Skip to main content

Efficacy of AMF and PGPR Inoculants on Maize (Zea mays L.) Plant Growth and Their Rhizosphere Soil Properties

  • Chapter
  • First Online:

Abstract

Field trial was carried out using microbial inoculants through arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. The inoculants were applied individually and also different combination in Zea mays. L (Maize), and plants were grown in the Department of Microbiology experimental garden, Bharathidasan University, Tiruchirappalli, Tamilnadu, India. In this context, the microbial equilibrium influence on the growth and development of maize plants is studied for every 15-day period of harvest up to 75 days. The dual inoculation treatment (T4 and T5) significantly increased microbial biomass and NPK accumulation in soil, and these dually inoculated plants displayed higher specific activity than their comparable to control. From all the treatments, comparatively the combined treatment of (T6) showed an active maize growth through the periodic analysis of chlorophyll, carbohydrate, protein, metabolite synthesize like phenol and flavonoids. It is concluded that T6 has a stimulatory effect on mycorrhizal root colonization and also improve the maize plant growth and soil properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barea JM, Toro M, Orozco MO, Campos E, Azcon R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Bonfante–Fasola P (1984) Anatomy and morphology of VA mycorrhiza. In VA mycorrhiza. In: Powel CL, Bagyaraj DJ (eds), CRC Press, Boca Raton, Florida, pp 5–34

    Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1984) Phosphorus in the soil microbial biomass. Soil Biol Biochem 16:169–175

    Article  CAS  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microbe Interact 13:693–698

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting rhizobacteria that decrease heavy metal toxicity in plants. Can J Microbiol 33:237–245

    Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Deepti D, Bhavdish N, Kurt I, Victor W, Andres W (2009) Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19:559–570

    Article  Google Scholar 

  • Denison DA, Koehn RD (1977) Mycolgia. LXIX 592

    Google Scholar 

  • Duponnois R, Plenchett C (2003) A mycorrhizal bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Elo S, Maunuksela L, Salkinoja-Salonen M, Smolander A, Haahtela K (2000) Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol Ecol 31:143–152

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbaro Y (1925) Assay of phosphatase enzyme. J Biol Chem 66:575

    Google Scholar 

  • Frankenberger WT, Dick WA (1983) Relationship between enzyme activities, microbial growth and activity indices in soil. Soil Sci Soc of Am J 47:945–951

    Article  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria, a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gianinazzi S, Schuepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser, Basel

    Book  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10/11):1389–1414

    Article  CAS  Google Scholar 

  • Griffith WT (1975) Characterization of the terminal chlorophyllide synthesis in etioplast membrane preparation. Biochem J 152:623–635

    Google Scholar 

  • Harrison MJ (2005) Signalling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Carbohydrate chemistry 17. In: Whistler RL, Be Miller JN, Academic Press, New York

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:1–2

    Article  Google Scholar 

  • Hoffmann ED, Hoffmann GG (1955) Uber das enzyme system unserer kulturboden Amylase. Z.Pflanzenern. Dung Bodenk 70:97–104

    Article  Google Scholar 

  • Kennedy AC (1998). The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  PubMed  CAS  Google Scholar 

  • Kruger JE (1972) Changes in the amylases of hard red spring wheat during germination. Cereal Chem 49:379

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Malick CP, Singh MB (1980) Plant enzymology and histo enzymology. Kalyani Publishers, New Delhi, p 286

    Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:523–533

    Article  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular arbuscular mycorrhizal association. Mycol Res 94:120–122

    Article  Google Scholar 

  • Motavalli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbial mediated plant nutrient transformations. J Environ Qual 33(3):816–824

    Article  PubMed  CAS  Google Scholar 

  • Munir A, Munir I, Afrasayab A, Hasnain S (2003) Growth stimulatory effect of Azospirillum strains on Triticum aestivum and Vigna radiate. Biotechnol 2(3):198–205

    Article  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  PubMed  CAS  Google Scholar 

  • Salantur A, Ozturk A, Akten S (2006) Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ 52(3):111–118

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic, Gainesville, Florida. Science 289:1920–1921

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Shen D (1997) Microbial diversity and application of microbial products for agricultural purposes in China. Agric Ecosyst Environ 62:237–245

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soil 36:260–268

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–235

    Article  PubMed  CAS  Google Scholar 

  • Steinshamn H, Thuen E, Bleken MA, Brenoe UT, Ekerholt G, Yri C (2004) Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agric Ecosys Environ 104:509–522

    Article  CAS  Google Scholar 

  • Stevenson IL (1968) Biochemistry of soil. In: Firman EB (ed.) Chemistry of soil Oxford and IBH Publishing Company, Howrah

    Google Scholar 

  • Valdenegro M, Barea JM, Azco′n R (2001) Influence of arbuscular mycorrhizal fungi, Rhizobium strains and PGPR inoculation on the growth of Medicago arborea used as a model legume for revegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233–240

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vikram A (2007) Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Res J Microbiol 2(7):550–559

    Article  Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Weller DG, Thomashow LS (1993) Use of rhizobacteria for biocontrol. Curr Opin Biotechnol 4:306–311

    Article  Google Scholar 

  • Witham FH, Blaydes DF, Delvin RM (1971) Experiment in plant physiology. Van Nostrand, New York, p 245

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. King Solomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sangeetha, J., King Solomon, E., Natarajan, K., Rajeshkannan, V. (2013). Efficacy of AMF and PGPR Inoculants on Maize (Zea mays L.) Plant Growth and Their Rhizosphere Soil Properties. In: Velu, R. (eds) Microbiological Research In Agroecosystem Management. Springer, India. https://doi.org/10.1007/978-81-322-1087-0_11

Download citation

Publish with us

Policies and ethics