Skip to main content

Impact of Climate Change on Insect Vectors and Vector-Borne Plant Viruses and Phytoplasma

  • Chapter
  • First Online:
Climate-Resilient Horticulture: Adaptation and Mitigation Strategies

Abstract

Plant virus and phytoplasma diseases are emerging as a serious constraint in improving productivity of horticultural crops. Ecological factors, including migration, climate and agricultural practices are considered to play an important role in the emergence of plant virus diseases. Changing climate conditions can contribute to a successful spread of newly introduced viruses or their vectors and establishment of these organisms in areas that were previously unfavorable. A number of plant viruses are transmitted by vectors, many of them are not able to establish at current climate conditions. The most important vectors such as Aphid, whitefly, thrip, and leaf hoppers which are associated with potyviruses, begomoviruses, tospoviruses and phytoplasma, have emerged during the last two decades. Plant virus diseases and vectors are strongly influenced by weather and climate. The temperature and moisture conditions interacting with seasonal phenology, and stress on the host determine infection severity and distribution. Increasing international travel and trade of plant materials enhances the risk of introducing new viruses and their vectors into production systems. However, climate change is expected to have effects on their establishment, spread and reproduction potential as well as on the vector transmission. If climate change increases or decreases environmental conduciveness, the shift in selection pressure on the host populations could result in shifts in the diversity of resistance genes present. Recent observations have shown that resistance to bhendi yellow vien mosaic virus tends to break when okra is grown at higher temperatures. These climatic changes affect the biological and ecological characteristics of insect species, through direct effects on the physiology of organisms and through indirect effects on their habitat. The number of disease epidemics has dramatically increased in recent years, as have the threat of emerging new diseases and the reemergence of other diseases. Some of the recent examples are incidence of thrips transmitted tospoviruses and whitefly transmitted begomoviruses in chilli, cucurbits, okra and tomato. Different biotypes of an aphid or whitefly species have been associated to outbreaks and expansions of viral diseases. The other biological changes involved include introduction of new, more efficient virus-vector species and more efficient virus-vector biotypes or variants of existing vector species, and circumvention of host defenses in introduced crops. At the molecular level the genome alterations most likely to occur in different emerging viruses are those caused by recombination, pseudo-recombination, reassortment and modular evolution. Numerous factors have been cited as potential drivers of the emergence of viral outbreaks, including pathogen introduction through global traffic, changes in vector populations, genetic recombination, new farming techniques, changes in weather conditions. As a first and necessary step in obtaining baseline information about climate change impact on different virus diseases and vectors, a survey should be conducted among growers and plant protection officers. The survey will define a list of most important climate-related plant viruses and vectors for specific regions. Awareness of forthcoming significant climate change it is necessary to work out the impact to be able to make predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins S, Webb SE, Roberts PD, Kousik CS, Stansley PA (2010) A review of Ipomoviruses and watermelon vine decline in Florida. In: Stansley PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht/ Heidelberg/ London/ New York

    Google Scholar 

  • Agrell J, McDonald EP, Lindroth RL (2000) Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272

    Article  CAS  Google Scholar 

  • Allen RN (1978) Spread of bunchy top disease in established banana plantations. Aust J Agric Res 29:1223–1233

    Article  Google Scholar 

  • Alma A, Davis RE, Vibio M, Danielli A, Bosco D, Arzone A (1996) Mixed infection of grapevines in northern Italy by phytoplasmas including 16S rRNA RFLP subgroup 16SrI-B strains previously unreported in this host. Plant Dis 80:418–421

    Article  CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Anhalt MD, Almeida RPP (2008) Effect of temperature, vector life stage, and plant access period on transmission of banana bunchy top virus to banana. Phytopathology 98:743–748

    Article  PubMed  CAS  Google Scholar 

  • Awmack CS, Harrington R, Leather SR (1997) Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO2. Global Change Biol 3:545–549

    Article  Google Scholar 

  • Awmack CS, Harrington R, Lindroth RL (2004) Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biol 10:1414–1423

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Banttari EE, Zeyen RJ (1979) Interactions of myco plasma like organisms and viruses in dually infected leafhoppers, planthoppers, and plants. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic, New York

    Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B 365:61–71

    Article  Google Scholar 

  • Bergant K, Tradan S, Znidarcic D, Crepinsek Z, Kajfez-Bogataj L (2005) Impact of climate change on developmental dynamics of Thrips tabaci (Thysanoptera: Thripidae): can it be quantified? Environ Entomol 34:755–766

    Article  Google Scholar 

  • Bertaccini A (2007) Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12:673–689

    Article  PubMed  CAS  Google Scholar 

  • Bertamini M, Grando MS, Muthuchelian K, Nedunchezhian N (2002) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61:349–356

    Article  CAS  Google Scholar 

  • Bianco PA, Davis RE, Prince JP, Lee I-M, Gundersen DE, Fortusini A (1993) Double and single infections by aster yellows and elm yellows MLOs in grapevines with symptoms characteristic of flavescence dor’ee. Riv Patol Veg 3:69–82

    Google Scholar 

  • Bilgin DD, Aldea M, O’Neill BF, Benitez M, Li M, Clough SJ, DeLucia EH (2008) Elevated ozone alters soybean-virus interaction. MPMI 21:1297–1308

    Article  PubMed  CAS  Google Scholar 

  • Braust V, Uzest M, Monsion B, Jacquot E, Blanc S (2010) Aphids as transport devices for plant viruses. C R Biol 333:524–538

    Article  Google Scholar 

  • Brcak J (1979) Leafhopper and planthopper vectors of plant disease agents in central and southern Europe. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic, New York, pp 97–154

    Google Scholar 

  • Bressan A, Girolarni V, Boudon-Padieu E (2005) Reduced fitness of the leafhopper vector Scaphoideus titan we exposed to flavescence doree phytoplasma. Entomol Exp Appl 115:283–290

    Article  Google Scholar 

  • Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:511–534

    Article  CAS  Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541. doi:10.1126/science.1072678

    Article  PubMed  CAS  Google Scholar 

  • Burdon J, Thrall P, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39

    Article  PubMed  CAS  Google Scholar 

  • Canto T, Aranda MA, Fereres A (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biol 15:1884–1894

    Article  Google Scholar 

  • Carter N, Harrington R (1991) Factors influencing aphid population dynamics and behavior and the consequences for virus spread. In: Harris KF (ed) Advances in disease vector research, vol 7. Springer, New York, pp 19–51

    Chapter  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326. doi:10.1016/S0269-7491(99)00210-9

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Luck J, Hollaway G (2008) Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev Perspect Agric Vet Sci, Nutr Nat Res, article no. 054

    Google Scholar 

  • Chappelka AH, Chevone BI (1992) Tree responses to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, pp 271–324

    Google Scholar 

  • Chytrý M, Wild J, PyÅ¡ek P, Jarošík V, Dendoncker N, Reginster I et al (2012) Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob Ecol Biogeogr 21:75–87. doi:10.1111/j.1466-8238.2010.00573.x

    Article  Google Scholar 

  • Clover GRG, Smith HG, Azam-Ali SN, Jaggard KW (1999) The effects of drought on sugar beet growth in isolation and in combination with beet yellows virus infection. J Agric Sci 133:251–261

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and disease management. Annu Rev Phytopathol 37:399–426

    Article  PubMed  CAS  Google Scholar 

  • Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO et al (2011) Networks and the epidemiology of infectious disease. Interdiscipl Perspect Infect Dis, 284909

    Google Scholar 

  • David G, Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of tospoviruses. J Integr Pest Manag 1:1–10

    Google Scholar 

  • Davies L, Bell JNB, Bone J, Head M, Hill L, Howard C et al (2011) Open Air Laboratories (OPAL): a communitydriven research programme. Environ Pollut 159:2203–2210. doi:10.1016/j.envpol.2011.02.053

    Article  PubMed  CAS  Google Scholar 

  • Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333:539–553

    Article  PubMed  Google Scholar 

  • Desbiez C, Joannon B, Wipf-Scheibel C, Chandeysson C, Lecoq H (2009) Emergence of new strains of watermelon mosaic virus in South-eastern France: evidence for limited spread but rapid local population shift. Virus Res 141:201–208

    Article  PubMed  CAS  Google Scholar 

  • Desprez-Loustau ML, Robin C, Buee M, Courtecuisse R, Garbaye R, Suffert F et al (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    Article  PubMed  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on hostpathogen interactions. Plant Pathol 60:54–69

    Article  Google Scholar 

  • Easterling W, Aggarwal P, Batima P, Brander K, Erda L, Howden S, Kirilenko A, Morton J, Soussana J, Schmidhuber J, Tubiello F (2007) Food, fibre and forest products. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hansen C (eds.) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • FÃ¥gelfors H,Wivstad M, Eckersten H, Holstein F, Johansson S, Verwijst T (2009) Strategic analysis of Swedish agriculture. Production systems and agricultural landscapes in a time of change. Report from the department of crop production ecology, 10. Swedish University of Agricultural Sciences, Swedish

    Google Scholar 

  • Fargette D, Konate G, Fauquet C, Muller E, Peterschmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260

    Article  PubMed  CAS  Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168

    Article  PubMed  CAS  Google Scholar 

  • Finlay KJ, Luck JE (2011) Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virus pathosystem. Agric Ecosyst Environ 144:405–421

    Article  Google Scholar 

  • Firrao G, Garcia-Chapa M, Marzachi C (2007) Phytoplasmas: genetics, diagnosis and relationships with the plant and insect host. Front Biosci 12:1353–1375

    Article  PubMed  CAS  Google Scholar 

  • Foissac X, Wilson MR (2010) Current and possible future distributions of phytoplasma diseases and their vectors. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford

    Google Scholar 

  • Fraser RSS (1986) Genes for resistance to plant viruses. CRC Crit Rev Plant Sci 3:257–294

    Article  Google Scholar 

  • Fraser RSS (1990) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:179–200

    Article  Google Scholar 

  • Galetto L, Marzachi C, Marques R, Graziano C, Bosco D (2011) Effects of temperature and CO2 on phytoplasma multiplication pattern in vector and plant. Bull Insectol 64(Suppl):S151–S152

    Google Scholar 

  • Ganley RJ, Watt MS, Kriticos DJ, Hopkins AJM, Manning LK (2011) Increased risk of pitch canker to Australasia under climate change. Aus Plant Pathol 40:228–237. doi:10.1007/s13313-011-0033-2

    Article  Google Scholar 

  • Garcia-Salazar C, Whalon ME, Rahardja U (1991) Temperature-dependent pathogenicity of the X-disease mycoplasma-like organism to its vector, Paraphlepsius irroratus (Homoptera, Cicadellidae). Environ Entomol 20:179–184

    Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  PubMed  CAS  Google Scholar 

  • Garrett KA, Jumpponen A, Gomez Montano L (2010) Emerging plant diseases: what are our best strategies for management? In: Kleinman DL, Delborne J, Cloud-Hansen KA, Handelsman J (eds) Controversies in science & technology volume 3: from evolution to energy. Mary Ann Liebert, New Rochelle

    Google Scholar 

  • Gent DH, Du Toit LJ, Fichtner SF, Mohan SK, Pappu HR, Schwartz HF (2006) Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Dis 90:1468–1480

    Article  Google Scholar 

  • Gibbs AJ, Ohshima K, Phillips MJ, Gibbs MJ (2008) The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS One 3(6):2523

    Article  CAS  Google Scholar 

  • Gill R, Brown JK (2010) Systematics of Bemisia and Bemisia Relatives: can molecular techniques solve the Bemisia tabaci complex conundrum – a Taxonomist’s viewpoint. In: Stansly PA, Naranjo SE (eds) Bionomics and management of a global pest. Springer, Amsterdam

    Google Scholar 

  • Greber RS, Klose MJ, Milne JR, Teakle DS (1991) Transmission of prunus necrotic ringspot virus using plum pollen and thrips. Ann Appl Biol 118:589–593

    Article  Google Scholar 

  • Habekuß A, Riedel C, Schliephake E, Ordon F (2009) Breeding for resistance to insect- transmitted viruses in barley – an emerging challenge due to global warming. J für Kulturpflanzen 61:53–61

    Google Scholar 

  • Hannukkala AO (2011) Examples of alien pathogens in Finnish potato production – their introduction, establishment and consequences. Agric Food Sci 20:42–61

    Article  Google Scholar 

  • Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23:539–548

    Article  PubMed  CAS  Google Scholar 

  • Hardy VG, Teakle DS (1992) Transmission of sowbane mosaic virus by Thrips tabaci in the presence and absence of virus-carrying pollen. Ann Appl Biol 121:315–320

    Article  Google Scholar 

  • Harrington R (2002) Insect pests and global climate change. In: Douglas I (ed) Encyclopedia of global environmental change. Causes and consequences of global environmental change, vol 3. Wiley, Chichester, UK, pp 381–386

    Google Scholar 

  • Harrington R (2003) Turning up the heat on pests and diseases: a case study for Barley yellow dwarf virus. In: Proceedings of British crop protection council international congress: crop science and technology, vol 2. Glasgow, UK, pp 1195–1200

    Google Scholar 

  • Harrington R, Bale JS, Tatchell GM (1995) Aphids in a changing environment. In: Harringon R, Stork NE (eds) Insects in a changing environment. Academic, London

    Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hulle M, Maurice D, Rounsevell MD, Cocu C (2007) Environmental change and the phenology of European aphids. Global Change Biol 13:1550–1564

    Article  Google Scholar 

  • Harris KF, Maramorosch K (eds) (1977) Aphids as virus vectors. Academic, New York

    Google Scholar 

  • Hartley SE, Jones CG, Couper GC, Jones TH (2000) Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Global Change Biol 6:497–506

    Article  Google Scholar 

  • Hawkes JR, Jones RAC (2005) Incidence and distribution of barley yellow dwarf virus and cereal yellow dwarf virus in over-summering grasses in a mediterranean-type environment. Aust J Agric Res 56:257–270

    Article  Google Scholar 

  • Heino R, Brazdil R, Forland E, Tuomenvirta H, Alexandersson H (1999) Progress in the study of climatic extremes in northern and central Europe. Clim Change 42:151–181

    Article  Google Scholar 

  • Hughes L, Bazzaz FA (2001) Effects of elevated CO2 on five plant–aphid interactions. Entomol Exp Appl 99:87–96

    Article  Google Scholar 

  • Hulle M, Coeur d’Acier A, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503

    Article  PubMed  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Xhen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel for climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Jain RH, Pappu HR, Pappu SS, Reddy MK, Vani A (1998) Watermelon bud necrosis tospovirus is a distinct virus species belonging to Serogroup IV. Arch Virol 143:1637–1644

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ, Holt J, Van Den Bosch F, Madden LV (2004) Epidemiology of insect-transmitted plant viruses: modelling disease dynamics and control interventions. Physiol Entomol 29:291–304

    Article  Google Scholar 

  • Jeger MJ, Seal SE, Van den Bosch F (2006) Evolutionary epidemiology of plant virus. Adv Virus Res 67:163–204

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ, Chen Z, Powell G, Hodge S, van den Bosch F (2011) Interactions in a host plant-virus–vector–parasitoid system: modelling the consequences for virus transmission and disease dynamics. Virus Res 159:183–193

    Article  PubMed  CAS  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Article  Google Scholar 

  • Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157

    Article  Google Scholar 

  • Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WJ, Wyall SD, Pesho GR (1982) Natural hosts and vectors of tobacco streak virus in eastern Washington. Phytopathology 72:1508–1512

    Article  Google Scholar 

  • Kalleshwaraswamy CM, Krishna Kumar NK (2008) Transmission efficiency of Papaya ringspot virus by three aphid species. Phytopathology 98:541–546

    Article  PubMed  CAS  Google Scholar 

  • Kalleshwaraswamy CM, Krishnakumar NK, Verghese A, Dinesh MR, Ranganath HR, Venugopalan R (2007) Role of transient aphid vectors on the temporal spread of papaya ringspot virus in south India. Acta Hortic 740:251–258

    Google Scholar 

  • Karuppaiah V, Sujayanad GK (2012) Impact of climate change on population dynamics of insect pests. World Agri Sci 8:240–246

    Google Scholar 

  • Katayama H (1997) Effect of temperature on development and oviposition of western flower thrips Frankliniella occidentalis (Pergande). Jpn J Appl Entomol Zool 41:225–231

    Article  Google Scholar 

  • Kliejunas JT, Geils BW, Glaeser MJ, Goheen EM, Hennon P, Kim M-S et al (2008) Climate and forest diseases of Western North America: a literature review. PSW-GTR, USDA FS, p 44

    Google Scholar 

  • Krczal G, Albouy J, Damy I, Kusiak C, Deogratias JM, Moreau JP, Berkelmann B, Wohanka W (1995) Transmission of pelargonium flower break virus (PFBV) in irrigation systems and by thrips. Plant Dis 79:163–166

    Article  Google Scholar 

  • Krishnareddy M (2010) Climate change and virus diseases of horticultural crops. In: Singh HP, Singh JP, Lal SS (eds) Challenges of climate change—Indian horticulture. Westville Publishing, New Delhi, pp 153–165

    Google Scholar 

  • Krishnareddy M, Devaraj LR, Jalali S, Samuel DK (2003a) Out break of Tobacco streak virus causing necrosis of Cucumber (Cucumis sativus) and Gherkin (Cucumis anguria) in India. Plant Dis 87:1264

    Article  Google Scholar 

  • Krishnareddy M, Jalali S, Samuel DK (2003b) Occurrence of fruit distortion mosaic disease of okra in India. Plant Dis 87:1395

    Article  Google Scholar 

  • Krishnareddy M, Laxmi Devi V, Jalali S, Samuel DK (2010) Changing disease scenario due to climate change in virus diseases of vegetable crops. In: Symposium on changing plant disease scenario in relation to climate change. IPS South zone IISR, Calicut, 22–23 Oct 2010, p10

    Google Scholar 

  • Krishnareddy M, Manasa M (2012) Dynamics of vector borne plant viruses under climate change scenario. In: Adaptation and mitigation strategies for climate resilient horticulture, National dialogue on climate resilient horticulture, 28–29 Jan 2012, IIHR, Bangalore

    Google Scholar 

  • Krishnareddy M, Usha Rani TR, Anil Kumar KS, Madhavi Reddy K (2008) Capsicum chlorosis virus (Genus Tospovirus) infecting chilli pepper (Capsicum annuum) in India. Plant Dis 92:1469

    Article  Google Scholar 

  • Kunkalikar SR, Sudarsana P, Rajagopalan P, Zehr UB, Ravi KS (2010) Biological and molecular characterization of capsicum chlorosis virus infecting chilli and tomato in India. Arch Virol 155:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Kunkalikar SR, Poojari S, Arun BM, Rajagopalan PA, Chen TC, Yeh SD, Naidu RA, Zehr UB, Ravi KS (2011) Importance and genetic diversity of vegetable-infecting tospoviruses in India. Phytopathology 101:367–376

    Article  PubMed  Google Scholar 

  • Lake JA, Wade RN (2009) Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60:3123–3131

    Article  PubMed  CAS  Google Scholar 

  • Lecoq F, Fabre B, Joannon C, Wipf-Scheibel C, Chandeysson A, Schoeny C (2011) Search for factors involved in the rapid shift in watermelon mosaic virus (WMV) populations in South- eastern France. Virus Res 159:115–123

    Article  PubMed  CAS  Google Scholar 

  • Lee IM, Davis RE (1992) Mycoplasmas which infect plants and insects. In: Maniloff J, McElhansey RN, Finch LR, Baseman JB (eds) Mycoplasmas: molecular biology and pathogenesis. American Society for Microbiology, Washington, DC, pp 379–390

    Google Scholar 

  • Lee IM, Bertaccini A, Vibio M, Gundersen DE, Davis RE, Mittempergher L (1995) Detection and characterization of phytoplasmas associated with disease in Ulmus and Rubus in northern and central Italy. Phytopathol Mediterr 34:174–183

    CAS  Google Scholar 

  • Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255

    Article  PubMed  CAS  Google Scholar 

  • Lefol C, Lherminier J, Boudon-Padieu E, Larrue J, Louis C, Caudwell A (1994) Propagation of flavescence doree MLO (Mycoplasma-Like Organism) in the leafhopper vector Euscelidius variegatus. J Invertebr Pathol 63:285–293

    Article  Google Scholar 

  • Lherminier J, Prensier G, Boudon-Padieu E, Caudwell A (1990) Immunolabeling of grapevine flavescence doree MLO in salivary glands of Euscelidius variegatus: a light and electron microscopy study. J Histochem Cytochem 38:79–85

    Article  PubMed  CAS  Google Scholar 

  • Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8:64–68

    Article  PubMed  CAS  Google Scholar 

  • Lindblad M, Arenö P (2002) Temporal and spatial population dynamics of Psammotettix alienus, a vector of wheat dwarf virus. Int J Pest Manag 48:233–238

    Article  Google Scholar 

  • Lindblad M, Sigvald R (2004) Temporal spread of wheat dwarf virus and mature plant resistance in winter wheat. Crop Prot 23:229–234

    Article  Google Scholar 

  • Lindblad M, Waern P (2002) Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric Ecosyst Environ 92:115–122

    Article  Google Scholar 

  • Lindner K, Maixner M, Roman M (2007) Climate change as a potential cause of the occurrence of potato stolbur in Germany. In: Vector-borne diseases: impact of climate change on vectors and rodent reservoirs Berlin, Berlin, 27–28 Sept 2007

    Google Scholar 

  • Lindsten K, Lindsten B (1999) Wheat dwarf—an old disease with new outbreaks in Sweden. J Plant Dis Prot 106:325–332

    Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS et al (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772

    Article  PubMed  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale D, Gibbs J (2002) Effects of climate change on fungal diseases of trees. In: Broadmeadow M (ed) Climate change: impacts on UK forests. Forestry Commission, Edinburgh, pp 83–97, Forestry Commission Bulletin, Nr. 125

    Google Scholar 

  • Lowry VK, Smith JW Jr, Mitchell FL (1992) Life-fertility tables for Frankliniella fusca (Hinds) and F. occidentals (Pergande) (Thysanoptera: Thripidae) on peanut. Ann Entomol Soc Am 85:744–754

    Google Scholar 

  • Lowles AJ, Tatchell GM, Harrington R, Clark SJ (1996) The effect of temperature and inoculation access period on the transmission of barley yellow dwarf virus by Rhopalosiphum padi (L.) and Sitobion avenae (F.). Annu Appl Biol 128:45–53

    Article  Google Scholar 

  • Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121

    Article  Google Scholar 

  • Malmstrom CM, Field CB (1997) Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant Cell Environ 20:178–188

    Article  Google Scholar 

  • Malmstrom CM, Melcherb U, Nilsa A, Bosque-Pérezc NA (2011) The expanding field of plant virus ecology: historical foundations knowledge gaps and research directions. Virus Res 159:84–94

    Article  PubMed  CAS  Google Scholar 

  • Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR (2012) Emerging problems of Tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Dis 96:468–479

    Article  Google Scholar 

  • Marchoux G, Parrella G, Gebre-Selassie K, Gognalous P (1999) Identification de deux ilarvirus sur tomate dans le sud de la France. Phytoma 522:53–55

    Google Scholar 

  • Marcone C, Ragozzino A, Schneider B, Lauer U, Smart CD, Seemuller E (1995) Genetic characterization and classification of two phytoplasmas associated with spartium witches’-broom disease. Plant Dis 80:365–371

    Article  Google Scholar 

  • Marcone C, Lee IM, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50:1703–1713

    PubMed  CAS  Google Scholar 

  • McCoy RE, Caudwell A, Chang CJ, Chen T-A, Chiykowski LN, Cousin NT (1989) Plant diseases associated with mycoplasmalike organisms. In: Whitcomb RF, Tully JG (eds) The mycoplasmas. Academic, New York

    Google Scholar 

  • McElrone AJ, Hamilton JG, Krafnick AJ, Aldea M, Knepp RG, DeLucia EH (2010) Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environ Pollut 158:108–114. doi:10.1016/j.envpol.2009.07.029

    Article  PubMed  CAS  Google Scholar 

  • Meehl G, Stocker T, Collin W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda N, Raper S, Watterson I, Weaver A, Zhao Z-C (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge UK/ New York

    Google Scholar 

  • Mistretta PA (2002) Managing for forest health. J Forestry 100:24–27

    Google Scholar 

  • Mitchell PL (2004) Heteroptera as vectors of plant pathogens. Neotropical Entomol 33:519–545

    Article  Google Scholar 

  • Mondor E, Tremblay MN, Awmack CS, Lindroth RL (2005) Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres. Global Change Biol 11:1990–1996

    Google Scholar 

  • Morales FJ (2006) History and current distribution of begomoviruses in Latin America. Adv Virus Res 67:127–162

    Article  PubMed  Google Scholar 

  • Morales FJ (2010) Distribution and dissemination of begomoviruses in Latin America and the Caribbean. In: Stansley PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht/Heidelberg/London/New York, pp 283–318

    Google Scholar 

  • Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65

    Article  PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, Heuvel JF (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256:75–84

    Article  PubMed  CAS  Google Scholar 

  • Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  PubMed  CAS  Google Scholar 

  • Mound LA (1996) The thysanoptera vector species of tospoviruses. Acta Horti 431:298–309

    Google Scholar 

  • Mound LA (2001a) So many thrips–so few tospoviruses? Thrips and tospoviruses. In: Marullo R, Mound L (eds) Thrips and tospoviruses: proceedings of the 7th international symposium on Thysanoptera, ANIC, Reggio Calabria, 1–8 July 2001, pp 3–6

    Google Scholar 

  • Mound LA (2005) Thysanoptera: diversity and interactions. Ann Rev Entomol 50:247–269

    Article  CAS  Google Scholar 

  • Mumford RA, Baker I, Wood KR (1996) The biology of the tospoviruses. Ann Appl Biol 128:159–183

    Article  Google Scholar 

  • Nakashima K, Hayashi T (1995) Multiplication and distribution or rice yellow dwarf phytoplasma in infected tissues of rice and green rice leafhopper Nephotettix cincticeps. Ann Phytopathol Soc Jpn 61:519–528

    Article  CAS  Google Scholar 

  • Nault LR (1997) Arthropod transmission of plant viruses—a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  • Nault LR, Ammar ED (1989) Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol 34:503–529

    Article  Google Scholar 

  • Nault LR, Madden LV, Styer WE, Triplehorn BW, Shambaugh GF, Heady SE (1984) Pathogenicity of corn stunt spiroplasma and maize bushy stunt mycoplasma to their vector Dalbulus longulus. Phytopathologtj 74:977–979

    Article  Google Scholar 

  • Navas-Castillo J, Camero R, Bueno M, Moriones E (2000) Severe yellowing outbreaks in tomato in Spain associated with infections of tomato chlorosis virus. Plant Dis 84:835–837

    Article  Google Scholar 

  • Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S (2011) Emerging virus diseases transmitted whiteflies. Annu Rev Phytopathol 49:219–248

    Article  PubMed  CAS  Google Scholar 

  • Newman J (2004) Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics. Global Change Biol 10:5–15

    Article  Google Scholar 

  • Newman JA (2005) Climate change and the fate of cereal aphids in southern Britain. Global Change Biol 11:940–944

    Article  Google Scholar 

  • Newman JA (2006) Using the output from global circulation models to predict changes in the distribution and abundance of cereal aphids in Canada: a mechanistic modeling approach. Global Change Biol 12:1634–1642

    Article  Google Scholar 

  • Newman JA, Gibson DJ, Parsons AJ, Thornley JHM (2003) How predictable are aphid population responses to elevated CO2? J Anim Ecol 72:556–566

    Article  Google Scholar 

  • Ng JCK, Falk BW (2006) Virus-vector interactions mediating no persistent and semi persistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  PubMed  CAS  Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    Article  PubMed  Google Scholar 

  • Nielson MW (1979) Taxonomic relationships of leafhopper vectors of plant pathogens. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic, New York

    Google Scholar 

  • Norse D, Gommes R (2003) Climate change and agriculture: physical and human dimensions. In: Bruinsma J (ed) World agriculture towards 2015/2030: an FAO perspective. Earthscan Publications, London, pp 357–372

    Google Scholar 

  • Olson AJ, Pataky JK, D’Arcy CJ, Ford RE (1990) Effects of drought stress and infection by maize dwarf mosaic virus on sweet corn. Plant Dis 74:147–151

    Article  Google Scholar 

  • Palmer JM, Mound LA, du Heaume GJ (1989) CIE guides to insects of importance to man. 2. Thysanoptera CAB International Institute of Entomology/British Museum Natural History, London (CIE guides to insects of importance to man: 2). 74p

    Google Scholar 

  • Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Peacock LS, Worner S, Sedcole R (2006) Climate variables and their roles in site discrimination of invasive insect species distributions. Environ Entomol 35:958–963

    Article  Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407

    Article  PubMed  CAS  Google Scholar 

  • Persley DM, Thomas JE, Sharman M (2006) Tospoviruses: an Australian perspective. Aust Plant Pathol 35:161–180

    Article  Google Scholar 

  • Polák J (2009) Influence of climate changes in the Czech republic on the distribution of plant viruses and phytoplasmas originally from the mediterranean subtropical region. Plant Prot Sci 45:S20–S26

    Google Scholar 

  • Prasada Rao RDVJ, Izuka M, Ragunathan V, Joshi NC (1980) Incidence of tomato spotted wilt virus on tomato in Andhra Pradesh. Indian Phytopath 33:436–439

    Google Scholar 

  • Pritchard J, Griffiths B, Hunt EJ (2007) Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biol 13:1616–1629

    Article  Google Scholar 

  • Qi A, Dewar AM, Harrington R (2005) Forecasting virus yellows incidence in sugar beet – the post-Gaucho era. Aspects Appl Biol 76:87–94

    Google Scholar 

  • Ramsell JNE, Lemmetty A, Jonasson J, Andersson A, Sigvald R, Kvarnheden A (2008) Sequence analyses of wheat dwarf virus isolates from different hosts reveal low genetic diversity within the wheat strain. Plant Pathol 57:834–841

    Article  CAS  Google Scholar 

  • Reddy DVR, Ratna AS, Sudarshana MR, Poul F, Kiran KI (1992) Serological relationships and purification of Peanut bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Ann Appl Biol 120:279–286

    Article  Google Scholar 

  • Reddy M, Reddy DVR, Appa Rao A (1968) A new record of virus disease on peanut. Plant Dis Rep 52:494–495

    Google Scholar 

  • Reitz SR (2008) Comparative bionomics of Frankliniella occidentalis and Frankliniella tritici. Florida Entomol 91:474–476

    Article  Google Scholar 

  • Richards OW, Davies RG (1977) IMMs’ general textbook of entomology, vol 2, 10th edn. Wiley, New York

    Book  Google Scholar 

  • Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of tospoviruses. J Integr Pest Manage 1:1–10

    Article  Google Scholar 

  • Rojas MR, Gilbertson RL (2008) Emerging plant viruses: a diversity of mechanisms and opportunities. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin/Heidelberg, pp 27–51

    Chapter  Google Scholar 

  • Roos J, Hopkins RK, Varnheden A, Dixelius C (2011) The impact of global warming on plant diseases and insect vectors in Sweden. Eur J Plant Pathol 129:9–19

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang X, Epstein P, Chivian E (2001) Climate change and extreme weather events; implications for food production plant diseases and pests. Global Change Hum Health 2:90–104

    Article  Google Scholar 

  • Ruszkowska M,Lipa JJ, Walczak F, Wójtowicz A (2010) Current and future crop protection problems in Poland in a changing climate. In Climate change and Agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic association of agricultural scientists (NJF), ISSN 1653–2015, pp 67–68

    Google Scholar 

  • Sacristan S, Garcia-Arenal F (2008) The evolution of virulence and pathogenicity in plant pathogen populations. Mol Plant Pathol 9:369–384

    Article  PubMed  Google Scholar 

  • Sdoodee R, Teakle DS (1987) Transmission of tobacco streak virus by Thrips tabaci: a new method of plant virus transmission. Plant Pathol 36:377–380

    Article  Google Scholar 

  • Seal SE, vanDenBosch F, Jeger MJ (2006a) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46

    Article  Google Scholar 

  • Seal SE, Jeger MJ, van Den Bosch F (2006b) Begomovirus evolution and disease management. Adv Virus Res 67:297–316

    Article  PubMed  CAS  Google Scholar 

  • Seemuller E, Marcone C, Lauer U, Ragozzino A, Goschl M (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26

    CAS  Google Scholar 

  • Shaw MW (2009) Preparing for changes in plant diseases due to climate change. Plant Prot Sci 45:S3–S10

    Google Scholar 

  • Sindelarova M, Sindelar L, Wilhelmova N, Prochazkova D (2005) Changes in key enzymesof viral-RNA biosynthesis in chloroplasts from PVY and TMV infected tobacco plants. Biol Plant 49:471–474

    Article  CAS  Google Scholar 

  • Singh SJ, Krishnareddy M (1996) Watermelon bud necrosis: a new tospovirus disease. Acta Hortic 431:68–77

    Google Scholar 

  • Smith MC, Kenyton JH, Foot LC (1998) Quantitative epidemiology of banana bunchy top virus disease and its control. Plant Pathol 47:177–187

    Article  Google Scholar 

  • Smyrnioudis IN, Harrington R, Hall M, Katis N, Clark SJ (2001) The effect of temperature on variation in transmission of a BYDV PAV-like isolate by clones of Rhopalosiphum padi and Sitobion avenae. Eur J Plant Pathol 107:167–173

    Article  Google Scholar 

  • Sudderth EA, Stinson KA, Bazzaz FA (2005) Host-specific aphid population responses to elevated CO2 and increased N availability. Global Change Biol 11:1997–2008

    Google Scholar 

  • Stenlid J, Oliva J, Boberg JB, Hopkins AJM (2011) Emerging diseases in European forest ecosystems and responses in society. Forests 2:486–504

    Article  Google Scholar 

  • Svensson H (2010) The effects on climate change in agriculture – an overview. In: Climate change and agricultural production in the Baltic Sea region. Focus on effects, vulnerability and adaptation. Nordic Association of Agricultural Scientists (NJF), ISSN 1653–2015, pp 23–24

    Google Scholar 

  • Sylvester SE (1980) Circulative and propagative virus transmission by aphids. Annu Rev Entomol 25:257–286

    Article  Google Scholar 

  • Thackray D, Diggle A, Jones R (2009) BYDV PREDICTOR: a simulation model to predict aphid arrival epidemics of Barley yellow dwarf virus and yield losses in wheat crops in a Mediterranean-type environment. Plant Pathol 58:186–202

    Article  Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Annu Appl Biol 110:661–681

    Article  Google Scholar 

  • Tsai JH (1979) Vector transmission of mycoplasmal agents of plant diseases. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 3. Academic, New York, pp 265–307

    Chapter  Google Scholar 

  • Ullman DE, Cho JJ, Mau RFL, Hunter WB, Westcot DM, Custer DM (1992) Thrips-tomato spotted wilt virus interactions: morphological behavioural and cellular components influencing thrips transmission. Adv DisVector Res 9:196–240

    Google Scholar 

  • Ullman DE, Sherwood JL, German TL (1997) Thrips as vectors of plant pathogens. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 539–565

    Google Scholar 

  • Van Den Bosch F, Akudibilah G, Seal S, Jeger M (2006) Host resistance and the evolutionary response of plant viruses. J Ecol 43:506–516

    Article  Google Scholar 

  • Weintraub PG (2007) Insect vectors of phytoplasmas and their control –an update. Bull Insectol 60(2):169–173

    Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  PubMed  CAS  Google Scholar 

  • West JS, Townsend JA, Stevens M, Fitt BDL (2012) Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol 133:315–331

    Article  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2005) Tospovirus-thrips interactions. Annu Rev Phytopathol 43:459–489

    Article  PubMed  CAS  Google Scholar 

  • Wijkamp I, Goldbach R, Peters D (1996a) Propagation of Tomato spotted wilt virus in Frankliniella occidentalis does neither result in pathological effects nor in transovarial passage of the virus. Entomol Exp Appl 81:285–292

    Article  Google Scholar 

  • Wijkamp I, Van De Wetering F, Goldbach R, Peters D (1996b) Transmission of Tomato spotted wilt virus by Frankliniella occidentalis: median acquisition and inoculation access period. Ann Appl Biol 129:303–313

    Article  Google Scholar 

  • Wintermantel WM (2004) Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. APSnet feature story June 2004. http://www.apsnet.org/publications/apsnetfeatures/Documents/2004/. Accessed June 2004

  • Wintermantel WM (2010) Transmission efficiency and epidemiology of criniviruses. In: Stansley PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht/Heidelberg/London/New York, pp 319–331

    Google Scholar 

  • Wisler GC, Duffus JE, Liu HY, Li RH (1998a) Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis 82:270–280

    Article  Google Scholar 

  • Wisler GC, Li RH, Liu HY, Lowry DS, Duffus J (1998b) Tomato chlorosis virus: a new whitefly transmitted phloem-limited bipartite closterovirus of tomato. Phytopathology 88:402–409

    Article  PubMed  CAS  Google Scholar 

  • Wu RY, Su HJ (1990) Transmission of banana bunchy top virus by aphids to banana plantlets from tissue culture. Bot Bull Acad Sinica 31:7–10

    Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Ye L, Xue Fuac X, Gea F (2010) Elevated CO2 alleviate damage from potato virus Y infection in tobacco plants. Plant Sci 179:219–224

    Article  CAS  Google Scholar 

  • Zhang J, Hogenhout SA, Nault LR, Hoy CW, Miller SA (2004) Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology 94:842–849

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manem Krishnareddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Krishnareddy, M. (2013). Impact of Climate Change on Insect Vectors and Vector-Borne Plant Viruses and Phytoplasma. In: Singh, H., Rao, N., Shivashankar, K. (eds) Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer, India. https://doi.org/10.1007/978-81-322-0974-4_23

Download citation

Publish with us

Policies and ethics