Skip to main content

On the Enzyme Specificity for the Synthesis of Prebiotic Galactooligosaccharides

  • Chapter
  • First Online:
Advances in Enzyme Biotechnology

Abstract

β-Galactosidases catalyze transgalactosylation reactions in which lactose as well as the glucose and galactose released by hydrolysis serve as galactosyl acceptors yielding a series of galactooligosaccharides (GOS). GOS constitute the major part of oligosaccharides in human milk and are responsible of the formation of a Bifidus microbiota in the intestine of milk-fed babies. The bioactive properties of GOS depend on their chemical composition, structure, and polymerization degree. We have analyzed the product specificity of various β-galactosidases, namely, those from Kluyveromyces lactis, Bacillus circulans, and Aspergillus oryzae. The major products synthesized by B. circulans β-galactosidase contained only β-(1 → 4) bonds, whereas the enzyme from K. lactis synthesized GOS with major presence of β-(1 → 6) linkages. The A. oryzae β-galactosidase formed preferentially β-(1 → 6) bonds, with minor proportion of β-(1 → 3). B. circulans and K. lactis β-galactosidases produce nearly 45–50 % (w/w) GOS, whereas the A. oryzae enzyme produces less than 30 % (w/w). Another difference between the three enzymes was the polymerization degree of products; in particular, for a GOS mixture enriched in disaccharides, K. lactis and A. oryzae β-galactosidases are the best choices. In contrast, the B. circulans enzyme would be preferable for a GOS product with a high trisaccharides and tetrasaccharides content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam AC, Rubio-Texeira M, Polaina J (2004) Lactose: the milk sugar from a biotechnological perspective. Crit Rev Food Sci Nutr 44:553–557

    Article  PubMed  CAS  Google Scholar 

  • Albayrak N, Yang ST (2002a) Immobilization of Aspergillus oryzae beta-galactosidase on tosylated cotton cloth. Enzyme Microb Technol 31:371–383

    Article  CAS  Google Scholar 

  • Albayrak N, Yang ST (2002b) Immobilization of beta-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog 18:240–251

    Article  PubMed  CAS  Google Scholar 

  • Albayrak N, Yang ST (2002c) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  PubMed  CAS  Google Scholar 

  • Alvaro-Benito M, De Abreu M, Fernandez-Arrojo L, Plou FJ, Jimenez-Barbero J, Ballesteros A, Polaina J, Fernandez-Lobato M (2007) Characterization of a b-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol 132:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ansari SA, Husain Q (2010) Lactose hydrolysis by β-galactosidase immobilized on concanavalin A-cellulose in batch and continuous mode. J Mol Catal B: Enzym 63:68–74

    Article  CAS  Google Scholar 

  • Bridiau N, Issaoui N, Maugard T (2010) The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol Prog 26:1278–1289

    Article  PubMed  CAS  Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Cardelle-Cobas A, Corzo N, Olano A, Pelaez C, Requena T, Avila M (2011) Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int J Food Microbiol 149:81–87

    Article  PubMed  CAS  Google Scholar 

  • Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus. Biotechnol Lett 28:793–797

    Article  PubMed  CAS  Google Scholar 

  • Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, Rastall RA (2005) Synthesis of galacto-oligosaccharide from lactose using beta-galactosidase from Kluyveromyces lactis: studies on batch and continuous UF membrane-fitted bioreactors. Biotechnol Bioeng 89:434–443

    Article  PubMed  CAS  Google Scholar 

  • Farkas E, Schmidt U, Thiem J, Kowalczyk J, Kunz M, Vogel M (2003) Regioselective synthesis of galactosylated tri- and tetrasaccharides by use of β-galactosidase from Bacillus circulans. Synthesis 5:699–706

    Google Scholar 

  • Fontes EAF, Passos FML, Passos FJV (2001) A mechanistical mathematical model to predict lactose hydrolysis by β-galactosidase in a permeabilized cell mass of Kluyveromyces lactis: validity and sensitivity analysis. Process Biochem 37:267–274

    Article  CAS  Google Scholar 

  • Freitas FF, Marquez LDS, Ribeiro GP, Brandao GC, Cardoso VL, Ribeiro EJ (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58–59:33–38

    Article  Google Scholar 

  • Fujimoto H, Miyasato M, Ito Y, Sasaki T, Ajisaka K (1998) Purification and properties of recombinant β-galactosidase from Bacillus circulans. Glycoconj J 15:155–160

    Article  PubMed  CAS  Google Scholar 

  • Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae beta-galactosidase. Food Chem 97:426–430

    Article  CAS  Google Scholar 

  • Genari AN, Passos FV, Passos FML (2003) Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 86:2783–2789

    Article  PubMed  CAS  Google Scholar 

  • Ghazi I, Fernandez-Arrojo L, Gomez de Segura AG, Alcalde M, Plou FJ, Ballesteros A (2006) Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides. J Agric Food Chem 54:2964–2968

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Ottaway RA (2000) Prebiotics: new developments in functional foods. Crit Rev Foof Sci. Chandos, Oxford

    Book  Google Scholar 

  • Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318

    Article  CAS  Google Scholar 

  • Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2011) Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from Bacillus circulans. J Agric Food Chem 59:3366–3372

    Article  PubMed  CAS  Google Scholar 

  • Guerrero C, Vera C, Plou F, Illanes A (2011) Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial beta-galactosidases. J Mol Catal B: Enzym 72:206–212

    Article  CAS  Google Scholar 

  • Guidini CZ, Fischer J, Resende MMD, Cardoso VL, Ribeiro EJ (2011) β-Galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: kinetics and stability during the hydrolysis of lactose. J Mol Catal B: Enzym 71:139–145

    Article  CAS  Google Scholar 

  • Guidini CZ, Fischer J, Santana LNS, Cardoso VL, Ribeiro EJ (2010) Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking. Biochem Eng J 52:137–143

    Article  CAS  Google Scholar 

  • Guleç HA, Gürdaç S, Albayrak N, Mutlu M (2010) Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioproc Eng 15:1006–1015

    Article  Google Scholar 

  • Hansson T, Adlercreutz P (2001) Optimization of galactooligosaccharide production from lactose using beta-glycosidases from hyperthermophiles. Food Biotechnol 15:79–97

    Article  CAS  Google Scholar 

  • Hsu CA, Lee SL, Chou CC (2007) Enzymatic production of galactooligosaccharides by beta-galactosidase from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230

    Article  PubMed  CAS  Google Scholar 

  • Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252

    Article  CAS  Google Scholar 

  • Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Irazoqui G, Giacomini C, Batista-Viera F, Brena BM, Cardelle-Cobas A, Corzo N, Jimeno ML (2009) Characterization of galactosyl derivatives obtained by transgalactosylation of lactose and different polyols using immobilized β-galactosidase from Aspergillus oryzae. J Agric Food Chem 57:11302–11307

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki KI, Nakajima M, Nakao SI (1996) Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem 31:69–76

    Article  CAS  Google Scholar 

  • Klewicki R (2007) The stability of gal-polyols and oligosaccharides during pasteurization at a low pH. LWT- Food Sci Technol 40:1259–1265

    Article  CAS  Google Scholar 

  • Kondo A, Liu Y, Furuta M, Fujita Y, Matsumoto T, Fukuda H (2000) Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme Microb Technol 27:806–811

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Kim CS, Oh DK (2004) Lactulose production by beta-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl Microbiol Biotechnol 64:787–793

    Article  PubMed  CAS  Google Scholar 

  • Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D (2010) β-Galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol J 5:838–847

    Article  PubMed  CAS  Google Scholar 

  • Manera AP, De Almeida Costa FA, Rodrigues MI, Kalil SJ, Maugeri Filho F (2010) Galacto-oligosaccharides production using permeabilized cells of Kluyveromyces marxianus. Int J Food Eng 6, article 4

    Google Scholar 

  • Martinez-Villaluenga C, Cardelle-Cobas A, Corzo N, Lano A, Villamiel M (2008) Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by beta-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem 107:258–264

    Article  CAS  Google Scholar 

  • Matella NJ, Dolan KD, Lee YS (2006) Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. J Food Sci 71:C363–C368

    Article  CAS  Google Scholar 

  • Maugard T, Gaunt D, Legoy MD, Besson T (2003) Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized beta-galactosidase from Kluyveromyces lactis. Biotechnol Lett 25:623–629

    Article  PubMed  CAS  Google Scholar 

  • Mayer J, Conrad J, Klaiber I, Lutz-Wahl S, Beifuss U, Fischer L (2004) Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. J Agric Food Chem 52:6983–6990

    Article  PubMed  CAS  Google Scholar 

  • Mozaffar Z, Nakanishi K, Matsuno R (1984) Purification and properties of β-galactosidases from Bacillus circulans. Agric Biol Chem 48:3053–3061

    Article  CAS  Google Scholar 

  • Mozaffar Z, Nakanishi K, Matsuno R (1986) Continuous production of galacto-oligosaccharides from lactose using immobilized beta-galactosidase from Bacillus circulans. Appl Microbiol Biotechnol 25:224–228

    CAS  Google Scholar 

  • Neri DFM, Balcao VM, Cardoso SM, Silva AMS, Domingues MDRM, Torres DPM, Rodrigues LRM, Carvalho LB, Teixeira JAC (2011) Characterization of galactooligosaccharides produced by β-galactosidase immobilized onto magnetized Dacron. Int Dairy J 21:172–178

    Article  CAS  Google Scholar 

  • Pal A, Pal V, Ramana KV, Bawa AS (2009) Biochemical studies of β-galactosidase from Kluyveromyces lactis. J Food Sci Technol 46:217–220

    CAS  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Kennedy JF, Bera MB (2007) Production of lactose-hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem 101:786–790

    Article  CAS  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Kennedy JF (2011) Hydrolysis of milk lactose in a packed bed reactor system using immobilized yeast cells. J Chem Technol Biotechnol 86:42–46

    Article  CAS  Google Scholar 

  • Park AR, Oh DK (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Rodriguez A, Fernández-Leiro R, Cerdán E, Becerra M, Sanz-Aparicio J (2010) Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from Kluyveromyces lactis. Acta Crystallogr Sect F F66:297–300

    Article  Google Scholar 

  • Pinho JMR, Passos FML (2011) Solvent extraction of β-galactosidase from Kluyveromyces lactis yields a stable and highly active enzyme preparation. J Food Biochem 35:323–336

    Article  CAS  Google Scholar 

  • Playne MJ, Bennett LE, Smithers GW (2003) Functional dairy foods and ingredients. Aust J Dairy Technol 58:242–264

    CAS  Google Scholar 

  • Plou FJ, de Gómez Segura A, Ballesteros A (2007) Application of glycosidases and transglycosidases for the synthesis of oligosaccharides. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and application. Springer, New York

    Google Scholar 

  • Rabiu BA, Jay AJ, Gibson GR, Rastall RA (2001) Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Appl Environ Microbiol 67:2526–2530

    Article  PubMed  CAS  Google Scholar 

  • Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, Pot B, Reid G, Rowland IR, Sanders ME (2005) Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 52:145–152

    Article  PubMed  CAS  Google Scholar 

  • Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837S

    PubMed  CAS  Google Scholar 

  • Rodriguez-Alegria ME, Enciso-Rodriguez A, Ortiz-Soto ME, Cassani J, Olvera C, Munguia AL (2010) Fructooligosaccharide production by a truncated Leuconostoc citreum inulosucrase mutant. Biocatal Biotransform 28:51–59

    Article  CAS  Google Scholar 

  • Rodriguez-Colinas B, De Abreu MA, Fernandez-Arrojo L, De Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Ballesteros AO, Fernandez-Lobato M, Plou FJ (2011) Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: comparative analysis of permeabilized cells versus soluble enzyme. J Agric Food Chem 59:10477–10484

    Article  PubMed  CAS  Google Scholar 

  • Shadid R, Haarman M, Knol J, Theis W, Beermann C, Rjosk-Dendorfer D, Schendel DJ, Koletzko BV, Krauss-Etschmann S (2007) Effects of galactooligosaccharide and long-chain fructooligosaccharide supplementation during pregnancy on maternal and neonatal microbiota and immunity – a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 86:1426–1437

    PubMed  CAS  Google Scholar 

  • Sheu DC, Li SY, Duan KJ, Chen CW (1998) Production of galactooligosaccharides by beta-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnol Tech 12:273–276

    Article  CAS  Google Scholar 

  • Siso MIG, Cerdán E, Picos MAF, Ramil E, Belmonte ER, Torres AR (1992) Permeabilization of Kluyveromyces lactis cells for milk whey saccharification: a comparison of different treatments. Biotechnol Tech 6:289–292

    Article  CAS  Google Scholar 

  • Song J, Abe K, Imanaka H, Imamura K, Minoda M, Yamaguchi S, Nakanishi K (2011a) Causes of the production of multiple forms of β-galactosidase by Bacillus circulans. Biosci Biotechnol Biochem 75:268–278

    Article  PubMed  CAS  Google Scholar 

  • Song J, Imanaka H, Imamura K, Minoda M, Katase T, Hoshi Y, Yamaguchi S, Nakanishi K (2011b) Cloning and expression of a β-galactosidase gene of Bacillus circulans. Biosci Biotechnol Biochem 75:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Splechtna B, Nguyen TH, Steinbock M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using beta-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4999–5006

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Kagamiishi A, Kiuchi A, Horiuchi T (1975) Purification and properties of β-galactosidase from Aspergillus oryzae. J Biochem 77:241–247

    PubMed  CAS  Google Scholar 

  • Toba T, Yokota A, Adachi S (1985) Oligosaccharide structures formed during the hydrolysis of lactose by Aspergillus oryzae β-galactosidase. Food Chem 16:147–162

    Article  CAS  Google Scholar 

  • Torres DP, Goncalves M, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9:438–454

    Article  CAS  Google Scholar 

  • Torres P, Batista-Viera F (2012) Immobilization of β-galactosidase from Bacillus circulans onto epoxy-activated acrylic supports. J Mol Catal B: Enzym 74:230–235

    Article  CAS  Google Scholar 

  • Tuohy KM, Rouzaud GCM, Bruck WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using prebiotics – assessment of efficacy. Curr Pharm Des 11:75–90

    Article  PubMed  CAS  Google Scholar 

  • Urrutia P, Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes A, Plou FJ (2013) Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J Agric Food Chem 61:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Kubota S, Ohi H (1993) A convenient synthesis of β-d-galactosyl disaccharide derivatives using the β-d-galactosidase from Bacillus circulans. Carbohydr Res 244:315–323

    Article  PubMed  CAS  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol 50:188–194

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Xiaoli X, Shufen T, Bing H, Lin T, Yi S, Hong Y, Xiaoxiong Z (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-galactosidase from Bacillus circulans. J Agric Food Chem 57:3927–3933

    Article  Google Scholar 

  • Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I (1995) Formation of oligosaccharides from lactose by Bacillus circulans β-galactosidase. Biosci Biotechnol Biochem 59:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Yang ST, Marchio JL, Yen JW (1994) A dynamic light scattering study of β-galactosidase: environmental effects on protein conformation and enzyme activity. Biotechnol Prog 10:525–531

    Article  PubMed  CAS  Google Scholar 

  • Zhou QZ, Chen XD, Li X (2003) Kinetics of lactose hydrolysis by β-galactosidase of Kluyveromyces lactis immobilized on cotton fabric. Biotechnol Bioeng 81:127–133

    Article  PubMed  CAS  Google Scholar 

  • Zhou QZK, Chen XD (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem Eng J 9:33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ramiro Martínez (Novozymes A/S, Madrid, Spain) for supplying Lactozym and for useful suggestions. We thank DSM Food Specialties for supplying Maxilact LGX 5000. Projects BIO2010-20508-C04-01 and BIO2010-20508-C04-04 from Spanish Ministry of Science and Innovation supported this research. B.R.C and M.A. were supported by fellowships from the Spanish Ministries of Science and Innovation (FPI program) and Education and Culture (FPU program), respectively. P. U was supported by a PhD Fellowship and international internship from Conicyt-Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Plou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Rodriguez-Colinas, B. et al. (2013). On the Enzyme Specificity for the Synthesis of Prebiotic Galactooligosaccharides. In: Shukla, P., Pletschke, B. (eds) Advances in Enzyme Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1094-8_3

Download citation

Publish with us

Policies and ethics