Skip to main content

Water and Lymphatic Filariasis

  • Chapter
  • First Online:
Water and Health

Abstract

Lymphatic filariasis (LF) is one of the most prevalent diseases of tropical and subtropical countries that is transmitted by mosquito and accompanied by a number of pathological conditions. It has been recognized as second leading cause of permanent and long-term disability. Research within the last decade has provided newer and better diagnostics methods for LF, improved disease management and treatment control strategies. World Health Organization (WHO) recognized LF as a potentially eradicable disease and launched Global Programme to Eliminate Lymphatic filariasis (GPELF) in 2000 to eliminate this disease by the year 2020. The release of sequenced and annotated genome of Brugia malayi and its endosymbiont Wolbachia has provided new insight into the pathogenesis of filarial disease, chemotherapy, and the mechanism of host–parasite interaction. The genome information is useful to identify novel antifilarial drug targets or design potent inhibitors for the existing or new targets. This chapter briefly gives an overview of LF including the diagnostic methods, symptoms, treatment strategies, and molecular biology of filarial parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobaker AA, Blaxter ML (2003) Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 129:41–51

    CAS  Google Scholar 

  • Abraham D, Grieve RB, Holy JM, Christensen BM (1989) Immunity to larval Brugia malayi in BALB/c mice: protective immunity and inhibition of larval development. Am J Trop Med Hyg 40:598–604

    CAS  Google Scholar 

  • Addiss DG, Brady MA (2007) Morbidity management in the global programme to eliminate Lymphatic Filariasis: a review of the scientific literature. Filaria J 6:2

    Google Scholar 

  • Addiss DG, Beach MJ, Streit TG, Lutwick S, LeConte FH, Lafontant JG, Hightower AW, Lammie PJ (1997) Randomised placebo-controlled comparison of ivermectin and albendazole alone and in combination for Wuchereria bancrofti microfilaraemia in Haitian children. Lancet 350:480–484

    CAS  Google Scholar 

  • Amaral F, Dreyer G, Figueredo-Silva J, Noroes J, Cavalcanti A, Samico SC, Santos A, Coutinho A (1994) Live adult worms detected by ultrasonography in human Bancroftian filariasis. Am J Trop Med Hyg 50:753–757

    CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Schaeffer JM, Cully DF (1992) Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Brain Res Mol Brain Res 15:339–348

    CAS  Google Scholar 

  • Arumugam S, Pfarr KM, Hoerauf A (2008) Infection of the intermediate mite host with Wolbachia-depleted Litomosoides sigmodontis microfilariae: impaired L1 to L3 development and subsequent sex-ratio distortion in adult worms. Int J Parasitol 38:981–987

    Google Scholar 

  • Aziz MA, Diallo S, Diop IM, Lariviere M, Porta M (1982a) Efficacy and tolerance of ivermectin in human onchocerciasis. Lancet 2:171–173

    CAS  Google Scholar 

  • Aziz MA, Diallo S, Lariviere M, Diop IM, Porta IM, Gaxotte P (1982b) Ivermectin in onchocerciasis. Lancet 2:1456–1457

    CAS  Google Scholar 

  • Bain O, Casiraghi M, Martin C, Uni S (2008) The nematoda Filarioidea: critical analysis linking molecular and traditional approaches. Parasite 15:342–348

    CAS  Google Scholar 

  • Bajpai P, Vedi S, Owais M, Sharma SK, Saxena PN, Misra-Bhattacharya S (2005) Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model. J Drug Target 13:375–381

    CAS  Google Scholar 

  • Bandi C, Slatko B, O'Neill SL (1999) Wolbachia genomes and the many faces of symbiosis. Parasitol Today 15:428–429

    CAS  Google Scholar 

  • Bazzocchi C, Genchi C, Paltrinieri S, Lecchi C, Mortarino M, Bandi C (2003) Immunological role of the endosymbionts of Dirofilaria immitis: the Wolbachia surface protein activates canine neutrophils with production of IL-8. Vet Parasitol 117:73–83

    CAS  Google Scholar 

  • Bazzocchi C, Mortarino M, Grandi G, Kramer LH, Genchi C, Bandi C, Genchi M, Sacchi L, McCall JW (2008) Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int J Parasitol 38:1401–1410

    CAS  Google Scholar 

  • Bennuru S, Meng Z, Ribeiro JM, Semnani RT, Ghedin E, Chan K, Lucas DA, Veenstra TD, Nutman TB (2011) Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci USA 108:9649–9654

    CAS  Google Scholar 

  • Brattig NW, Rathjens U, Ernst M, Geisinger F, Renz A, Tischendorf FW (2000) Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and antiinflammatory responses of human monocytes. Microbes Infect 2:1147–1157

    CAS  Google Scholar 

  • Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Buttner DW, Ceciliani F, Geisinger F, Hochrein H, Ernst M, Wagner H, Bandi C, Hoerauf A (2004) The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 173:437–445

    CAS  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368

    Google Scholar 

  • Caffrey CR (2007) Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol 11:433–439

    CAS  Google Scholar 

  • Casiraghi M, McCall JW, Simoncini L, Kramer LH, Sacchi L, Genchi C, Werren JH, Bandi C (2002) Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol 32:1457–1468

    CAS  Google Scholar 

  • Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34:191–203

    Google Scholar 

  • Chanteau S, Moulia-Pelat JP, Glaziou P, Nguyen NL, Luquiaud P, Plichart C, Martin PM, Cartel JL (1994) Og4C3 circulating antigen: a marker of infection and adult worm burden in Wuchereria bancrofti filariasis. J Infect Dis 170:247–250

    CAS  Google Scholar 

  • Chen TT (1964) Demonstration of Macrofilaricidal action of Hetrazan, Antimony and Arsenic preparations in man. Chin Med J (Engl) 83:625–640

    CAS  Google Scholar 

  • Chippaux JP, Boussinesq M, Gardon J, Gardon-Wendel N, Ernould JC (1996) Severe adverse reaction risks during mass treatment with ivermectin in loiasis-endemic areas. Parasitol Today 12:448–450

    CAS  Google Scholar 

  • Chusattayanond W, Denham DA (1986) Attempted vaccination of jirds (Meriones unguiculatus) against Brugia pahangi with radiation attenuated infective larvae. J Helminthol 60:149–155

    CAS  Google Scholar 

  • Cross HF, Haarbrink M, Egerton G, Yazdanbakhsh M, Taylor MJ (2001) Severe reactions to filarial chemotherapy and release of Wolbachia endosymbionts into blood. Lancet 358:1873–1875

    CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    CAS  Google Scholar 

  • Dangi A, Vedi S, Nag JK, Paithankar S, Singh MP, Kar SK, Dube A, Misra-Bhattacharya S (2009) Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite. Proteomics 9:4192–4208

    CAS  Google Scholar 

  • Dangi A, Dwivedi V, Vedi S, Owais M, Misra-Bhattacharya S (2010) Improvement in the antifilarial efficacy of doxycycline and rifampicin by combination therapy and drug delivery approach. J Drug Target 18:343–350

    CAS  Google Scholar 

  • Debrah AY, Mand S, Toliat MR, Marfo-Debrekyei Y, Batsa L, Nurnberg P, Lawson B, Adjei O, Hoerauf A, Pfarr K (2007) Plasma vascular endothelial growth factor-A (VEGF-A) and VEGF-A gene polymorphism are associated with hydrocele development in lymphatic filariasis. Am J Trop Med Hyg 77:601–608

    CAS  Google Scholar 

  • Devaney E, Bancroft A, Egan A (1993) The effect of irradiation on the third stage larvae of Brugia pahangi. Parasite Immunol 15:423–427

    CAS  Google Scholar 

  • Diallo S, Aziz MA, Lariviere M, Diallo JS, Diop-Mar I, N'Dir O, Badiane S, Py D, Schulz-Key H, Gaxotte P et al (1986) A double-blind comparison of the efficacy and safety of ivermectin and diethylcarbamazine in a placebo controlled study of Senegalese patients with onchocerciasis. Trans R Soc Trop Med Hyg 80:927–934

    CAS  Google Scholar 

  • Dissanayake S (2001) In Wuchereria bancrofti filariasis, asymptomatic microfilaraemia does not progress to amicrofilaraemic lymphatic disease. Int J Epidemiol 30:394–399

    CAS  Google Scholar 

  • Dreyer G, Noroes J, Addiss D, Santos A, Medeiros Z, Figueredo-Silva J (1999) Bancroftian filariasis in a paediatric population: an ultrasonographic study. Trans R Soc Trop Med Hyg 93:633–636

    CAS  Google Scholar 

  • Estambale BB, Simonsen PE, Vennervald BJ, Knight R, Bwayo JJ (1994) Bancroftian filariasis in Kwale district of Kenya. II. Humoral immune responses to filarial antigens in selected individuals from an endemic community. Ann Trop Med Parasitol 88:153–161

    CAS  Google Scholar 

  • Esterre P, Plichart C, Huin-Blondey MO, Nguyen LN (2005) Soluble cellular adhesion molecules, selectins, VEGF and endothelin-1 in patients with Wuchereria bancrofti infection and association with clinical status. Parasite Immunol 27:9–16

    CAS  Google Scholar 

  • Feng XP, Hayashi J, Beech RN, Prichard RK (2002) Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. J Neurochem 83:870–878

    CAS  Google Scholar 

  • Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2:e94

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  Google Scholar 

  • Ford L, Guiliano DB, Oksov Y, Debnath AK, Liu J, Williams SA, Blaxter ML, Lustigman S (2005) Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. J Biol Chem 280:40845–40856

    CAS  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Google Scholar 

  • Fox LM (2006) Ivermectin: uses and impact 20 years on. Curr Opin Infect Dis 19:588–593

    Google Scholar 

  • Friedman PD, Kalisher L (2002) Case 43: filariasis. Radiology 222:515–517

    Google Scholar 

  • Ghedin E, Wang S, Foster JM, Slatko BE (2004) First sequenced genome of a parasitic nematode. Trends Parasitol 20:151–153

    CAS  Google Scholar 

  • Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrin-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    CAS  Google Scholar 

  • Gillette-Ferguson I, Hise AG, Sun Y, Diaconu E, McGarry HF, Taylor MJ, Pearlman E (2006) Wolbachia- and Onchocerca volvulus-induced keratitis (river blindness) is dependent on myeloid differentiation factor 88. Infect Immun 74:2442–2445

    CAS  Google Scholar 

  • Gillette-Ferguson I, Daehnel K, Hise AG, Sun Y, Carlson E, Diaconu E, McGarry HF, Taylor MJ, Pearlman E (2007) Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect Immun 75:5908–5915

    CAS  Google Scholar 

  • Haarbrink M, Terhell AJ, Abadi GK, Mitsui Y, Yazdanbakhsh M (1999) Inflammatory cytokines following diethylcarbamazine (DEC) treatment of different clinical groups in lymphatic filariasis. Trans R Soc Trop Med Hyg 93:665–672

    CAS  Google Scholar 

  • Haarbrink M, Abadi GK, Buurman WA, Dentener MA, Terhell AJ, Yazdanbakhsh M (2000) Strong association of interleukin-6 and lipopolysaccharide-binding protein with severity of adverse reactions after diethylcarbamazine treatment of microfilaremic patients. J Infect Dis 182:564–569

    CAS  Google Scholar 

  • Hashim SA, Roholt HB, Babayan VK, Vanitallie TB (1964) Treatment of Chyluria and Chylothorax with medium-chain Triglyceride. N Engl J Med 270:756–761

    CAS  Google Scholar 

  • Henkle-Duhrsen K, Eckelt VH, Wildenburg G, Blaxter M, Walter RD (1998) Gene structure, activity and localization of a catalase from intracellular bacteria in Onchocerca volvulus. Mol Biochem Parasitol 96:69–81

    CAS  Google Scholar 

  • Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, Wilson A, Maizels RM (2008) The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol 160:8–21

    CAS  Google Scholar 

  • Hewitt RI, Kushner S et al (1947) Experimental chemotherapy of filariasis; effect of 1-diethyl-carbamyl-4-methylpiperazine hydrochloride against naturally acquired filarial infections in cotton rats and dogs. J Lab Clin Med 32:1314–1329

    CAS  Google Scholar 

  • Hise AG, Daehnel K, Gillette-Ferguson I, Cho E, McGarry HF, Taylor MJ, Golenbock DT, Fitzgerald KA, Kazura JW, Pearlman E (2007) Innate immune responses to endosymbiotic Wolbachia bacteria in Brugia malayi and Onchocerca volvulus are dependent on TLR2, TLR6, MyD88, and Mal, but not TLR4, TRIF, or TRAM. J Immunol 178:1068–1076

    CAS  Google Scholar 

  • Hoerauf A (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 21:673–681

    CAS  Google Scholar 

  • Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, Buttner DW (2000a) Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 355:1242–1243

    CAS  Google Scholar 

  • Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Buttner DW, Fleischer B (2000b) Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Trop Med Int Health 5:275–279

    CAS  Google Scholar 

  • Hoerauf A, Walter RD, Remme H, Lazdins J, Fleischer B (2001) Call to consolidate achievements for onchocerciasis and lymphatic filariasis control. Trends Parasitol 17:566–567

    CAS  Google Scholar 

  • Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekyei Y, Debrah AY, Pfarr KM, Adjei O, Buttner DW (2003) Doxycycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol (Berl) 192(4):211–216

    CAS  Google Scholar 

  • Hoerauf A, Specht S, Buttner M, Pfarr K, Mand S, Fimmers R, Marfo-Debrekyei Y, Konadu P, Debrah AY, Bandi C, Brattig N, Albers A, Larbi J, Batsa L, Taylor MJ, Adjei O, Buttner DW (2008) Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol 197:295–311

    CAS  Google Scholar 

  • Horton RJ (1997) Albendazole in treatment of human cystic echinococcosis: 12 years of experience. Acta Trop 64:79–93

    CAS  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107, pp 769–774

    Google Scholar 

  • Ismail MM, Weil GJ, Jayasinghe KS, Premaratne UN, Abeyewickreme W, Rajaratnam HN, Sheriff MH, Perera CS, Dissanaike AS (1996) Prolonged clearance of microfilaraemia in patients with bancroftian filariasis after multiple high doses of ivermectin or diethylcarbamazine. Trans R Soc Trop Med Hyg 90:684–688

    CAS  Google Scholar 

  • Issa Z, Grant WN, Stasiuk S, Shoemaker CB (2005) Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol 35:935–940

    CAS  Google Scholar 

  • Johnston KL, Taylor MJ (2007) Wolbachia in filarial parasites: targets for filarial infection and disease control. Curr Infect Dis Rep 9:55–59

    Google Scholar 

  • Kariuki MM, Hearne LB, Beerntsen BT (2010) Differential transcript expression between the microfilariae of the filarial nematodes, Brugia malayi and B. pahangi. BMC Genomics 11:225

    Google Scholar 

  • Kazura JW, Davis RS (1982) Soluble Brugia malayi microfilarial antigens protect mice against challenge by an antibody-dependent mechanism. J Immunol 128:1792–1796

    CAS  Google Scholar 

  • Keiser PB, Reynolds SM, Awadzi K, Ottesen EA, Taylor MJ, Nutman TB (2002) Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis of posttreatment reactions. J Infect Dis 185:805–811

    Google Scholar 

  • Khamboonruang C, Thitasut P, Pan-In S, Morakote N, Choochote W, Somboon P, Keha P (1987) Filariasis in Tak province, northwest Thailand: the presence of subperiodic variant Wuchereria bancrofti. Southeast Asian J Trop Med Public Health 18:218–222

    CAS  Google Scholar 

  • Kozek WJ (1977) Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 63:992–1000

    CAS  Google Scholar 

  • Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CK (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2:e1189

    Google Scholar 

  • Kwan-Lim GE, Forsyth KP, Maizels RM (1990) Filarial-specific IgG4 response correlates with active Wuchereria bancrofti infection. J Immunol 145:4298–4305

    CAS  Google Scholar 

  • Lal RB, Ottesen EA (1988) Enhanced diagnostic specificity in human filariasis by IgG4 antibody assessment. J Infect Dis 158:1034–1037

    CAS  Google Scholar 

  • Lammie PJ, Addiss DG, Leonard G, Hightower AW, Eberhard ML (1993) Heterogeneity in filarial-specific immune responsiveness among patients with lymphatic obstruction. J Infect Dis 167:1178–1183

    CAS  Google Scholar 

  • Landmann F, Foster JM, Slatko B, Sullivan W (2010) A symmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Negl Trop Dis 4 e758

    Google Scholar 

  • Laney SJ, Buttaro CJ, Visconti S, Pilotte N, Ramzy RMR, Weil GJ, Williams SA (2008) A reverse transcriptase-PCR assay for detecting Filarial infective Larvae in mosquitoes. PLoS Negl Trop Dis 2(6):e251

    Google Scholar 

  • Langhammer J, Birk HW, Zahner H (1997) Renal disease in Lymphatic filariasis: evidence for tubular and glomerular disorders at various stages of the infection. Trop Med Int Health 2:875–884

    CAS  Google Scholar 

  • Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ (2011) Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 5:e947

    CAS  Google Scholar 

  • Lizotte MR, Supali T, Partono F, Williams SA (1994) A polymerase chain reaction assay for the detection of Brugia malayi in blood. Am J Trop Med Hyg 51:314–321

    CAS  Google Scholar 

  • Lustigman S, McCarter JP (2007) Ivermectin resistance in Onchocerca volvulus: toward a genetic basis. PLoS Negl Trop Dis 1:e76

    Google Scholar 

  • Magnaval JF, Berry A (2005) Tropical pulmonary eosinophilia. Clin Infect Dis 40:635–636

    Google Scholar 

  • Maizels RM, Kurniawan A, Selkirk ME, Yazdanbakhsh M (1991) Immune responses to filarial parasites. Immunol Lett 30:249–254

    CAS  Google Scholar 

  • Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31:889–898

    CAS  Google Scholar 

  • Mand S, Buttner DW, Hoerauf A (2008) Bancroftian filariasis–absence of Wolbachia after doxycycline treatment. Am J Trop Med Hyg 78:854–855

    Google Scholar 

  • Mand S, Pfarr K, Sahoo PK, Satapathy AK, Specht S, Klarmann U, Debrah AY, Ravindran B, Hoerauf A (2009) Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethylcarbamazine. Am J Trop Med Hyg 81:702–711

    CAS  Google Scholar 

  • Martin C, Gavotte L (2010) The bacteria Wolbachia in filariae, a biological Russian dolls’ system: new trends in antifilarial treatments. Parasite 17:79–89

    CAS  Google Scholar 

  • McGregor IA (1995) Royal Society of tropical medicine and hygiene meeting at Manson House, London, 3 October 1994. The third Manson oration. Patrick Manson 1844–1922: the birth of the science of tropical medicine. Trans R Soc Trop Med Hyg 89:1–8

    CAS  Google Scholar 

  • McLaren DJ, Worms MJ, Laurence BR, Simpson MG (1975) Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 69:509–514

    CAS  Google Scholar 

  • McMahon JE, Magayauka SA, Kolstrup N, Mosha FW, Bushrod FM, Abaru DE, Bryan JH (1981) Studies on the transmission and prevalence of Bancroftian filariasis in four coastal villages of Tanzania. Ann Trop Med Parasitol 75:415–431

    CAS  Google Scholar 

  • Melrose WD, Turner PF, Pisters P, Turner B (2000) An improved Knott’s concentration test for the detection of microfilariae. Trans R Soc Trop Med Hyg 94:176

    CAS  Google Scholar 

  • Molyneux DH, Bradley M, Hoerauf A, Kyelem D, Taylor MJ (2003) Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol 19:516–522

    CAS  Google Scholar 

  • Moreno Y, Geary TG (2008) Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl Trop Dis 2:e326

    Google Scholar 

  • Moulia-Pelat JP, Nguyen LN, Glaziou P, Chanteau S, Gay VM, Martin PM, Cartel JL (1993) Safety trial of single-dose treatments with a combination of ivermectin and diethylcarbamazine in bancroftian filariasis. Trop Med Parasitol 44:79–82

    CAS  Google Scholar 

  • Njoo FL, Hack CE, Oosting J, Luyendijk L, Stilma JS, Kijlstra A (1994) C-reactive protein and interleukin-6 are elevated in onchocerciasis patients after ivermectin treatment. J Infect Dis 170:663–668

    CAS  Google Scholar 

  • Noroes J, Dreyer G, Santos A, Mendes VG, Medeiros Z, Addiss D (1997) Assessment of the efficacy of diethylcarbamazine on adult Wuchereria bancrofti in vivo. Trans R Soc Trop Med Hyg 91:78–81

    CAS  Google Scholar 

  • Olszewski WL, Jamal S, Manokaran G, Pani S, Kumaraswami V, Kubicka U, Lukomska B, Dworczynski A, Swoboda E, Meisel-Mikolajczyk F (1997) Bacteriologic studies of skin, tissue fluid, lymph, and lymph nodes in patients with filarial lymphedema. Am J Trop Med Hyg 57:7–15

    CAS  Google Scholar 

  • Oothuman P, Denham DA, McGreevy PB, Nelson GS, Rogers R (1979) Successful vaccination of cats against Brugia pahangi with larvae attenuated by irradiation with 10 krad cobalt 60. Parasite Immunol 1:209–216

    CAS  Google Scholar 

  • Ottesen EA (1992) The wellcome trust lecture. infection and disease in lymphatic filariasis: an immunological perspective. Parasitology 104:S71–79

    Google Scholar 

  • Ottesen EA, Poindexter RW (1980) Modulation of the host response in human schistosomiasis. II. Humoral factors which inhibit lymphocyte proliferative responses to parasite antigens. Am J Trop Med Hyg 29:592–597

    CAS  Google Scholar 

  • Ottesen EA, Skvaril F, Tripathy SP, Poindexter RW, Hussain R (1985) Prominence of IgG4 in the IgG antibody response to human filariasis. J Immunol 134:2707–2712

    CAS  Google Scholar 

  • Pfarr K, Hoerauf A (2005) The annotated genome of Wolbachia from the filarial nematode Brugia malayi: what it means for progress in antifilarial medicine. PLoS Med 2:e110

    Google Scholar 

  • Rajendran R, Sunish IP, Mani TR, Munirathinam A, Abdullah SM, Arunachalam N, Satyanarayana K (2004) Impact of two annual single-dose mass drug administrations with diethylcarbamazine alone or in combination with albendazole on Wuchereria bancrofti microfilaraemia and antigenaemia in south India. Trans R Soc Trop Med Hyg 98:174–181

    CAS  Google Scholar 

  • Rajendran R, Sunish IP, Mani TR, Munirathinam A, Arunachalam N, Satyanarayana K, Dash AP (2006) Community-based study to assess the efficacy of DEC plus ALB against DEC alone on bancroftian filarial infection in endemic areas in Tamil Nadu, south India. Trop Med Int Health 11:851–861

    CAS  Google Scholar 

  • Rocha A, Addiss D, Ribeiro ME, Noroes J, Baliza M, Medeiros Z, Dreyer G (1996) Evaluation of the Og4C3 ELISA in Wuchereria bancrofti infection: infected persons with undetectable or ultra-low microfilarial densities. Trop Med Int Health 1:859–864

    CAS  Google Scholar 

  • Rom WN, Vijayan VK, Cornelius MJ, Kumaraswami V, Prabhakar R, Ottesen EA, Crystal RG (1990) Persistent lower respiratory tract inflammation associated with interstitial lung disease in patients with tropical pulmonary eosinophilia following conventional treatment with diethylcarbamazine. Am Rev Respir Dis 142:1088–1092

    CAS  Google Scholar 

  • Sabry M (1988) A quantitative analysis of the diagnostic value of diethylcarbamazine provocation in endemic Wuchereria bancrofti infection. Trans R Soc Trop Med Hyg 82:117–121

    CAS  Google Scholar 

  • Sabry M (1992) Critical analysis of an epidemetrons model for the assessment of bancroftian filariasis endemicity in some areas in Egypt. J Trop Med Hyg 95:260–265

    CAS  Google Scholar 

  • Saint Andre A, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, Diaconu E, Pearlman E (2002) The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295:1892–1895

    CAS  Google Scholar 

  • Selkirk ME, Smith VP, Thomas GR, Gounaris K (1998) Resistance of filarial nematode parasites to oxidative stress. Int J Parasitol 28:1315–1332

    CAS  Google Scholar 

  • Shakya S, Bajpai P, Sharma S, Misra-Bhattacharya S (2008) Prior killing of intracellular bacteria Wolbachia reduces inflammatory reactions and improves antifilarial efficacy of diethylcarbamazine in rodent model of Brugia malayi. Parasitol Res 102:963–972

    Google Scholar 

  • Shakya S, Singh PK, Kushwaha S, Misra-Bhattacharya S (2009a) Adult Brugia malayi approximately 34 kDa (BMT-5) antigen offers Th1 mediated significant protection against infective larval challenge in Mastomys coucha. Parasitol Int 58:346–353

    CAS  Google Scholar 

  • Shakya S, Srivastava AK, Misra-Bhattacharya S (2009b) Adult Brugia malayi mitochondrial and nuclear fractions impart Th1-associated sizeable protection against infective larval challenges in Mastomys coucha. J Helminthol 83:83–95

    CAS  Google Scholar 

  • Shelley S, Manokaran G, Indirani M, Gokhale S, Anirudhan N (2006) Lymphoscintigraphy as a diagnostic tool in patients with lymphedema of filarial origin—an Indian study. Lymphology 39(2):69–75

    CAS  Google Scholar 

  • Shenoy RK (2008) Clinical and pathological aspects of filarial lymphedema and its management. Korean J Parasitol 46:119–125

    CAS  Google Scholar 

  • Shenoy RK, Suma TK, Rajan K, Kumaraswami V (1998) Prevention of acute adenolymphangitis in brugian filariasis: comparison of the efficacy of ivermectin and diethylcarbamazine, each combined with local treatment of the affected limb. Ann Trop Med Parasitol 92:587–594

    CAS  Google Scholar 

  • Sheriff JC, Kotze AC, Sangster NC, Hennessy DR (2005) Effect of ivermectin on feeding by Haemonchus contortus in vivo. Vet Parasitol 128:341–346

    CAS  Google Scholar 

  • Singh PK, Ajay A, Kushwaha S, Tripathi RP, Misra-Bhattacharya S (2010) Towards novel antifilarial drugs: challenges and recent developments. Future Med Chem 2:251–283

    CAS  Google Scholar 

  • Singh M, Singh PK, Misra-Bhattacharya S (2011) RNAi mediated silencing of ATPase RNA helicase gene in adult filarial parasite Brugia malayi impairs in vitro microfilaria release and adult parasite viability. J Biotechnol

    Google Scholar 

  • Slatko BE, O'Neill SL, Scott AL, Werren JL, Blaxter ML (1999) The Wolbachia Genome Consortium. Microb Comp Genomics 4:161–165

    CAS  Google Scholar 

  • Specht S, Mand S, Marfo-Debrekyei Y, Debrah AY, Konadu P, Adjei O, Buttner DW, Hoerauf A (2008) Efficacy of 2- and 4-week rifampicin treatment on the Wolbachia of Onchocerca volvulus. Parasitol Res 103:1303–1309

    Google Scholar 

  • Stolk WA, Van Oortmarssen GJ, Pani SP, De Vlas SJ, Subramanian S, Das PK, Habbema JD (2005) Effects of ivermectin and diethylcarbamazine on microfilariae and overall microfilaria production in bancroftian filariasis. Am J Trop Med Hyg 73:881–887

    CAS  Google Scholar 

  • Strubing U, Lucius R, Hoerauf A, Pfarr KM (2010) Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. Int J Parasitol 40:1193–1202

    Google Scholar 

  • Tanner M, Weiss N (1981) Dipetalonema viteae (Filarioidea): evidence for a serum-dependent cytotoxicity against developing third and fourth stage larvae in vitro. Short commun Acta Trop 38:325–328

    CAS  Google Scholar 

  • Taylor MJ (2000) Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94:596–598

    CAS  Google Scholar 

  • Taylor MJ, Cross HF, Bilo K (2000) Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J Exp Med 191:1429–1436

    CAS  Google Scholar 

  • Taylor MJ, Cross HF, Ford L, Makunde WH, Prasad GB, Bilo K (2001) Wolbachia bacteria in filarial immunity and disease. Parasite Immunol 23:401–409

    CAS  Google Scholar 

  • Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A (2005) Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 365:2116–2121

    CAS  Google Scholar 

  • Thylefors B (2004) Eliminating onchocerciasis as a public health problem. Trop Med Int Health 9:A1–A3

    CAS  Google Scholar 

  • Turner P, Copeman B, Gerisi D, Speare R (1993) A comparison of the Og4C3 antigen capture ELISA, the Knott test, an IgG4 assay and clinical signs, in the diagnosis of Bancroftian filariasis. Trop Med Parasitol 44:45–48

    CAS  Google Scholar 

  • Turner PF, Rockett KA, Ottesen EA, Francis H, Awadzi K, Clark IA (1994) Interleukin-6 and tumor necrosis factor in the pathogenesis of adverse reactions after treatment of lymphatic filariasis and onchocerciasis. J Infect Dis 169:1071–1075

    CAS  Google Scholar 

  • Turner JD, Langley RS, Johnston KL, Egerton G, Wanji S, Taylor MJ (2006) Wolbachia endosymbiotic bacteria of Brugia malayi mediate macrophage tolerance to TLR- and CD40-specific stimuli in a MyD88/TLR2-dependent manner. J Immunol 177:1240–1249

    CAS  Google Scholar 

  • Turner JD, Langley RS, Johnston KL, Gentil K, Ford L, Wu B, Graham M, Sharpley F, Slatko B, Pearlman E, Taylor MJ (2009) Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J Biol Chem 284:22364–22378

    CAS  Google Scholar 

  • Turner JD, Tendongfor N, Esum M, Johnston KL, Langley RS, Ford L, Faragher B, Specht S, Mand S, Hoerauf A, Enyong P, Wanji S, Taylor MJ (2010) Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 4:e660

    Google Scholar 

  • Udall DN (2007) Recent updates on onchocerciasis: diagnosis and treatment. Clin Infect Dis 44:53–60

    Google Scholar 

  • Vedi S, Dangi A, Hajela K, Misra-Bhattacharya S (2008) Vaccination with 73 kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine 26:5997–6005

    CAS  Google Scholar 

  • Vijayan VA, Sathish Kumar BY, Ganesh KN, Urmila J, Fakoorziba MR, Makkapati AK (2007) Efficacy of piperonyl butoxide (PBO) as a synergist with deltamethrin on five species of mosquitoes. J Commun Dis 39:159–163

    CAS  Google Scholar 

  • Vincent AL, Ash LR, Frommes SP (1975) The ultrastructure of adult Brugia malayi (Brug 1927) (Nematoda: Filarioidea). J Parasitol 61:499–512

    CAS  Google Scholar 

  • Visser A, Geldhof P, de Maere V, Knox DP, Vercruysse J, Claerebout E (2006) Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi. Parasitology 133:777–783

    CAS  Google Scholar 

  • Volkmann L, Saeftel M, Bain O, Fischer K, Fleischer B, Hoerauf A (2001) Interleukin-4 is essential for the control of microfilariae in murine infection with the filaria Litomosoides sigmodontis. Infect Immun 69:2950–2956

    CAS  Google Scholar 

  • Wanji S, Mafo FF, Tendongfor N, Tanga MC, Tchuente E, Bilong Bilong CE, Njine T (2009) Spatial distribution, environmental and physicochemical characterization of Anopheles breeding sites in the Mount Cameroon region. J Vector Borne Dis 46:75–80

    CAS  Google Scholar 

  • Warbrick EV, Barker GC, Rees HH, Howells RE (1993) The effect of invertebrate hormones and potential hormone inhibitors on the third larval moult of the filarial nematode, Dirofilaria immitis, in vitro. Parasitology 107(Pt 4):459–463

    CAS  Google Scholar 

  • Weil GJ, Jain DC, Santhanam S, Malhotra A, Kumar H, Sethumadhavan KV, Liftis F, Ghosh TK (1987) A monoclonal antibody-based enzyme immunoassay for detecting parasite antigenemia in bancroftian filariasis. J Infect Dis 156:350–355

    CAS  Google Scholar 

  • Williams SA, Nicolas L, Lizotte-Waniewski M, Plichart C, Luquiaud P, Nguyen LN, Moulia-Pelat JP (1996) A polymerase chain reaction assay for the detection of Wuchereria bancrofti in blood samples from French Polynesia. Trans R Soc Trop Med Hyg 90:384–387

    CAS  Google Scholar 

  • Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20:469–476

    CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O'Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Google Scholar 

  • Wu B, Novelli J, Foster J, Vaisvila R, Conway L, Ingram J, Ganatra M, Rao AU, Hamza I, Slatko B (2009) The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 3:e475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Misra-Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Misra-Bhattacharya, S., Kushwaha, S., Bajpai, P. (2014). Water and Lymphatic Filariasis. In: Singh, P., Sharma, V. (eds) Water and Health. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1029-0_16

Download citation

Publish with us

Policies and ethics