Skip to main content

Role of Enzymes and Proteins in Plant-Microbe Interaction: A Study of M. oryzae Versus Rice

  • Chapter
  • First Online:
Book cover Advances in Enzyme Biotechnology

Abstract

The wall interface between rice and Magnaporthe oryzae plays an important role in the outcome of their interactions, i.e., resistance or susceptibility. A number of enzymes and proteins are involved in both external and internal interactions. The blast fungus secretes many enzymes which help in the plant cell wall degradation and the entry of fungus into the plant cell which results in the development of disease. To restrict the growth and development of blast fungus, the rice plants have also developed many defense mechanisms like generation of defense substances and hydrogen peroxide catalysis by the production of some enzymes in plant cells. These enzymes occur frequently in many isoforms and help in plant defense. Proteins also participate in the defense against blast fungus attack. These proteins are called as pathogenesis-related proteins (PRs). PR proteins have activities of both proteins and hydrolytic enzymes. Chitinase and β-1,3-glucanase are the most common PR proteins which can hydrolyze major components of blast fungal cell walls, chitin and β-1,3-glucan, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Diego

    Google Scholar 

  • Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47:79–87

    Article  CAS  Google Scholar 

  • Apel-Birkhold PC, Walton JD (1996) Cloning, disruption, and expression of two endo-β-1,4Xylaanse genes, XYL2 and XYL3 from Cochliobolus carbonum. Appl Environ Microbiol 62:4129–4135

    PubMed  CAS  Google Scholar 

  • Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  PubMed  CAS  Google Scholar 

  • Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899

    Article  PubMed  CAS  Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal G (2001) Microbial xylanase and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Belien T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interact 19:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Tenkanen M (1998) Enzymology of hemicelluloses degradation. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: basic biology, taxonomy and genetics. Taylor and Francis, London, pp 25–47

    Google Scholar 

  • Carlile AJ, Bindschedler LV, Bailey AM, Bowyer P, Clarkson JM, Cooper RM (2000) Characterization of SNP1, a cell wall-degrading trypsin, produced during infection by Stagonospora nodorum. Mol Plant Microbe Interact 13:538–550

    Article  PubMed  CAS  Google Scholar 

  • Choi W, Dean R (1997) The adenylate cyclase gene MAC1 of Magnaporthe oryzae controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    PubMed  CAS  Google Scholar 

  • Cooper R, Longman D, Campbell A, Henry M, Lees P (1988) Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiol Mol Plant Pathol 32:33–47

    Article  Google Scholar 

  • Dean R et al (2005) The genome sequence of the rice blast fungus Magnaporthe oryzae. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe oryzae Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    PubMed  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Scyperski T, Bruyere T, Ramage P, Mosinger E, Wutrich K (1997) NMR solution structure of the pathogenesis-related protein p 14a. J Mol Biol 266:576–593

    Article  PubMed  CAS  Google Scholar 

  • Foster AJ, Jenkinson JM, Talboit NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe oryzae. Eur Mol Biol Organ J 22:225–235

    Article  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    Article  PubMed  CAS  Google Scholar 

  • Giesbert S, Lepping H, Tenberge K, Tudzynski P (1998) The xylanolytic system of Claviceps purpurea: cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phytopathology 88:1020–1030

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RD, Johnson AM, Dean RA (1996) Chemical signal responsible for appressorium formation in the rice blast fungus Magnaporthe oryzae. Physiol Mol Plant Pathol 48:335–346

    Article  CAS  Google Scholar 

  • Gomez-Gomez E, Ruiz-Roldan MC, Di Pietro A, Roncero MI, Hera C (2002) Role in pathogenesis of two endo-β-1,4-Xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet Biol 35:213–222

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Hatsch D, Phalip V, Petkovski E, Jeltsch JM (2006) Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed. Biochem Biophys Res Commun 345:959–966

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed  CAS  Google Scholar 

  • Ishii S (1998) Factors influencing protoplast viability of suspension-cultured rice cells during isolation process. Plant Physiol 88:26–29

    Article  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67:847–855

    Article  PubMed  CAS  Google Scholar 

  • Koiwa H, Sato F, Yamada Y (1994) Characterization of accumulation of tobacco PR-5 proteins by IEF-immunoblot analysis. Plant Cell Physiol 35:821–827

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    PubMed  CAS  Google Scholar 

  • Kulkarni RD, Thon MR, Pan HQ, Dean RA (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24.

    Article  PubMed  Google Scholar 

  • Lagrimini LM, Burkhart W, Moyer M, Rothstein M (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc Natl Acad Sci USA 84:7542–7546

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lebeda A, Jancova D, Luhova L (1999) Enzymes in fungal plant pathogenesis. Phyton (Austria) 39:51–56

    CAS  Google Scholar 

  • Lee YH, Dean R (1994) Hydrophobicity of contact surface induces appressorium formation in Magnaporthe oryzae. FEMS Microbiol Lett 115:71–76

    Article  Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis related proteins are chitinase. Proc Natl Acad Sci USA 84:6750–6754

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen U (1993) Plant-cell wall degrading enzymes of Septoria nodorum. Physiol Mol Plant Pathol 43:121–134

    Article  CAS  Google Scholar 

  • Lequeu J, Fauconnier ML, Chammai A, Bronner R, Blee E (2003) Formation of plant cuticle: evidence for the occurrence of the peroxygenase pathway. Plant J 36:155–164

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ Sci 5:133–136

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Apotheker-de Groot M, Van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJC, Van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Streit L, Staub T (1988) A pathogenesis-related protein in cucumber is a chitinase. Physiol Mol Plant Pathol 33:1–9

    Article  CAS  Google Scholar 

  • Nawrath C (2006) Unravelling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi M (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Mol Biol 51:143–152

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Koizumi N, Kusano T, Sano H (2000) Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol 42:479–488

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:298–308

    Article  Google Scholar 

  • Ruiz MC, DiPietro A, Roncero MIG (1997) Purification and characterization of an acidic endo-beta-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f sp. lycopersici. FEMS Microbiol Lett 148:75–82

    Article  CAS  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442–1452

    Article  PubMed  CAS  Google Scholar 

  • Sato F, Koiwa H, Sakai Y, Kato N, Yamada Y (1995) Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem Biophys Res Commum 211:909–913

    Article  CAS  Google Scholar 

  • Schoeltens-Toma IMJ, Joosten MHA, De Wit PJGM (1991) Appearance of pathogen-related proteins in plant hosts: relationships between compatible and incompatible interactions. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum Press, New York/London, pp 247–265

    Chapter  Google Scholar 

  • Schweizer P, Jeanguenat A, Mdossinger E, Metraux JP (1994) Plant protection by free cutin monomers in two cereal pathosystems. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interaction. Springer Publication, The Netherlands, pp 371–374

    Chapter  Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2008) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett. doi:10.1007/s10529-008-9856-5

    PubMed  Google Scholar 

  • Skamnioti P, Gurr SJ (2008) Cutinase and hydrophobin interplay, a herald for pathogenesis? Plant Signal Behav 3:248–250

    Article  PubMed  Google Scholar 

  • Skamnioti P, Henderson C, Zhang Z, Robinson Z, Gurr SJ (2007) A novel role of catalase B in the maintenance of fungal cell wall integrity during host invasion in the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 20:568–580

    Article  PubMed  CAS  Google Scholar 

  • Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K (1986) Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” proteins in cultured parsley cells. Proc Natl Acad Sci USA 83:2427–2430

    Article  PubMed  CAS  Google Scholar 

  • Song F, Goodman RM (2001) Molecular biology of disease resistance in rice. Physiol Mol Plant pathol 59:1–11

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  PubMed  CAS  Google Scholar 

  • Sumizu K, Yoshikawa M, Tanaka S (1961) Studies on xylanase of Pyricularia oryzae. J Biochem 50:538–543

    PubMed  CAS  Google Scholar 

  • Sweigard JA, Chumley FG, Valent B (1992a) Disruption of a Magnaporthe oryzae cutinase gene. Mol Gen Genet 232:183–190

    PubMed  CAS  Google Scholar 

  • Sweigard JA, Chumley FG, Valent B (1992b) Cloning and analysis of Cut1, a cutinase gene from Magnaporthe oryzae. Mol Gen Genet 232:174–182

    PubMed  CAS  Google Scholar 

  • Takeda S, Sato F, Ida K, Yamada Y (1991) Nucleotide sequence of a cDNA for osmotin-like protein from cultured tobacco cells. Plant Physiol 97:844–846

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Ishii-Minami N, Saitoh KI, Otake Y, Kaku H, Shibuya N, Nishizawa Y, Minami E (2011) The role of catalase-peroxidase secreted by Magnaporthe oryzae during early infection of rice. Mol Plant Microbe Interact 24:163–171

    Article  PubMed  CAS  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Van Loon LC (1982) Regulation of changes in proteins and enzymes associated with active defense against virus infection. In: Wood RKS (ed) Active defense mechanisms in plants. Plenum Press, New York, pp 247–273

    Chapter  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12:245–264

    Article  Google Scholar 

  • Vera P, Conejero V (1988) Pathogenesis-related proteins of tomato P-69 as an alkaline endoproteinase. Plant Physiol 87:58–63

    Article  PubMed  CAS  Google Scholar 

  • Wegener S, Ransom RF, Walton JD (1999) A unique eukaryotic β-xylosidase gene from the phytopathogenic fungus Cochliobolus carbonum. Microbiology 145:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Zhang Z, Anderson CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36:101–112

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Ham KS, Darvill AG, Albersheim P (1997) Deletion of two endo-β-1,4-Xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol Plant Microbe Interact 10:700–708

    Article  CAS  Google Scholar 

  • Wu SC, Helley JE, Luttig C, Fernekes LM, Gutierrez-Sanchez G, Darvill AG, Albersheim P (2006) Identification of an endo-β-1,4-d-Xylanase from Magnaporthe oryzae by gene knockout analysis, purification, and heterologous expression. Am Soc Microbiol 72:986–993

    CAS  Google Scholar 

  • Zhang Z, Collinge DB, Thordal-Christensen H (1995) Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J 8:139–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements 

This chapter is a part of NAIP-C4, ICAR work. The authors thank the National Agriculture Innovative Project-C4 for supporting the work. The authors also express the sincere thanks to Miss Neha Nancy Toppo for her valuable inputs in the conclusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Imam, J., Variar, M., Shukla, P. (2013). Role of Enzymes and Proteins in Plant-Microbe Interaction: A Study of M. oryzae Versus Rice. In: Shukla, P., Pletschke, B. (eds) Advances in Enzyme Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1094-8_10

Download citation

Publish with us

Policies and ethics