson C, et al. Batch-to-batch consistency of human-derived gonadotrophin preparations compared with recombinant preparations. Reprod Biomed Online. 2005;10(4):442–54.

    Article  CAS  PubMed  Google Scholar 

  45. Andersen CY. Characteristics of human follicular fluid associated with successful conception after in vitro fertilization. J Clin Endocrinol Metab. 1993;77(5):1227–34.

    CAS  PubMed  Google Scholar 

  46. Fauser BC, et al. Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update. 2008;14(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  47. Silverberg KM, et al. Serum progesterone levels predict success of in vitro fertilization/embryo transfer in patients stimulated with leuprolide acetate and human menopausal gonadotropins. J Clin Endocrinol Metab. 1991;73(4):797–803.

    Article  CAS  PubMed  Google Scholar 

  48. Ziebe S, et al. Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF. Hum Reprod. 2007;22(9):2404–13.

    Article  CAS  PubMed  Google Scholar 

  49. Bosch E, Ezcurra D. Individualized controlled ovarian stimulation (iCOS): maximizing success rates for assisted reproductive technology patients. Reprod Biol Endocrinol. 2011;9:82–90.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Choi B, et al. Personalized prediction of first cycle in vitro fertilization success. Fertil Steril. 2013;99(7):1905–11.

    Article  PubMed  Google Scholar 

  51. Westwrgaard LG, et al. Increased risk of early pregnancy loss by profound suppression of luteinizing hormone during ovarian stimulation in normogonadotrophic women undergoing assisted reproduction. Hum Reprod. 2000;15(5):1003–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahide Mori MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mori, T. (2016). Regulatory Principles of Follicular Development. In: Allahbadia, G., Morimoto, Y. (eds) Ovarian Stimulation Protocols. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1121-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1121-1_1

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1120-4

  • Online ISBN: 978-81-322-1121-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics