Skip to main content

Influence of Bioinoculants on Growth and Nutrient Uptake in Dalbergia latifolia Roxb. under Tropical Nursery Condition

  • Chapter
  • First Online:
Microbiological Research In Agroecosystem Management
  • 1107 Accesses

Abstract

Studies on bioinoculants interaction with D. latifolia seedlings rhizosphere experiments were carried out in tropical nursery condition on CRBD up to 180 DAT. Initially, host plant native microbial profiles were analyzed and the associative bioinoculants were identified. Beneficial bioinoculants such as N2-fixing (Rhizobium and Azospirillum), phosphate-solubilizing bacteria, Trichoderma and AM fungi are inoculated individually or in various combinations and uninoculated, totally 25 treatments (T1–T25). The bioinoculants efficiency for growth, biomass, nodulation, soil and tissues macro and micronutrients, NUE, chlorophyll and Leghemoglobin contents, rhizosphere microbial populations, SQI of D. latifolia seedlings was significantly increased at 60, 120 and 180 DAT. In general, combined treatments of T25, followed by T24 seedlings, are significantly better in performance compared to others including uninoculated control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65: 2926–2933

    Google Scholar 

  • Appleby CA, Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. In: Sadasivam S, Manickam A (eds) Biochemical methods. New Age International (P) Limited, New Delhi

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms, In: Allen MJ (ed) Mycorrhizal functioning; an integrative plant-fungal process. Chapman and Hall, New York, pp 163–198

    Google Scholar 

  • Baas R, Kupier D (1989) Effect of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major sp. Pleosperma in relation to internal cytokinin concentration. Physiol Plant 76:211–215

    Article  CAS  Google Scholar 

  • Baker R (1989) Improved Trichoderma spp. for promoting crop productivity. Tibtech 7:3438

    Article  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36:1–54

    Article  Google Scholar 

  • Barea JM, Andrave G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Pacovsky RS, Brown MS, Fuller G (1982) Mycotrophic growth and mutualistic development of host plant and fungal endophyte in an endomycorrhizal symbiosis. Plant Soil 68:43–54

    Article  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effect of vesicular-arbuscular mycorrhiza on the availability of iron phosphate to plants. Plant Soil 99:401

    Article  CAS  Google Scholar 

  • Crush JR (1974) Plant growth responses to vesicular arbuscular mycorrhiza. New Phytol 73:743–752

    Article  CAS  Google Scholar 

  • Dickson A, Leaf AL, Hosner JF (1960) Quality appraisal of white spruce and white pine seedling stock in nurseries. For chron 36:10–13

    Google Scholar 

  • Dobereiner J, Marriel JE, Nery J (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1461–1473

    Article  Google Scholar 

  • Elad Y, Chet I (1983) Improved selective media for isolation of Trichoderma or Fusarium spp. Phytoparasitica 11:55–58

    Article  Google Scholar 

  • Elgala AM, Ishae YZ, Abdel Monem M, El-Ghandour IAI (1995) Effect of single and combined inoculation with Azotobacter and VA mycorrhizal fungi on growth and mineral nutrient contents of soil component interactions. In: Huang PM, Berthelin J, Bollaj JM, McGill WB, Page AL (eds) Metals, other inorganics and microbial activities (vol II). CRC Press, London

    Google Scholar 

  • Falli KE, Okon Y, Fischer M (1988) Growth response of maize roots of Azospirillum inoculation: Effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem 20:45–49

    Article  Google Scholar 

  • Gerdemann JM, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Graham JH, Syvertsen JP (1985) Role of arbuscular mycorrhizal dependency of Citrus root stock seedlings. New Phytol 101:667–676

    Article  Google Scholar 

  • Green H, Larsen J, Olsson PA, Jensen DF, Jackobsen I (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1434

    PubMed  CAS  Google Scholar 

  • Gupta N, Rahangdale R (1999) Response of Albigia lebbeck and Dalbergia sissoo towards dual inoculation of Rhizobium and arbuscular mycorrhizal fungi. Indian J Exp Biol 37:1005–1011

    Google Scholar 

  • Inbar J, Abramsky M, Chet I (1994) Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings under commercial conditions. Eur J Plant Pathol 100:337–346

    Article  Google Scholar 

  • Isopi R, Lumini E, Frattegiani M, Puppi G, Bosco M, Favilli F, Baresti E (1994) Inoculation of Alnus cordata with selected microsymbionts: Effects of Frankia and Glomus spp. on seedling growth and development. Symbiosis 17:237–245

    Google Scholar 

  • Jackson NL (1973) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Kim KY, Jordan D, Mc Donald GA (1998) Effect of phosphate solubilizing bacteria and vesicular arbuscular mycorrhizae on tomato growth and soil microbial activity. Bio Fertil soils 26:79–87

    Article  CAS  Google Scholar 

  • Kleifeld O, Chet I (1992) Trichoderma—plant interaction and its effect on increased growth response. Plant Soil 144:267–272

    Article  Google Scholar 

  • Kloepper JW (1991) The biological control and plant disease, food and fertilizer technology centre for the Asian and Pacific region. Taipei

    Google Scholar 

  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:364–368

    Article  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and non-mycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Lipton DS, Blanchar RW, Blavins DG (1987) Citrate, maltate and succinate concentration in exudates from P-sufficient and P-stressed Madicago sativa L. seedlings. Plant Physiol 85:315–317

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) Microbial metabolites. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 177–206

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Menge JA, Sterile D, Bagyaraj DJ, Johnson EJV, Leonard RT (1978) Phosphorus concentration in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycorrhiza. IX. Interactions between VAM, rockphosphate and symbiotic nitrogen fixation. New Phytol 76:331

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (1995) Influence of vesicular arbuscular mycorrhiza and Rhizobium sp. on growth responses and nutrient status of Tephrosia purpurea Pers. Acta Bot Indica 23:75–80

    Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Nambiar PTC, Ravishankar HN, Dart PJ (1983) Effect of Rhizobium numbers on nodulation and nitrogen fixation in groundnut. Expt Agric 19:243–250

    Article  Google Scholar 

  • Negi M, Sachder MS, Tilak KVBR (1990) Influence of soluble phosphorus fertilizer on the interaction between the vesicular arbuscular mycorrhizal fungus and Azospirillum brasilense in barley (Hordeum vulgare L.). Biol Fertil Soils 10:57–60

    CAS  Google Scholar 

  • Osundina MA (1998) Nodulation and growth of mycorrhizal Casuarina equisetifolia J.R. and G.First in response to flooding. Biol Fertil Soils 26:95–99

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasite and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Piper CS (1966) Soil and plant analysis. Hans publications, Bombay

    Google Scholar 

  • Rani P, Aggarwal A, Mehrotra RS (1998) Establishment of nursery technology through Glomus mosseae, Rhizobium sp. and Trichoderma harzianum on better biomass yield of Prosopis cineraria Linn. Proc Nat Acad Sci (India) 68:301–305

    Google Scholar 

  • Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–252

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    Article  CAS  Google Scholar 

  • Russo RO (1989) Evoluating alder-endophyte (Alnus acuminateFrankia—mycorrhizae) interactions. I. Acetylene reduction in seedlings inoculated with Frankia Ar13 and Glomus intraradices under three phosphorus levels. Plant Soil 118:151–155

    Article  Google Scholar 

  • Sperber JI (1957) Solution of mineral phosphates by soil bacteria. Nature 180:994–995

    Article  PubMed  CAS  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic, Gainesville

    Google Scholar 

  • Subba Rao NS (1986) Cereal nitrogen fixation research under the BNF coordinated project of the ICAR. In: Cereal Nitrogen fixation. Proceedings of the working group meeting. ICRISAT, pp 23–30

    Google Scholar 

  • Sumana DA, Bagyaraj DJ (1998) Selection of efficient VA mycorrhizal fungi for Dalbergia latifolia Roxb. Ann For 6:186–190

    Google Scholar 

  • Sumner ME (1990) Crop response to Azospirillum inoculation. Adv Soil Sci 12:53–123

    Article  Google Scholar 

  • Sundara Rao WVB, Sinha MK (1963) Phosphate dissolving organisms in the soil and rhizosphere. Ind J Agric Sci 33:272–278

    Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Article  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth increased by Trichoderma spp. Phytopathol 76:518–521

    Article  Google Scholar 

  • Wollum AG II (1982) Cultural methods for soil microorganisms. In: Page AL, Miller RH, Keeney DR (eds). Methods of soil analysis, Part-2. Chemical and microbiological properties. American Society of Agronomy, Medison, pp 781–802

    Google Scholar 

  • Yedidia I, Srivasta AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on micro element concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock J (1971) Chlorophyll estimation in rice. In: Laboratory manual for physiological studies of rice. IRRI publication, Manila, pp 36–37

    Google Scholar 

  • Zar JM (1984) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajesh Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Rajesh Kannan, V., Dhanapal, K., Muthukumar, T., Udaiyan, K. (2013). Influence of Bioinoculants on Growth and Nutrient Uptake in Dalbergia latifolia Roxb. under Tropical Nursery Condition. In: Velu, R. (eds) Microbiological Research In Agroecosystem Management. Springer, India. https://doi.org/10.1007/978-81-322-1087-0_15

Download citation

Publish with us

Policies and ethics