Skip to main content

Biological Rhythms

  • Chapter
  • First Online:
Heat Stress and Animal Productivity

Abstract

A biological rhythm is a cyclical change in the biological or chemical function of body. The biological rhythms are endogenously controlled by self-contained circadian clocks. The daily alternation of light and dark is the main regulatory factor of the pineal hormone melatonin. Alterations in long-term lighting conditions during the year result in metabolic and behavioural changes in most living beings. The suprachiasmatic nuclei (SCN) in the hypothalamus are regarded as the anatomical loci of the circadian pacemaker. The most important synchronising trigger of circadian rhythm is environmental light/dark (LD) cycle. The circadian pacemaker in the mammalian SCN consists of a double complex of circadian genes (Per1/Cry1 and Per2/Cry2), which is able to maintain the endogenous rhythm. Melatonin has the ability to entrain biological rhythms and has important effects on biological function like reproduction of many mammals and livestock. The daily rhythmicity of melatonin is considered to be a very reliable phase marker of the endogenous timing system. The results on the patterns of cortisol levels in livestock particularly in ruminants are inconsistent; the levels have been observed to fluctuate episodically, or peaks and troughs have been found at varying times of the day depending on the physiological status and conditions. Increased glucocorticoid secretion at the circadian peak depends on increased hypothalamic–pituitary activity (HPA). Leptin is also a major regulator of neuroendocrine function and has an overall inhibitory effect on HPA activity and suppress the appetite-stimulating effects of glucocorticoid. Leptin secretion is pulsatile but leptin pulses are irregular in cattle. Chronobiologically, to maximise nutrient efficiency and optimise health, nutrient supply to reticulorumen, splanchnic and peripheral tissues needs to be synchronised with endogenous rhythms in hormone production and nutrient metabolism. The circadian system or oscillator coordinates the metabolic and hormonal changes needed to initiate and sustain milk synthesis or lactation. The animal or cow’s capacity to produce milk and cope with metabolic stresses in early lactation is related to animal’s ability to set circadian rhythms in order particularly during the transition period or early lactation. Circadian variations are also observed in many other biological functions like reactive oxygen species (ROS), defence systems, thermoregu­lation, the cardiovascular system and other functions in humans and domestic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abilay TA, Johnson HD (1973) Plasma steroids during the ovarian cycle at 18.2 °C temperature. J Anim Sci 37:298–299

    Google Scholar 

  • Aggarwal A, Kumar P, Upadhyay RC, Singh SV (2001) Circadian variation in plasma levels of cortisol in cattle and buffalo during different seasons. Int J Anim Sci 16:95–98

    Google Scholar 

  • Aggarwal A, Upadhyay RC, Singh SV, Kumar P (2005) Adrenal-thyroid pineal interaction and effect of exogenous melatonin during summer in crossbred cattle. Indian J Anim Sci 75:915–921

    CAS  Google Scholar 

  • Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252

    Google Scholar 

  • Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS (1997) Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 99:391–395

    Article  CAS  Google Scholar 

  • Ahima RS, Prabakaran D, Flier JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 101:1020–1027

    Article  CAS  Google Scholar 

  • Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. Neuroreport 9:4063–4068

    Article  CAS  Google Scholar 

  • Amstalden M, Garcia MR, Williams SW, Stanko RL, Nizielski SE, Morrison CD, Keisler DH, Williams GL (2000) Leptin gene expression, circulating leptin, and luteinizing hormone pulsatility are acutely responsive to short-term fasting in prepubertal heifers: relationships to circulating insulin and insulin-like growth factor I. Biol Reprod 63:127–133

    Article  CAS  Google Scholar 

  • Andersson B (1978) Regulation of water intake. Physiol Rev 58:598

    Google Scholar 

  • Andersson H, Lillpers K, Rydhmer L, Forsberg M (2000) Influence of light environment and photoperiod on plasma melatonin and cortisol profiles in young domestic boars, comparing two commercial melatonin assays. Domest Anim Endocrinol 19:261–274

    Article  CAS  Google Scholar 

  • Arave CW, Albright JL (1981) Cattle behavior. J Dairy Sci 64:1318–1329

    Article  CAS  Google Scholar 

  • Arendt J, Borbely AA, Franey C, Wright J (1984) The effects of chronic small doses of melatonin given in the late afternoon on fatigue in man: a preliminary study. Neurosci Lett 45:317–321

    Article  CAS  Google Scholar 

  • Arendt J, Aldhous M, Wright J (1988) Synchronisation of a disturbed sleep-wake cycle in a blind man by melatonin treatment. Lancet 1:772–773

    Article  CAS  Google Scholar 

  • Arendt J, Skene DJ, Middelton B, Lockley SW, Deacon S (1997) Efficacy of melatonin treatment in jet lag, shift work and blindness. J Biol Rhythms 12:604–617

    Article  CAS  Google Scholar 

  • Armstrong SM (1989) Melatonin: the internal zeitgeber of mammals. J Pineal Res 7:157–202

    CAS  Google Scholar 

  • Arora S, Anubhuti S (2006) Role of neuropeptides in appetite regulation and obesity – a review. Neuropeptides 40:375–401

    Article  CAS  Google Scholar 

  • Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  CAS  Google Scholar 

  • Aserinsky E (1999) Eyelid condition at birth: relationship to adult mammalian sleep-waking patterns. In: Mallick BN, Inoue S (eds) Rapid eye movement sleep. Naroca Publishing, New Delhi

    Google Scholar 

  • Balch CC (1955) Sleep in ruminants. Nature 175:940–942

    Article  CAS  Google Scholar 

  • Barry J (1979) Immunofluorescence study of the preoptico-terminal LHRH tract in the female squirrel monkey during the estrous cycle. Cell Tissue Res 198:1–13

    Article  CAS  Google Scholar 

  • Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses. J Pineal Res 15:161–190

    Article  CAS  Google Scholar 

  • Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16:196–204

    CAS  Google Scholar 

  • Bartness TJ, Demas GE, Song CK (2002) Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp Biol Med 227:363–376

    CAS  Google Scholar 

  • Benitez- King G (1993) Calmoduling mediates melatonin cytoskeletal effects. Experentia 49:635–641

    Article  CAS  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  Google Scholar 

  • Bertolucci C, Caola G, Foa A, Piccione G (2005) Daily rhythms of serum leptin in ewes. Effect of feeding, pregnancy and lactation. Chronobiol Int 22:817–827

    Article  CAS  Google Scholar 

  • Bitman J, Wood DL, Lefcourt AM (1990) Rhythms in cholesterol, cholesteryl esters, free fatty acids, and triglycerides in blood of lactating dairy cows. J Dairy Sci 73:948–955

    Article  CAS  Google Scholar 

  • Bittman EL (1984) Melatonin and photoperiodic time measurement: evidence from rodents and ruminants. In: Reiter RJ (ed) The pineal gland. Raven, New York, pp 155–191

    Google Scholar 

  • Blache D, Tellam RL, Chagas LM, Blackberry MA, Vercoe PE, Martin GB (2000) Level of nutrition affects leptin concentrations in plasma and cerebrospinal fluid in sheep. J Endocrinol 65:625–637

    Article  Google Scholar 

  • Bliss EL, Sandberg AA, Nelson DH, Eik-Nes K (1953) The normal levels of 17-hydroxycorticosteroids in the peripheral blood in man. J Clin Invest 32:818–823

    Article  CAS  Google Scholar 

  • Blum JW, Bruckmaier RM, Vacher PY, Munger A, Jans F (2000) Twenty-four-hour patterns of hormones and metabolites in week 9 and 19 of lactation in high-yielding dairy cows fed triglycerides and free fatty acids. J Vet Med 47:43–60

    Article  CAS  Google Scholar 

  • Bocquier F, Bonnet M, Faulconnier Y, Guerre-Millo M, Martin P, Chilliard Y (1998) Effects of photoperiod and feeding level on perirenal adipose tissue metabolic activity and leptin synthesis in the ovariectomized ewe. Reprod Nutr Dev 38:489–498

    Article  CAS  Google Scholar 

  • Boswell T, Woods SC, Kenagy GJ (1994) Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. Gen Comp Endocrinol 96:339–346

    Article  CAS  Google Scholar 

  • Bothorel B, Barassin S, Saboureau M, Perreau S, Vivien-Roels B, Malan A, Pévet P (2002) In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock. Eur J Neurosci 16:1090–1098

    Article  Google Scholar 

  • Brainard GC, Richardson BA, King TS, Matthews SA, Reiter RJ (1983) The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: a dose–response relationship. Endocrinology 113:293–296

    Article  CAS  Google Scholar 

  • Brainard GC, Podolin PL, Leivy SW, Rollag MD, Cole C, Barker FM (1986) Near-ultraviolet radiation suppresses pineal melatonin content. Endocrinology 119:2201–2205

    Article  CAS  Google Scholar 

  • Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412

    CAS  Google Scholar 

  • Brinklow BR, Forbes JM (1984) Effect of pinealectomy on the plasma concentrations of prolactin, cortisol and testosterone in sheep in short and skeleton long photoperiods. J Endocrinol 100:287–294

    Article  CAS  Google Scholar 

  • BSCS (2003) Sleep, sleep disorders, and biological rhythms, NIH publication no. 04-4989. National Institutes of Health, Bethesda

    Google Scholar 

  • Bubenik GA, Schams D, White RG, Rowell J, Blake J, Bartos L (1998) Seasonal levels of metabolic hormones and substrates in male and female reindeer (Rangifer tarandus). Comp Biochem Physiol 120:307–315

    CAS  Google Scholar 

  • Buckley TM, Schatzberg AF (2005) On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab 90:3106–3114

    Article  CAS  Google Scholar 

  • Buijs RM, Scheer FA, Kreier F, Yi C, Bos N, Goncharuk VD, Kalsbeek A (2006) Organization of circadian functions: interaction with body. Prog Brain Res 153:341–360

    Article  CAS  Google Scholar 

  • Cagnacci A (1996) Melatonin in relation to physiology in adult humans. J Pineal Res 21:200–213

    Article  CAS  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  CAS  Google Scholar 

  • Cardinali DP, Larin F, Wurtman RJ (1972) Control of the rat pineal gland by light spectra. Proc Natl Acad Sci USA 69:2003–2005

    Article  CAS  Google Scholar 

  • Casey T, Patel O, Dykema K, Dover H, Furge K, Plaut K (2009) Molecular signatures reveal circadian clocks May orchestrate the homeorhetic response to lactation. PLoS One 4(10):e7395. doi:10.1371/journal.pone.0007395

    Article  CAS  Google Scholar 

  • Cassone VM, Stephan FK (2002) Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight. Nutrition 18:814–819

    Article  Google Scholar 

  • Cassone VM, Roberts MH, Moore RY (1988) Effects of melatonin on 2-deoxy- [1-14C] glucose uptake within rat suprachiasmatic nucleus. Am J Physiol 255:332–337

    Google Scholar 

  • Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behaviour. J Neurosci 22:9305–9319

    CAS  Google Scholar 

  • Chesworth MJ, Cassone VM, Armstrong SM (1987) Effects of daily melatonin injections on activity rhythms of rats in constant light. Am J Physiol 253:101–107

    Google Scholar 

  • Clarke IJ (2001) Sex and season are major determinants of voluntary food intake in sheep. Reprod Fertil Dev 13:577–582

    Article  CAS  Google Scholar 

  • Clarke IJ, Rao A, Chilliard Y, Delavaud C, Lincoln GA (2003) Photoperiod effects on gene expression for hypothalamic appetite-regulating peptides and food intake in the ram. Am J Physiol 284:101–115

    Google Scholar 

  • Conti A, Conconi S, Hertens E, Skwarlo- Sonta K, Markowska M, Maestroni GJM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28:193–202

    Article  CAS  Google Scholar 

  • Cornelissen VA, Fagard RH (2005) Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46(4):667–675

    Article  CAS  Google Scholar 

  • Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102:25

    Google Scholar 

  • Daan S, Albrecht U, Van der Horst T, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116

    Article  CAS  Google Scholar 

  • Dahl GE, Tao S, Thompson IM (2011) Effects of photoperiod on mammary gland development and lactation. doi: 10.2527/jas.2011-4630

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury- Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Google Scholar 

  • Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi SJ, Chu A, Horsley C, Levin N, Meijer O, Soriano LR, Strack AM, Viau V (1999) Starvation: early signals, sensors, and sequelae. Endocrinology 140:4015–4023

    Article  CAS  Google Scholar 

  • Dallman MF, Akana SF, Bhatnagar S, Bell ME, Strack AM (2000) Bottomed out: metabolic significance of the circadian trough in glucocorticoid concentrations. Int J Obes Relat Metab Disord 24(Suppl 2):40–46

    Article  Google Scholar 

  • de Souza CJ, Meier AH (1987) Circadian and seasonal variations of plasma insulin and cortisol concentrations in the Syrian hamster, Mesocricetus auratus. Chronobiol Int 4:141–151

    Article  Google Scholar 

  • Depres- Brummer P, Levi F, Metzger G, Touitou Y (1995) Light-induced suppression of the rat circadian system. Am J Physiol 37:1111–1116

    Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004) Fundamental properties of circadian rhythms. In: Chronobiology–biological timekeeping. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Eriksson L, Teravainen TL (1989) Circadian rhythm of plasma cortisol and blood glucose in goats. Asian-Australas J Anim Sci 2:202–203

    Google Scholar 

  • Escobar C, Diaz-Munoz M, Encinas F, Aguilar-Roblero R (1998) Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274:1309–1316

    Google Scholar 

  • Faulconnier Y, Bonnet M, Bocquier F, Leroux C, Chilliard Y (2001) Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-pregnant sheep. Br J Nutr 85:299–306

    Article  CAS  Google Scholar 

  • Feher T, Zomborszky Z, Sandor E (1994) Dehydroepi­androsterone, dehydroepiandrosterone sulphate, and their relation to cortisol in red deer (Cervus elaphus). Comp Biochem Physiol 109:247–252

    CAS  Google Scholar 

  • Fjaerli O, Lund T, Osterud B (1999) The effect of melatonin on cellular activation processes in human blood. J Pineal Res 26:50–55

    Article  CAS  Google Scholar 

  • Forbes JM (1995) Voluntary food intake and diet selection in farm animals. CABI Int, Wallingford

    Google Scholar 

  • Forman BM, Chen J, Blumberg B, Kliewer SA, Henshaw R, Ong ES, Evans RM (1994) Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Mol Endocrinol 8:1253–1261

    Article  CAS  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  Google Scholar 

  • Friedman J, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  Google Scholar 

  • Fries E, Dettenborn L, Kirschbaum C (2008) The cortisol awakening response (CAR): facts and future directions. Int J Psychophysiol 72:67–73

    Article  Google Scholar 

  • Frohli DM, Blum JW (1988) Nonesterified fatty acids and glucose in lactating dairy cows: diurnal variations and changes in responsiveness during fasting to epinephrine and effects of beta-adrenergic blockade. J Dairy Sci 71:1170–1177

    Article  CAS  Google Scholar 

  • Fulkerson WJ, Sawyer GJ, Gow CB (1980) Investigations of ultradian and circadian rhythms in the concentration of cortisol and prolactin in the plasma of dairy cattle. Aust J Biol Sci 33:557–561

    CAS  Google Scholar 

  • Furedi C, Kennedy AD, Nikkhah A et al (2006) Glucose tolerance and diurnal variation of circulating insulin in evening and morning fed lactating cows. Adv Dairy Technol 18:356

    Google Scholar 

  • Ganong WF (1997) Review of medical physiology. A lange medical book, 18th edn. Appleton and Lange, Stamford, p 433

    Google Scholar 

  • Garcia MR, Amstalden M, Williams SW, Stanko RL, Morrison CD, Keisler DH, Nizielski SE, Williams GL (2002) Serum leptin and its adipose gene expression during pubertal development, the estrous cycle, and different seasons in cattle. J Anim Sci 80:2158–2167

    CAS  Google Scholar 

  • Gekakis N (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    Article  CAS  Google Scholar 

  • Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16:283–301

    Article  CAS  Google Scholar 

  • Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  CAS  Google Scholar 

  • Gorman MR, Goldman BD, Zucker I (2001) Mammalian photoperiodism. In: Handbook of behavioral neurobiology, vol 12. Plenum/Kluwer, New York, pp 481–508

    Chapter  Google Scholar 

  • Greco D (2002) Endocrine glands and their function. In: Cunningham textbook of veterinary physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 341–372

    Google Scholar 

  • Griffith MK, Minton JE (1992) Effect of light intensity on circadian profiles of melatonin, prolactin, ACTH, and cortisol in pigs. J Anim Sci 70:492–498

    CAS  Google Scholar 

  • Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403

    Article  CAS  Google Scholar 

  • Guillemin R, Dear WE, Liebelt RA (1959) Nychthemeral variations in plasma free corticosteroid levels of the rat. Proc Soc Exp Biol Med 101:394–395

    CAS  Google Scholar 

  • Gunduz B (2002) Daily rhythm in serum melatonin and leptin levels in the Syrian hamster (Mesocricetus auratus). Comp Biochem Physiol 132:393–401

    Article  Google Scholar 

  • Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci 94:8878–8883

    Article  CAS  Google Scholar 

  • Hardeland R, Coto-Montes A, Burkhardt S, Zsizsik BK (2000) Circadian rhythms and oxidative stress in nonvertebrate organisms. In: Vanden Driessche T (ed) The redox state and circadian rhythms. Kluwer Academic Publishers, Dordrecht, pp 121–126

    Google Scholar 

  • Hardeland R, Coto-Montes A, Poeggeler B (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20:921–962

    Article  CAS  Google Scholar 

  • Hardin P (2009) Molecular mechanisms of circadian timekeeping in Drosophila. Sleep Biol Rhythms 7:235–242

    Article  Google Scholar 

  • Hasting MH (2001) Adaptation to seasonal change: photoperiodism and its mechanism. J Biol Rhythms 16:283–430

    Article  Google Scholar 

  • Hastings JW, Schweiger HG (1975) The molecular basis of circadian rhythms. Dahlem Workshop Report

    Google Scholar 

  • Hastings MH, Herbert J, Martensz ND, Roberts AC (1985) Annual reproductive rhythms in mammals: mechanisms of light synchronization. Ann N Y Acad Sci 453:182–204

    Article  CAS  Google Scholar 

  • Heidemann SR (2002) The molecular and cellular bases of physiologic regulation. In: Cunningham textbook of veterinary physiology, 3rd edn. W.B. Saunders Company, Philadelphia, pp 2–29

    Google Scholar 

  • Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS (1997) Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 138:3859–3863

    Article  CAS  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    Article  CAS  Google Scholar 

  • Hocquette JF, Bauchart D (1999) Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals. Reprod Nutr Dev 39:27–48

    Article  CAS  Google Scholar 

  • Hoffman R, Reiter RJ (1965) Pineal gland: influence on gonads of male hamsters. Science 148:1609–1611

    Article  CAS  Google Scholar 

  • Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JG (1997) Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci USA 94:11073–11078

    Article  CAS  Google Scholar 

  • Homna K, Hiroshige T (1978) Endogenous ultradian rhythms in rats exposed to prolonged continuous light. Am J Physiol 235:250–256

    Google Scholar 

  • Howland BE, Sanford LM, Palmer WM (1985) Changes in serum levels of LH, FSH, prolactin, testosterone, and cortisol associated with season and mating in male pygmy goats. J Androl 6:89–96

    CAS  Google Scholar 

  • Hudson S, Mullord M, Whittlestone WG, Payne E (1975) Diurnal variations in blood cortisol in the dairy cow. J Dairy Sci 58:30–33

    Article  CAS  Google Scholar 

  • Ikonomov OG, Stoynev AG, Shisheva AC (1998) Integrative coordination of circadian mammalian diversity: neuronal networks and peripheral clocks. Prog Neurobiol 54:87–97

    Article  CAS  Google Scholar 

  • Ingram JR, Crockford JN, Matthews LR (1999) Ultradian, circadian and seasonal rhythms in cortisol secretion and adrenal responsiveness to ACTH and yarding in unrestrained red deer (Cervus elaphus) stags. J Endocrinol 162:289–300

    Article  CAS  Google Scholar 

  • Jac M, Kiss A, Sumova A, Illnerova H, Jezova D (2000) Daily profiles of arginine vasopressin mRNA in the suprachiasmatic, supraoptic and paraventricular nuclei of the rat hypothalamus under various photoperiods. Brain Res 887:472–476

    Article  CAS  Google Scholar 

  • Jacobson L (2005) Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinol Metab Clin North Am 34:271–292

    Article  CAS  Google Scholar 

  • Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309:109–118

    Article  CAS  Google Scholar 

  • Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142:2677–2685

    Article  CAS  Google Scholar 

  • Kappers JA (1960) The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch 52:163–215

    Article  CAS  Google Scholar 

  • Kappers JA (1979) Short history of pineal discovery and research. In: Kappers JE, Pévet P (eds) The pineal gland of vertebrates including man, Progress in brain research 52. Elsevier, Amsterdam, pp 3–22

    Google Scholar 

  • Karsch FJ, Bittman EL, Foster DL, Goodman RL, Legan SJ, Robinson JE (1984) Neuroendocrine basis of seasonal reproduction. Rec Prog Horm Res 40:185–232

    CAS  Google Scholar 

  • Karsch FJ, Woodfill CJI, Malpaux B, Robinson JE, Wayne NL (1991) Melatonin and mammalian photoperiodism: synchronization of annual reproductive cycles. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 217–232

    Google Scholar 

  • Kawakita Y, Abe H, Hodate K (2001) Twenty four hour variation of plasma leptin concentration and pulsatile leptin secretion in cattle. Asian Aust J Anim Sci 14:1209–1215

    CAS  Google Scholar 

  • Keller-Wood ME, Dallman MF (1984) Corticosteroid inhibition of ACTH secretion. Endocr Rev 5:1–24

    Article  CAS  Google Scholar 

  • Kennaway DJ, Obst JM, Dunstan EA, Friesen HG (1981) Ultradian and seasonal rhythms in plasma gonadotropins, prolactin, cortisol, and testosterone in pinealectomized rams. Endocrinology 108:639–646

    Article  CAS  Google Scholar 

  • Klein KC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-O methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174:245–262

    Article  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Klein S, Coppack SW, Mohamed-Ali V, Landt M (1996) Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes 45:984–987

    Article  CAS  Google Scholar 

  • Klingenspor M, Dickopp A, Heldmaier G, Klaus S (1996) Short photoperiodic reduces leptin gene expression in white and brown adipose tissue of Djungarian hamsters. FEBS Lett 16:290–294

    Article  Google Scholar 

  • Kokkonen UM, Riskila P, Roihankorpi MT, Soveri T (2001) Circadian variation of plasma atrial natriuretic peptide, cortisol and fluid balance in the goat. Acta Physiol Scand 171:1–8

    CAS  Google Scholar 

  • Kondratov RV (2007) A role of the circadian system and circadian proteins in aging. Ageing Res Rev 6:12–27

    Article  CAS  Google Scholar 

  • Korf HW, Schomerus C, Maronde E, Stehle JH (1996) Signal transduction molecules in the rat pineal organ: Ca2+, pCREB, and ICER. Naturwissenschaften 83:535–543

    Article  CAS  Google Scholar 

  • Kramer MK, Sothern RB (2001) Circadian characteristics of corticosterone secretion in red-backed voles (Clethrionomys gapperi). Chronobiol Int 18:933–945

    Article  CAS  Google Scholar 

  • Krishnan N, Davis AJ, Giebultowicz JM (2008) Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374:299–303

    Article  CAS  Google Scholar 

  • Kryger MH, Roth Y, Dement WC (1989) Principles and practice of sleep medicine. W.B. Saunders, Philadelphia

    Google Scholar 

  • Kunz D, Schmitz S, Mahlberg R, Mohr A, Stoter C, Wolf KJ, Hermann WM (1999) A new concept for melatonin deficit: on pineal calcification and melatonin excretion. Neuropsychopharmacology 21:765–772

    Article  CAS  Google Scholar 

  • la Fleur SE (2003) Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 15:315–322

    Article  Google Scholar 

  • La Fleur SE, Kalsbeek A, Wortel J et al (2001) Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocr 13:1025–1032

    Article  Google Scholar 

  • Laharrague P, Larrouy D, Fontanilles AM, Truel N, Campfield A, Tenenbaum R, Galitzky J, Corberand JX, Pénicau L, Casteilla L (1998) High expression of leptin in human bone marrow adipocytes in primary culture. FASEB J 12:747–752

    CAS  Google Scholar 

  • Lane EA, Moss HB (1985) Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J Clin Endorinol Metab 61:1214–1216

    Article  CAS  Google Scholar 

  • Langendonk JG, Pijl H, Toornvliet AC, Burggraaf J, Frolich M, Schoemaker RC, Doornbos J, Cohen AF, Meinders AE (1998) Circadian rhythm of plasma leptin levels in upper and lower body obese women: influence of body fat distribution and weight loss. J Clin Endocrinol Metab 83:1706–1712

    Article  CAS  Google Scholar 

  • Langmesser S, Albrecht U (2006) Life time-circadian clock, mitochondria and metabolism. Chronobiol Int 23:151–157

    Article  CAS  Google Scholar 

  • Larsen TS, Lagercrantz H, Riemersma RA, Blix AS (1985) Seasonal changes in blood lipids, adrenaline, noradrenaline, glucose and insulin in Norwegian reindeer. Acta Physiol Scand 124:53–59

    Article  CAS  Google Scholar 

  • Laundry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol 290:R1527–R1534

    Google Scholar 

  • Lee T, Zucker I (1991) Suprachiasmatic nucleus and photic entrainment of circannual rhythms in ground squirrels. J Biol Rhythms 6:315–330

    Article  CAS  Google Scholar 

  • Lefcourt AM, Bitman J, Kahl S, Wood DL (1993) Circadian and ultradian rhythms of peripheral cortisol concentrations in lactating dairy cows. J Dairy Sci 76:2607–2612

    Article  CAS  Google Scholar 

  • Leining KB, Tucker HA, Kesner JS (1980) Growth hormone, glucocorticoid and thyroxine response to duration, intensity and wavelength of light in prepubertal bulls. J Anim Sci 51:932–942

    CAS  Google Scholar 

  • Leproult R, Colecchia EF, L’Hermite-Baleriaux M, Van Cauter E (2001) Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 86:151–157

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori N (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Heinzelmann RV (1959) Structure of melatonin. J Am Chem Soc 81:6084–6085

    Article  CAS  Google Scholar 

  • Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    Article  CAS  Google Scholar 

  • Lewy AJ, Emens JS, Lefler BJ, Yuhas K, Jackman AR (2005) Melatonin entrains free-running blind people according to a physiological dose–response curve. Chronobiol Int 22:1093–1106

    Article  CAS  Google Scholar 

  • Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F, Whitby R, Liang L, Cohen P, Bhasin S, Krauss RM, Veldhuis JD, Wagner AJ, DePaoli AM, McCann SM, Wong ML (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A 101:4531–4536

    Article  CAS  Google Scholar 

  • Lightman SL (2008) The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 20:880–884

    Article  CAS  Google Scholar 

  • Lincoln GA, Almeida OFX, Klandorf H, Cunningham RA (1982) Hourly fluctuations in the blood levels of melatonin, prolactin, luteinizing hormone, follicle stimulating hormone, testosterone, tri-iodothyronine, thyroxine and cortisol in rams under artificial photoperiods, and the effects of cranial sympathectomy. J Endocrinol 92:237–250

    Article  CAS  Google Scholar 

  • Lincoln GA, Rhind SM, Pompolo S, Clarke IJ (2001) Hypothalamic control of photoperiod-induced cycles in food intake, body weight, and metabolic hormones in rams. Am J Physiol 281:76–90

    Google Scholar 

  • Lincoln GA, Anderson H, Loudon A (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals – a unifying hypothesis. J Endocrinol 179:1–13

    Article  CAS  Google Scholar 

  • Lopez-Gonzalez MA, Calvo JR, Osuma C, Guerrero JM (1992) Interaction of melatonin with human lymphocytes: evidence for binding sites coupled to potentation of cyclic AMP stimulated by vasoactive intestinal peptide and activation of cyclic GMP. J Pineal Res 12:97–104

    Article  CAS  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  CAS  Google Scholar 

  • Lyimo ZC, Nielen M, Ouweltjes W, Kruip TAM, van Eerdenburg FJCM (2000) Relationship among estradiol, cortisol and intensity of estrous behavior in dairy cattle. Theriogenology 53:1783–1795

    Article  CAS  Google Scholar 

  • MacAdam WR, Eberhart RJ (1972) Diurnal variation in plasma corticosteroid concentration in dairy cattle. J Dairy Sci 55:1792–1795

    Article  CAS  Google Scholar 

  • Mallo C, Zaidan R, Galy G, Vermeulen E, Brun J, Chazot G, Claustrat B (1990) Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection. Eur J Clin Pharmacol 38:297–301

    Article  CAS  Google Scholar 

  • Malpaux B, Daveau A, Maurice F, Gayrard V, Thierry JC (1993) Short-day effects of melatonin on luteinizing hormone secretion in the ewe: evidence for central sites of action in the mediobasal hypothalamus. Biol Reprod 48:752–760

    Article  CAS  Google Scholar 

  • Malpaux B, Migaud M, Tricoire H, Chemineau P (2001) Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms 16:336–347

    Article  CAS  Google Scholar 

  • Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes 26:1407–1433

    Article  CAS  Google Scholar 

  • Marie M, Findlay PA, Thomas L, Adam CL (2001) Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J Endocrinol 170:277–286

    Article  CAS  Google Scholar 

  • Martin XD, Malina HZ, Brennan MC, Hendrikson PH, Lichter PR (1992) The ciliary body-the third organ found to synthesize idoleamines in humans. Eur J Ophthalmol 2:67–72

    CAS  Google Scholar 

  • McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 565:158–161

    Article  CAS  Google Scholar 

  • McCord CP, Allen FP (1917) Evidence associating pineal gland function with alterations in pigmentation. J Exp Zool 23:207–243

    Article  CAS  Google Scholar 

  • Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  Google Scholar 

  • Mendoza J (2006) Circadian clocks: setting time by food. J Neuroendocrinol 19:127–137

    Article  CAS  Google Scholar 

  • Menet J, Vuillez P, Jacob N, Pevet P (2001) Intergeniculate leaflets lesion delays but does not prevent the integration of the photoperiodic change by the suprachiasmatic nuclei. Brain Res 906:176–179

    Article  CAS  Google Scholar 

  • Messager S, Ross AV, Barret PJ, Morgan PJ (1999) Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc Natl Acad Sci USA 96:9938–9943

    Article  CAS  Google Scholar 

  • Messager S, Hazlerigg DG, Mercer JG, Morgan PJ (2000) Photoperiod differentially regulates the expression of Per1 and ICER in the pars tubelaris and the suprachiasmatic nucleus of the Siberian hamster. Eur J Neurosci 12:2865–2870

    Article  CAS  Google Scholar 

  • Messager S, Garabette ML, Hastings MH, Hazlerigg DG (2001) Tissue-specific abolition of Per1 expression in the pars tubelaris by pinealectomy in the Syrian hamster. Neuroreport 12:579–582

    Article  CAS  Google Scholar 

  • Metz JHM (1975) Time patterns of feeding and rumination in domestic cattle, Landbouwhogeschool Wageningen; Mededelingen. H. Veenman, Wageningen, 75–12 274 pp

    Google Scholar 

  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable pacemaker. Proc Natl Acad Sci USA 103:12150–12155

    Article  CAS  Google Scholar 

  • Mikkelsen JD, Hauser F, Olcese J (2000) Neuropeptide Y (NPY) and NPY receptors in the rat pineal gland. In: Olcese J (ed) Melatonin after four decades. Kluwer Academic/Plenum Press, New York, pp 95–107

    Google Scholar 

  • Miller JK, Brezezinska-Slebodzinska E (1993) Oxidative stress and antioxidants in disease: oxidative animal function. J Dairy Sci 76:502–511

    Google Scholar 

  • Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104:3342–3347

    Article  CAS  Google Scholar 

  • Moller M (1992) The structure of the pinealopetal innervation of the mammalian pineal gland. Microsc Res Tech 21:188–204

    Article  CAS  Google Scholar 

  • Moore RY (1997) Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 48:253–266

    Article  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 13:201–206

    Article  Google Scholar 

  • Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71:17–33

    Article  CAS  Google Scholar 

  • Morag M (1967) Influence of diet on the behavior pattern of sheep. Nature (London) 213:110–115

    Article  Google Scholar 

  • Morgan PJ, Ross AW, Mercer JG, Barrett P (2003) Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol 177:27–34

    Article  CAS  Google Scholar 

  • Nelson RJ, Drazen DL (1999) Melatonin mediates seasonal adjustments in immune function. Reprod Nutr Dev 39:383–398

    Article  CAS  Google Scholar 

  • Nikkhah A, Plaizier JC, Furedi CJ et al (2006) Response in diurnal variation of circulating blood metabolites to nocturnal vs diurnal provision of fresh feed in lactating cows. J Anim Sci 84:111

    Google Scholar 

  • Nikkhah A, Furedi CJ, Kennedy AD et al (2011) Feed delivery at 2100 h vs. 0900 h for lactating dairy cows. Can J Anim Sci 91:113–122

    Article  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  • Nuesslein-Hildesheim B, O’Brien JA, Ebling FJP, Maywood ES, Hastings MH (2000) The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the Siberian hamster encodes both daily and seasonal time. Eur J Neurosci 12:2856–2864

    Article  CAS  Google Scholar 

  • Orth DN, Island DP (1969) Light synchronization of the circadian rhythm in plasma cortisol (17-OHCS) concentration in man. J Clin Endocrinol Metabol 29:479–486

    Article  CAS  Google Scholar 

  • Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF (2006) From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 79:247–340

    Article  CAS  Google Scholar 

  • Perlow MJ, Reppert SM, Boyar RM, Klein DC (1981) Daily rhythms in cortisol and melatonin in primate cerebrospinal fluid. Effects of constant light and dark. Neuroendocrinology 32:193–196

    Article  CAS  Google Scholar 

  • Pévet P, Bothorel B, Slotten H, Saboureau M (2002) The chronobiotic properties of melatonin. Cell Tissue Res 309:183–191

    Article  CAS  Google Scholar 

  • Phansuwan-Pujito P, Mikkelsen JD, Govitrapong P, Moller M (1991) A cholinergic innervation of the bovine pineal gland visualized by immunohistochemical detection of choline acetyltransferase-immunoreactive nerve fibers. Brain Res 545:49–58

    Article  CAS  Google Scholar 

  • Piccione G, Caola G (2002) Review: biological rhythms in livestock. J Vet Sci 3:145–157

    Google Scholar 

  • Piccione G, Assenza A, Attanzio G, Fazio F, Caola G (2001) Chronophysiology of arterial blood pressure and heart rate in athletic horses. Slov Vet Res 38:243–248

    Google Scholar 

  • Piccione G, Caola G, Refinetti R (2002) Maturation of the daily body temperature rhythm in sheep and horse. J Therm Biol 27:333–336

    Article  Google Scholar 

  • Piccione G, Caola G, Refinetti R (2003) Daily and estrous rhythmicity of body temperature in domestic cattle. http://www.biomedcentral.com/1472-6793/3/7

  • Piccione G, Grasso F, Giudice E (2005) Circadian rhythm in the cardiovascular system of domestic animals. Res Vet Sci 79:155–160

    Article  CAS  Google Scholar 

  • Picinato MC, Haber EP, Carpinelli, AR (2002) Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. Journal of Pineal Research 33:172–177

    Google Scholar 

  • Pitrosky B, Masson-Pevet M, Kirch R, Vivien-Roels B, Canguilhem B, Pevet P (1991) Effects of different doses and duration of melatonin infusions on plasma melatonin concentrations in pinealectomized Syrian hamster: consequences at the level of sexual activity. J Pineal Res 11:149–155

    Article  CAS  Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A106:333–355

    Article  Google Scholar 

  • Poon AMS, Mak ASY, Luk HT (1996) Melatonin and iodomelatonin binding sites in the human colon. Endocrinol Res 25:77–94

    Article  Google Scholar 

  • Pralong FP, Roduit WG, Castillo E, Mosimann F, Thorens B, Gaillard RC (1998) Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 139:4264–4268

    Article  CAS  Google Scholar 

  • Preitner N, Damiola F, Luis Lopez M, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERB[alpha] controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  Google Scholar 

  • Pruessner JC, Hellhammer DH, Kirschbaum C (1999) Burnout, perceived stress, and cortisol responses to awakening. Psychosom Med 61:197–204

    CAS  Google Scholar 

  • Quay WB (1963) Circadian rhythm in rat pineal serotonin and its modification of estrous cycle and photoperiod. Gen Comp Endocrinol 3:1473–1479

    Article  Google Scholar 

  • Quay WB (1964) Circadian and estrous rhythms in pineal melatonin and 5-hydroindole- 3-indole acetic acids. Proc Soc Exp Biol Med 115:710–714

    CAS  Google Scholar 

  • Rattenborg NC, Lima SL, Amlaner CJ (1999) Half-awake to the risk of predation. Nature 397:397–398

    Article  CAS  Google Scholar 

  • Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41:359–390

    CAS  Google Scholar 

  • Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219:1089–1091

    Article  CAS  Google Scholar 

  • Refinetti R (2005) Circadian physiology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Reidy SP, Weber J (2000) Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol 125:285–298

    Article  CAS  Google Scholar 

  • Reiter RJ (1991) Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 79:C153–C158

    Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  CAS  Google Scholar 

  • Reppert SM, Perlow MJ, Tamarkin L, Klein DC (1979) A diurnal rhythm in primate cerebrospinal fluid. Endocrinology 104:295–301

    Article  CAS  Google Scholar 

  • Reppert SM, Perlow MJ, Ungerleider LG, Mishkin M, Tamarkin L, Orloff DG, Hoffman HJ, Klein DC (1981) Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1:1414–1425

    CAS  Google Scholar 

  • Reppert SM, Weaver DR, Rivkees SA, Stopa EG (1988) Putative melatonin receptors in a human biological clock. Science 242:78–81

    Article  CAS  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt S, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel 1b melatonin receptor. Proc Natl Acad Sci USA 92:8734–8738

    Article  CAS  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  Google Scholar 

  • Ribelayga C, Pevet P, Simonneaux V (2000) HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. Am J Physiol 278:1339–1345

    Google Scholar 

  • Rollag MD, Niswender GD (1976) Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 106:231–236

    Article  Google Scholar 

  • Ronnekleiv OK (1988) Distribution in the macaque pineal of nerve fibers containing immunoreactive substance P, vasopressin, oxytocin, and neurophysins. J Pineal Res 5:259–271

    Article  CAS  Google Scholar 

  • Rosmond R, Dallman MF, Bjorntorp P (1998) Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 83:1853–1859

    Article  CAS  Google Scholar 

  • Ruesga ZE, Estrada GJ (1999) Chronobiology its appli­cation in cardiology. Rev Mex de Cardiol Issue 10:143–145

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    CAS  Google Scholar 

  • Scheer FA, Buijs RM (1999) Light affects morning salivary cortisol in humans. J Clin Endocrinol Metabol 84:3395–3398

    Article  CAS  Google Scholar 

  • Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) Melatonin receptor in the human retina: expression and localization. Investig Ophthalmol Vis Sci 43:889–897

    Google Scholar 

  • Schiml PA, Mendoza SP, Saltzman W, Lyons DM, Mason WA (1996) Seasonality in squirrel monkeys (Saimiri sciureus): social facilitation by females. Physiol Behav 60:1105–1113

    Article  CAS  Google Scholar 

  • Schuhler S, Pitrosky B, Kirsch R, Pevet P (2002) Entrainment of locomotor activity rhythm in pinealectomized Syrian hamster by daily melatonin infusion under different conditions. Behav Brain Res 133:343–350

    Article  CAS  Google Scholar 

  • Schwartz MW, Seeley RJ (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Neuro­endocrine responses to starvation and weight loss. N Engl J Med 336:1802–1811

    Article  CAS  Google Scholar 

  • Schwartz WJ, De la Iglesia HO, Zlomanczuk P, Illnerova H (2001) Encoding Le Quattro Stagioni with the mammalian brain: photoperiodic orchestration through the suprachiasmatic nucleus. J Biol Rhythms 16:302–311

    Article  CAS  Google Scholar 

  • Scott CJ, Jansen HT, Kao CC, Kuehl DE, Jackson GL (1995) Disruption of reproductive rhythms and patterns of melatonin and prolactin secretion following bilateral lesions of the suprachiasmatic nuclei in the ewe. J Neuroendocrinol 7:429–443

    Article  CAS  Google Scholar 

  • Sergent D, Berbigier P, Kann G, Fevre J (1985) The effect of sudden solar exposure on thermophysiological parameters and on plasma prolactin and cortisol concentrations in male Creole goats. Reprod Nutr Dev 25:629–640

    Article  CAS  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan R, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    Article  CAS  Google Scholar 

  • Simonetta G, Walker DW, McMillen IC (1991) Effect of feeding on the diurnal rhythm of plasma cortisol and adrenocorticotrophic hormone concentrations in the pregnant ewe and sheep fetus. Exp Physiol 76:219–229

    CAS  Google Scholar 

  • Simonetta SH, Romanowski A, Minniti AN, Inestrosa NC, Golombek DA (2008) Circadian stress tolerance in adult Caenorhabditis elegans. J Comp Physiol Neuroethol Sens Neural Behav Physiol 194:821–828

    Article  CAS  Google Scholar 

  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395

    Article  CAS  Google Scholar 

  • Simonneaux V, Quichou A, Craft C, Pevet P (1994) Presynaptic and postsynaptic effect of neuropeptide Y in the rat pineal gland. J Neurochem 62:2464–2471

    Article  CAS  Google Scholar 

  • Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF (1996a) Nocturnal rise of leptin in lean, obese, and noninsulin- dependent diabetes mellitus subjects. J Clin Invest 97:1344–1347

    Article  CAS  Google Scholar 

  • Skene DJ, Pevet P, Vivien-Roels B, Masson-Pevet M, Arendt J (1987) Effect of different photoperiods on concentrations of 5-methoxytryptophol and melatonin in the pineal gland of Syrian hamster. J Endocrinol 114:301–309

    Article  CAS  Google Scholar 

  • Song CK, Bartness TJ, Petersen SL, Bittman EL (1999) SCN cells expressing mt1 receptor mRNA coexpress AVP mRNA in Syrian and Siberian hamsters. Adv Exp Med Biol 460:229–232

    Google Scholar 

  • Sparks DL (1998) Anatomy of a new paired tract of the pineal gland in humans. Neurosci Lett 248:179–182

    Article  CAS  Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  Google Scholar 

  • Sugino N (2006) Roles of reactive oxygen species in the corpus luteum. Anim Sci J 77:556–565

    Article  CAS  Google Scholar 

  • Sumova A, Travnickova Z, Illnerova H (1995) Memory on long but not on short days is stored in the rat suprachiasmatic nucleus. Neurosci Lett 200:191–194

    Article  CAS  Google Scholar 

  • Suttie JM, White RG, Littlejohn RP (1992) Pulsatile growth hormone secretion during the breeding season in male reindeer and its association with hypophagia and weight loss. Gen Comp Endocrinol 85:36–42

    Article  CAS  Google Scholar 

  • Takahashi JS (1995) Molecular neurobiology and genetics of circadian rhythms in mammals. Annu Rev Neurosci 18:531–553

    Article  CAS  Google Scholar 

  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308(5955):186–188

    Article  CAS  Google Scholar 

  • Takahashi T, Sasaki M, Itoh H, Ozone M, Yamadera W, Hayshida K, Ushijima S, Matsunaga N, Obuchi K, Sano H (2000) Effect of 3 mg melatonin on jet lag syndrome in an 8-h eastward flight. Psychiatry Clin Neurosci 54:377–378

    Article  CAS  Google Scholar 

  • Takebe K, Sakakura M, Mashimo K (1972) Continuance of diurnal rhythmicity of CRF activity in hypophysectomized rats. Endocrinology 91:1515–1519

    Article  Google Scholar 

  • Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 406:171–182

    Article  CAS  Google Scholar 

  • Ternman E, Agenäs S, Nielsen PP (2011) Sleep and drowsing in dairy cows; do Swedish cows need more sleep. http://www.slu.se/en/faculties/vh/departments/department-of-animal-nutrition-and-management/research/on-going-projects/sleep-and-drowsing-in-dairy-cows

  • Thomas EMV, Armstrong SM (1988) Melatonin administration entrains female rat activity rhythms in constant darkness but not in constant light. Am J Physiol 255:237–242

    Google Scholar 

  • Thun R, Eggenberger E, Zerobin K, Luscher T, Vetter W (1981) Twenty-four-hour secretory pattern of cortisol in the bull: evidence of episodic secretion and circadian rhythm. Endocrinology 109:2208–2212

    Article  CAS  Google Scholar 

  • Tobler I (1989) Napping and polyphasic sleep in mammals. In: Dinges DF, Broughton RJ (eds) Sleep alertness: chronological, behavioral, and medical aspects of napping. Raven, New York, pp 9–31

    Google Scholar 

  • Unger R, Zhou YT, Orci L (1999) Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci 96:2327–2332

    Article  CAS  Google Scholar 

  • Vacas MI, Del Zar MM, Martinuzzo M, Cardinali DP (1992) Binding sites for [3H]-melatonin in human platelets. J Pineal Res 13:60–65

    Article  CAS  Google Scholar 

  • Van Vuuren RJ, Pitout MJ, Van Aswegen CH, Theron JJ (1992) Putative melatonin receptor in human spermatozoa. Clin Biochem 25:125–127

    Article  Google Scholar 

  • Veerman DP, Imholz BPM, Wieling W, Wesseling KH, Van Montfrans GA (1995) Circadian profile of systemic hemodynamics. Hypertens 26:55–59

    Article  CAS  Google Scholar 

  • Veldhuis JD, Iranmanesh A, Lizarralde G, Johnson ML (1989) Amplitude modulation of a burstlike mode of cortisol secretion subserves the circadian glucocorticoid rhythm. Am J Physiol 257:E6–E14

    CAS  Google Scholar 

  • Verkerk GA, Macmillan KL (1997) Adrenocortical responses to an adrenocorticotropic hormone in bulls and steers. J Anim Sci 75:2520–2525

    CAS  Google Scholar 

  • Viljoen M, Steyn ME, Van Rensburg BW, Reinach SG (1992) Melatonin in chronic renal failure. Nephron 60:138–143

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (2002) Lipid metabolism. In: Biochemistry. 3rd ed. Wiley, Hoboken, New Jersey, pp 909–984

    Google Scholar 

  • Vollrath L (1984) Functional anatomy of the human pineal gland. In: Reiter RJ (ed) The pineal gland. Raven, New York, pp 285–322

    Google Scholar 

  • Vuillez P, Jacob N, Teclemariam-Mesbah R, Pevet P (1996) In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neurosci Lett 208:37–40

    Article  CAS  Google Scholar 

  • Wagner WC, Oxenreider SL (1972) Adrenal function in the cow. Diurnal changes and the effects of lactation and neurohypophyseal hormones. J Anim Sci 34:630–635

    CAS  Google Scholar 

  • Walker BR, Best R, Noon JP, Watt GCM, Webb DJ (1997) Seasonal variation in glucocorticoid activity in healthy men. J Clin Endocrinol Metab 82:4015–4019

    Article  CAS  Google Scholar 

  • Warren WS, Hodges DB, Cassone VM (1993) Pinealectomized rats entrain and phase-shift to melatonin injections in a dose-dependent manner. J Biol Rhythms 8:233–245

    Article  CAS  Google Scholar 

  • Weaver DR, Reppert SM (1996) The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nucleus. Neuroreport 8:109–112

    Article  CAS  Google Scholar 

  • Weihe E, Tao-Cheng JH, Schafer MKH, Ericson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve ter­minals and its targeting to the specific populations of small synaptic vesicles. Proc Natl Acad Sci 93:3547–3552

    Article  CAS  Google Scholar 

  • Wilhelm I, Born J, Kudielka BM, Schlotz W, Wust S (2007) Is the cortisol awakening rise a response to awakening? Psychoneuroendocrinology 32:358–366

    Article  CAS  Google Scholar 

  • Windle RJ, Wood SA, Kershaw YM, Lightman SL, Ingram CD, Harbuz MS (2001) Increased corticosterone pulse frequency during adjuvant-induced arthritis and its relationship to alterations in stress responsiveness. J Neuroendocrinol 13:905–911

    Article  CAS  Google Scholar 

  • Woodford ST, Murphy MR (1988) Effect of forage physical form on chewing activity, dry matter intake, and rumen function of dairy cows in early lactation. J Dairy Sci 71:674

    Article  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  Google Scholar 

  • Yie SM, Niles LP, Youglai EV (1995) Melatonin receptors on human granulosa cell membranes. J Clin Endocrinol Metab 80:1747–1749

    Article  CAS  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Ko CH, Buhr ED, Siepka M, Hong H, Oh WN, Yoo OJ, Menaker M, Joseph S (2004) Period2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  Google Scholar 

  • Zhao J, Townsend KL, Schulz LC, Kunz TH, Li C, Widmaier EP (2004) Leptin receptor expression increases in placenta, but not in hypothalamus, during gestation in Mus musculus and Myotis lucifungus. Placenta 25:712–722

    Article  CAS  Google Scholar 

  • Zisapel N, Matzkin H, Gilad E (1998) Melatonin receptors in human prostate epithelial cells. In: Touitou Y (ed) Biological clocks, mechanisms and application. Elsevier, Amsterdam, pp 295–299

    Google Scholar 

  • Zucker I (2001) Circannual rhythms: mammals. In: Takahashi JS, Turek FW, Moore RY (eds) Handbook of behavioral neurobiology. Circadian clocks, vol 12. Plenum/Kluwer, New York, pp 509–528

    Chapter  Google Scholar 

  • Zucker I, Boshes M, Dark J (1983) Suprachiasmatic nuclei influence circannual and circadian rhythms of ground squirrels. Am J Physiol 244:472–480

    Google Scholar 

  • Zucker I, Lee TM, Dark J (1991) The suprachiasmatic nucleus and annual rhythms of mammals. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Aggarwal, A., Upadhyay, R. (2013). Biological Rhythms. In: Heat Stress and Animal Productivity. Springer, India. https://doi.org/10.1007/978-81-322-0879-2_6

Download citation

Publish with us

Policies and ethics