Skip to main content

Ligninolytic Enzymes in Environmental Management

  • Chapter
  • First Online:
Biotechnology for Environmental Management and Resource Recovery

Abstract

By producing lignocellulose-degrading enzymes, saprotrophic litter-decomposing Basidiomycetes can significantly contribute to the turnover of soil organic matter. The production of lignin- and polysaccharide-degrading enzymes helps in converting the waste litter into value-added compost. White-rot fungi (WRF) have tremendous potential for biodegradation of a variety of industrial pollutants. The capability of WRF for biodegradation of xenobiotics and recalcitrant pollutants has generated a considerable research interest in this area of environmental biotechnology. The broad spectrum for biodegradation of pollutants is due to the extracellular and nonspecific nature of the enzyme system of fungi, comprising mainly of lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase, and laccase along with other ancillary enzymes. Differential biodegradation capabilities of WRF are mainly due to physiological differences among them, difference in their genetic makeup, and variable pattern and expression of complex lignin-modifying enzymes (LMEs). The activities of the LMEs can be increased by the addition of different low-molecular-mass mediators, mostly secreted by white-rot fungi themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz G (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Article  PubMed  CAS  Google Scholar 

  • Aggelis G, Iconomou D, Christouc M, Bokas D, Kotzailias S, Christou G et al (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904

    Article  PubMed  CAS  Google Scholar 

  • Aguiar A, de Souza-Cruz PB, Ferraz A (2006) Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme Microbial Technol 38(7):873–878

    Article  CAS  Google Scholar 

  • Aken BV, Hofrichter M, Scheibner K, Hatakka AI, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10:83–91

    Article  PubMed  Google Scholar 

  • Akhtar M, Attridge MC, Blanchette RA, Myers GC, Wall MB, Sykes MS, Koning Jr JW, Burgess RR, Wegner TH, Kirk T (1992) Biotechnology in pulp and paper industry. In: Proceedings of the 5th international conference on biotechnology in the pulp and paper industry, University publishers Ltd, Tokyo, pp 3–8

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego, pp 177–195

    Google Scholar 

  • Alexandre G, Zulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • Archibald FS, Bourbonnais R, Jurasek L, Paice MG, Reid ID (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–236

    Article  CAS  Google Scholar 

  • Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958

    Article  PubMed  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771–783

    Article  PubMed  CAS  Google Scholar 

  • Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. Soil Sediment Contam Int J 9:537–548

    Article  CAS  Google Scholar 

  • Ayers AR, Ayers SB, Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181

    Article  PubMed  CAS  Google Scholar 

  • Balan DSL, Monteiro RTR (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89(2–3):141–145

    Article  PubMed  CAS  Google Scholar 

  • Balakshin M, Chen C-L, Gratzl JS, Kirkman AG, Jakob H (2001) Biobleaching of pulp with dioxygen in laccase-mediator system-effect of variables on the reaction kinetics. J Mol Catal B Enzyme 16:205–215

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int J Biodeterior Biodegrad 63:389–394

    Article  CAS  Google Scholar 

  • Beloqui A, Pita M, Polaina J et al (2006) Novel polyphenol oxidase mined from metagenome expression library of bovine rumen: biochemical properties structural analysis and phylogenetic relationship. J Biol Chem 281:22933–22942

    Article  PubMed  CAS  Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contribution of prokaryotes and eukaryotes. Limnol Oceanogr 31:89–100

    Article  Google Scholar 

  • Blánquez P, Casas N, Font X, Gabarrell M, Sarrá M, Caminal G (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38:2166–2172

    Article  PubMed  CAS  Google Scholar 

  • Böhmer S, Messner K, Srebotnik E (1988) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238

    Article  Google Scholar 

  • Bourbonnais R, Paice MG (1996) Enzymic delignification of kraft pulp using laccase and a mediator. Tappi J 79:199–204

    CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    PubMed  CAS  Google Scholar 

  • Bredberg K, Andersson BE, Landfors E, Holst O (2002) Microbial detoxification of waste rubber material by wood-rotting fungi. Bioresour Technol 83:221–224

    Article  PubMed  CAS  Google Scholar 

  • Bumpus J (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed  CAS  Google Scholar 

  • Cabana H, Jiwan JL, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    Article  PubMed  CAS  Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (LignozymR process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Calvo AM, Copa-Patiño JL, Alonso O, González AE (1998) Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents. Arch Microbiol 171:31–36

    Article  PubMed  CAS  Google Scholar 

  • Camarero S, Garcia O, Vidal T, Colom J, del Rio JC, Gutierrez A et al (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120

    Article  CAS  Google Scholar 

  • Cambria MT, Minniti Z, Librando V, Cambria A (2008) Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Appl Biochem Biotechnol 149:1–8

    Article  PubMed  CAS  Google Scholar 

  • Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gübitz GM (2001) Indigo degradation with purified laccases from Trametes hirsute and Sclerotium rolfsii. J Biotechnol 89:131–139

    Article  PubMed  CAS  Google Scholar 

  • Cantarella G, Galli C, Gentili P (2003) Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems. Catalytic or stoichiometric procedures. J Mol Catal B Enzyme 22:135–144

    Article  CAS  Google Scholar 

  • Carunchio F, Crescenzi C, Girelli AM, Messina A, Tarola AM (2001) Oxidation of ferulic acid by laccase: identification of the products and inhibitory effects of some dipeptides. Talanta 55:189–200

    Article  PubMed  CAS  Google Scholar 

  • Carvalho W, Canilha L, Ferraz A, Milagres A (2009) Uma visão sobre a estrutura, composição e biodegradação da madeira. Química Nova 32(8):1–5

    Google Scholar 

  • Casa R, D’Annibale A, Pieruccetti F, Stazi SR, Giovannozzi SG, LoCascio B (2003) Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50:959–966

    Article  PubMed  CAS  Google Scholar 

  • Castro AIRP, Evtuguin DV, Xavier AMB (2003) Degradation of biphenyl lignin model compounds by laccase of Trametes versicolor in the presence of 1 hydroxybenzotriazole and heteropolyanion [SiW11VO40]5−. J Mol Catal B Enzyme 22:13–20

    Article  CAS  Google Scholar 

  • Chakar FS, Ragauskas AJ (2004) Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps. Can J Chem Rev Can Chim 82(2):344–352

    Article  CAS  Google Scholar 

  • Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolorize industrial dyes. Dyes Pigments 72:192–198

    Article  CAS  Google Scholar 

  • Chander M, Arora DS, Bath HK (2004) Biodecolourisation of some industrial dyes by white-rot fungi. J Ind Microbiol Biotechnol 31:94–97

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Park SJ, Lim JS, Rhee YH, Shin KS (2002) Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus. Biotechnol Lett 24:1337–1340

    Article  CAS  Google Scholar 

  • Christiansson M, Stenberg B, Holst O (2000) Toxic additives - a problem for microbial waste rubber desulfurisation. Res Environ Biotechnol 3:11–21

    CAS  Google Scholar 

  • Ciullini I, Tilli S, Scozzafava A, Fabrizio B (2008) Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes. Bioresour Technol 99:7003–7010

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35(1–2):93–96

    Article  PubMed  CAS  Google Scholar 

  • Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  PubMed  CAS  Google Scholar 

  • Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    PubMed  CAS  Google Scholar 

  • Cordi L, Minnussi RC, Freire RS, Duran N (2007) Fungal laccase: copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement. Afr J Biotechnol 6:1255–1259

    CAS  Google Scholar 

  • Couto RS, Toca-Herrera JL (2006a) Laccases in the textile industry. Biotechnol Mol Biol Rev 1:115–120

    Google Scholar 

  • Couto SR, Toca-Herrera JL (2006b) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  • Crestini C, Argyropoulos DS (1998) The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg Med Chem 6:2161–2169

    Article  PubMed  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56(4):11–14

    Google Scholar 

  • Cullen D, Kersten PJ (1996) Enzymology and molecular biology of lignin degradation. In: Bramble R, Marzluf G (eds) The Mycota III. Springer, Berlin/Heidelberg/New York, pp 297–314

    Google Scholar 

  • Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    PubMed  CAS  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Di Mattia E, Giovannozzi SG (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem 34:697–706

    Article  Google Scholar 

  • D’Annibale A, Stazi SR, Vinciguerra V, Giovannozzi SG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273

    Article  PubMed  Google Scholar 

  • D’Annibale A, Ricci M, Quaratino D, Federic F, Fenice M (2004) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603

    Article  PubMed  CAS  Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnol 11:725–737

    Article  CAS  Google Scholar 

  • Dighton J, White JF, Oudemans P (2005) The fungal community: its organization and role in the ecosystem. Taylor & Francis, Boca Raton, 936 p

    Book  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNA encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41

    Article  PubMed  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genom 6:92–116

    Article  CAS  Google Scholar 

  • Dodor DE, Hwang HM, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a] pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Technol 35:210–217

    Article  CAS  Google Scholar 

  • Domínguez A, Rodríguez Couto S, Sanromán MA (2005) Dye decolourization by Trametes hirsuta immobilised into alginate beads. World J Ind Microbiol Biotechnol 21:405–409

    Article  CAS  Google Scholar 

  • Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110

    Article  CAS  Google Scholar 

  • Dube E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourization of an indigo dye. Appl Microbiol Biotechnol 79:597–603

    Article  PubMed  CAS  Google Scholar 

  • Durante D, Casadio R, Martelli L, Tasco G, Portaccio M, De Luca P et al (2004) Isothermal and non-isothermal bioreactors in the detoxification of waste waters polluted by aromatic compounds by means of immobilised laccase from Rhus vernicifera. J Mol Catal B Enzyme 27:191–206

    Article  CAS  Google Scholar 

  • Edwards W, Leukes WD, Bezuidenhout J (2002) Ultrafiltration of petrochemical industrial wastewater using immobilised manganese peroxidase and laccase: application in the defouling of polysulphone membranes. J Desalin 149:275–278

    Article  CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production Pleuorotus ostreatus for bioremediation of creosote contaminated soil. Int Biodeterior Biodegrad 44:117–126

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  CAS  Google Scholar 

  • Eichlerova I, Homolka L, Nerud F (2006) Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresour Technol 97:2153–2159

    Article  PubMed  CAS  Google Scholar 

  • Ellouze M, Aloui F, Sayadi S (2008) Detoxification of Tunisian landfill leachates by selected fungi. J Hazard Mater 150:642–648

    Article  PubMed  CAS  Google Scholar 

  • Erden E, Ucar CM, Gezer T, Pazarlioglu NK (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue. Braz J Microbiol 40(2):346–353

    Article  CAS  Google Scholar 

  • Eriksson JE, Goldman RD (1993) Protein phosphatase inhibitors alter cytoskeletal structure and cellular morphology. Adv Protein Phosphatases 7:335–357

    CAS  Google Scholar 

  • Eriksson K-EL (2000) Lignocellulose, lignin, ligninases. In: Encyclopedia microbiol, vol III, II edn. Academic

    Google Scholar 

  • Fabbrini M, Galli C, Gentili P, Macchitella D (2001) An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO. Tetrahedron Lett 42:7551–7553

    Article  CAS  Google Scholar 

  • Falcon MA, Corominas E, Perez ML, Perestelo F (1987) Aerobic bacterial populations and environmental ­factors involved in the composting of agricultural and forest wastes of the Canary Islands. Biol Wastes 20:89–99

    Article  CAS  Google Scholar 

  • Faure D, Bouillant ML, Bally R (1994) Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol 60:3413–3415

    PubMed  CAS  Google Scholar 

  • Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol a by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284:704–706

    Article  PubMed  CAS  Google Scholar 

  • Fustec E, Chauvet E, Gas G (1989) Lignin degradation and humus formation in alluvial soils and sediments. Appl Environ Microbiol 55(4):922–926

    PubMed  CAS  Google Scholar 

  • Georis J, Lomascolo A, Camarero S, Dorgeo V, Herpoel I, Asther M (2003) Pycnoporus cinnabarinus laccases: an interesting tool for food or non-food applications. Meded Fac Landbouwkd Toegep Biol Wet 68:263–266

    CAS  Google Scholar 

  • Givaudan A, Effose A, Faure D, Potier P, Bouillant M-L, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114(3):1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Glumoff T, Harvey PJ, Molinari S, Goble M, Frank G, Palmer JM, Smit JDG, Leisola MSA (1990) Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur J Biochem 187(3):515–520

    Article  CAS  Google Scholar 

  • Gold MH, Enoki A, Morgan MA, Mayfield MB, Tanaka H (1984) Degradation of the γ-carboxyl-containing diarylpropane lignin model compound 3-(4,-Ethoxy-3,-Methoxyphenyl)-2-(4″-Methoxyphenyl) Propionic acid by the basidiomycete phanerochaete chrysosporium. Appl Environ Microbiol 47(4):597–600

    PubMed  CAS  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57(3):605–622

    PubMed  CAS  Google Scholar 

  • Gómez J, Pazos M, Rodríguez Couto S, Sanromán MA (2005) Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. J Food Eng 68:315–319

    Article  Google Scholar 

  • Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2001) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19(9):340–348

    Article  PubMed  Google Scholar 

  • Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35:33–36

    Article  CAS  Google Scholar 

  • Haglund C (1999) Biodegradation of xenobiotic compounds by the white-rot fungus Trametes trogii. Molecular Biotechnology Programme, Uppsala University School of Engineering, Uppsala, 30 p

    Google Scholar 

  • Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem 196:101–106

    Article  PubMed  CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000a) A critical review of cellobiose dehydrogenases. J Biotechnol 78(2):93–113

    Article  PubMed  CAS  Google Scholar 

  • Henriksson G, Zhang L, Li J, Ljungquist P, Reitberger T, Pettersson G, Johansson G (2000b) Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1480(1–2):83–91

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Holwerda RA, Wherland S, Gray HB (1976) Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng 5:363

    Article  PubMed  CAS  Google Scholar 

  • Honda Y, Watanabe T, Watanabe T (2006) Exclusive overexpression and structure-function analysis of a versatile peroxidase from white-rot fungus, Pleurotus ostreatus. Sustain Humanosphere 2:2–6

    Google Scholar 

  • Hou H, Zhou J, Wang J, Du C, Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419

    Article  CAS  Google Scholar 

  • Hublik G, Schinner F (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb Technol 27:330–336

    Article  PubMed  CAS  Google Scholar 

  • Huttermann A, Herche C, Haars A (1980) Polymerization of water-insoluble lignins by Fomes Annosus. Holzforschung 34:64–66

    Article  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1989) Solid-state Carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53:1695–1701

    Article  CAS  Google Scholar 

  • Itoh K, Fujita M, Kumano K, Suyama K, Yamamoto H (2000) Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase. Soil Biol Biochem 32:85–91

    Article  CAS  Google Scholar 

  • Jaouani A, Guillen F, Penninckx MJ, Martinez AT, Martinez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    Article  PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Huttermann A (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J Biotechnol 61:151–156

    Article  CAS  Google Scholar 

  • Jolivalt C, Brenon S, Caminade E, Mougin C, Pontié M (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Membr Sci 180:103–113

    Article  CAS  Google Scholar 

  • Jung H, Hyun K, Park Ch (2003) Production of laccase and bioremediation of pentachlorophenol by wood-degrading fungus Trichophyton sp. LKY-7 immobilized in Ca-alginate beads. Polpu Chongi Gisul 35:80–86

    CAS  Google Scholar 

  • Kandioller G, Christov L (2001) Evaluation of the delignification and bleaching abilities of selected laccases with HBT on different pulps. In: Argyropoulos DS (ed) Oxidative delignification chemistry fundamentals and catalysis, vol 785, ACS symposium series. Oxford University Press, New York, pp 427–443

    Chapter  Google Scholar 

  • Kang KH, Dec J, Park H, Bollag JM (2002) Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid. Water Res 36:4907–4915

    Article  PubMed  CAS  Google Scholar 

  • Kapoor RK, Sharma KK, Kuhar S, Kuhad RC (2005) Diversity of lignin degrading microorganisms, ligninolytic enzymes and their biotechnological applications. In Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I. K. International Pvt. Ltd., New Delhi, pp 815–84

    Google Scholar 

  • Kasinath A, Svobodová NK, Patel KC, Šašek V (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Technol 32:167–173

    Article  CAS  Google Scholar 

  • Kellner H, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic. Enzym Forest Soil 5(6):e10971

    Google Scholar 

  • Kern HW, Kirk TK (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. Appl Environ Microbiol 53:2242–2246

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    PubMed  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87:2936–2940

    Article  PubMed  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  PubMed  CAS  Google Scholar 

  • Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxyl polychlorinated biphenyls. Chemosphere 56:23–30

    Article  PubMed  CAS  Google Scholar 

  • Kiparisis Y, Balch GC, Metcalfe TL, Metcalfe CD (2003) Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias latipes). Environ Health Perspect 111:1158–1163

    Article  CAS  Google Scholar 

  • Kirk TK, Yang HH (1979) Partial delignification of unbleached kraft pulp with ligninolytic fungi. Biotechnol Lett 1:347–352

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Knutson K, Ragauskas A (2004) Laccase-mediator biobleaching applied to a direct yellow dyed paper. Biotechnol Prog 20:1893–1896

    Article  PubMed  CAS  Google Scholar 

  • Kuhad RC, Kapoor M, Rustagi R (2004) Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid-state cultivation. World J Microbiol Biotechnol 20:257–263

    Article  CAS  Google Scholar 

  • Kulys J, Vidziunaite R, Schneider P (2003) Laccase-catalyzed oxidation of naphthol in the presence of soluble polymers. Enzyme Microb Technol 32:455–463

    Article  CAS  Google Scholar 

  • Kurek B, Kersten PJ (1995) Physiological regulation of glyoxal oxidase from Phanerochaete chrysosporium by peroxidase systems. Enzyme Microb Technol 17:751–756

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem 36:51–58

    Article  CAS  Google Scholar 

  • Lee Y, Yoon J, Gunten UV (2005) Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environ Sci Technol 39:8978–8984

    Article  PubMed  CAS  Google Scholar 

  • Levin L, Forchiassin F, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Process Biochem 40:1381–1387

    Article  CAS  Google Scholar 

  • Liu HS, Mead JL, Stacer RG (2000) Environmental effects of recycled rubber in light-fill applications. Rubber Chem Technol 73:551–564

    Article  CAS  Google Scholar 

  • Lorenzo M, Moldes D, Rodríguez Couto S, Sanromán A (2002) Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour Technol 82:109–113

    Article  PubMed  CAS  Google Scholar 

  • Lucas M, La D, Rubia T, Martinez J (2003) Oxidation of low molecular weight aromatic components of olive-mill wastewaters by a Trametes versicolor laccase. Polyphenols Actual 23:36–47

    CAS  Google Scholar 

  • Maas R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors. Process Biochem 40(2):699–705

    Article  CAS  Google Scholar 

  • Maceiras R, Rodríguez Couto S, Sanromán A (2001) Influence of several inducers on the synthesis of extracellular laccase and in vivo decolourisation of Poly R-478 by semi-solid-state cultures of Trametes versicolor. Acta Biotechnol 21:255–264

    Article  CAS  Google Scholar 

  • Maciel MJM, Silva AC, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13(6):14–15

    Google Scholar 

  • Majcherczyk A, Johannes C (2000) Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochim Biophys Acta 1474:157–162

    Article  PubMed  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Malkin R, Malmstrom BG, Vanngard T (1969) The reversible removal of one specific copper (II) from fungal laccase. Eur J Biochem 7:253

    Article  PubMed  CAS  Google Scholar 

  • Malmstrom BG, Andreason LE, Reinhammar R (1975) In: Boyer PD (ed) The enzymes, vol 12B, 3rd edn. Academic, New York, p 507

    Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Guillén F, Martínez MJ, Gutiérrez A, del Rio CJ (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Rio JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20(3):348–357

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 33:765–767

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551–565

    Article  PubMed  CAS  Google Scholar 

  • Mazmanci MA, Ali U, Erkurt EA, Arkey NB, Bilen E, Ozyurt M (2009) Colour removal of textile dyes by culture extracts obtained from white rot fungi. Afr J Microbiol Res 3:585–589

    CAS  Google Scholar 

  • Mccarthy JT, Levy VC, Lonergan GT, Fecondo JV (1999) Development of optimal conditions for the decolourisation of a range of industrial dyes using Pycnoporus cinnabarinus laccase. Hazard Ind Waste 31:489–498

    Google Scholar 

  • Michniewicz A, Ledakowicz S, Jamroz T, Jarosz-Wilkolazka A, Leonowicz A (2003) Decolorization of aqueous solution of dyes by the laccase complex from Cerrena unicolor. Biotechnologia 4:194–203

    Google Scholar 

  • Minussi RC, Miranda MA, Silva JA, Ferreira CV, Aoyama H, Marangoni S, Rotilio D, Pastore GM, Durán N (2007) Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hidroxybenzotriazole. Afr J Biotechnol 6(6):1248–1254

    CAS  Google Scholar 

  • Moeder M, Martin C, Koeller G (2004) Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. J Membr Sci 245:183–190

    Article  CAS  Google Scholar 

  • Moldes D, Gallego PP, Rodríguez Couto S, Sanromán A (2003) Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnol Lett 25:491–495

    Article  PubMed  CAS  Google Scholar 

  • Molina-Guijarro JM, Perez J, Munoz-Dorado J, Guillen F, Moy R, Hernandez M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21

    PubMed  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov Ya I (2007) Laccase–mediator systems and their applications: a review. Appl Biochem Microbiol 43(5):523–535

    Article  CAS  Google Scholar 

  • Mougin C, Jolivalt C, Malosse C, Chaplain V, Sigoillot JC, Asther M (2002) Interference of soil contaminants with laccase activity during the transformation of complex mixtures of polycyclic aromatic hydrocarbons in liquid media. Polycycl Aromat Compd 22:673–688

    Article  CAS  Google Scholar 

  • Murugesan K (2003) Bioremediation of paper and pulp mill effluents. Indian J Exp Biol 41:1239–1248

    PubMed  CAS  Google Scholar 

  • Nakasaki K, Sasaki M, Shoda M, Kubota H (1985) Characteristic of mesophilic bacteria isolates isolated during thermophilic composting of sewage sludge. Appl Environ Microbiol 49:42–45

    PubMed  CAS  Google Scholar 

  • Nicotra S, Cramarossa MR, Mucci A, Pagnoni UM, Riva S, Forti L (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophthora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600

    Article  CAS  Google Scholar 

  • Niku-Paavola M-L, Viikari L (2000) Enzymatic oxidation of alkenes. J Mol Catal B Enzyme 10:435–444

    Article  CAS  Google Scholar 

  • Nyanhongo GS, Gomes J, Gübitz G, Zvauya R, Read JS, Steiner W (2002) Production of laccase by a newly isolated strain of Trametes modesta. Bioresour Technol 84:259–263

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S-Y, Michizoe J, Goto M, Furusaki S, Wariishi H, Tanaka H (2002) Oxidation of bisphenol A catalyzed by laccase hosted in reversed micelles in organic media. Enzyme Microb Technol 31:227–232

    Article  CAS  Google Scholar 

  • Oudia A, Queiroz J, Simoes R (2008) The influence of operating parameters on the biodelignification of Eucalyptus globules Kraft pulps in a laccase-violuric acid system. Appl Biochem Biotechnol 149:149–3

    Article  CAS  Google Scholar 

  • Ozsoy S, Altunatmaz K, Horoz H, Kasikcle G, Alkan S, Bilat T (2005) The relationship between lameness, fertility and aflatoxin in a dairy cattle herd. Turk J Vet Anim Sci 29:981–986

    CAS  Google Scholar 

  • Paice MG, Bourbonnais R, Reid ID (1995) Bleaching kraft pulps with oxidative enzymes and alkaline hydrogen peroxide. Tappi J 78:161–169

    CAS  Google Scholar 

  • Palmieri G, Cennamo G, Sannia G (2005) Remazol brilliant blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24

    Article  CAS  Google Scholar 

  • Pedroza AM, Mosqueda R, Alonso-Vante N, Rodriguez-Vazquez R (2007) Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 67:793–801

    Article  PubMed  CAS  Google Scholar 

  • Peralta-Zamora P, Pereira CM, Tiburtius ERL, Moraes SG, Rosa MA, Minussi RC (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B Environ 42:131–144

    Article  CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    PubMed  CAS  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29(2):111–116

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33

    PubMed  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51:71–78

    Article  PubMed  CAS  Google Scholar 

  • Punnapayak H, Prasongsuk S, Messner K, Danmek K, Lotrakul P (2007) Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase from a tropical white rot fungus Ganoderma lucidum. Afr J Biotechnol 8:5897–5900

    Google Scholar 

  • Reddy CA, Mathew Z (2001) In: Gadd GM (ed) Bioremediation potential of white rot fungi. Cambridge University Press, Cambridge, p 250

    Google Scholar 

  • Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 3. CRC Press, Boca Raton, pp 1–35

    Google Scholar 

  • Revankar MS, Lele SS (2007) Synthetic dye decolorization by white rot fungi, Ganoderma sp. WR-1. Bioresour Technol 98:775–780

    Article  PubMed  CAS  Google Scholar 

  • Reyes P, Pickard MA, Vazquez-Duhalt R (1999) Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnol Lett 21:875–880

    Article  CAS  Google Scholar 

  • Rodakiewicz-Nowak J, Jarosz-Wilkołazka A, Luterek J (2006) Catalytic activity of versatile peroxidase from Bjerkandera fumosa in aqueous solutions of water-miscible organic solvents. Appl Catal A Gen 308:56–61

    Article  CAS  Google Scholar 

  • Rodríguez Couto S, Sanromán MA (2006) Effect of two wastes from groundnut processing on laccase production and dye decolourization ability. J Food Eng 73:388–393

    Article  CAS  Google Scholar 

  • Rodríguez Couto S, Gundín M, Lorenzo M, Sanromán A (2002) Screening of supports for laccase production by Trametes versicolor in semisolid - state conditions. Determination of optimal operation conditions. Process Biochem 38:249–255

    Article  Google Scholar 

  • Rodríguez Couto S, Rosales E, Gundín M, Sanromán MA (2004) Exploitation of a waste from the brewing industry for laccase production by two Trametes sp. J Food Eng 64:423–428

    Article  Google Scholar 

  • Rodríguez Couto S, Sanromán MA, Gübitz GM (2005) Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere 58:417–422

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez Couto S, López E, Sanromán MA (2006) Utilisation of grape seeds for laccase production in solid-state fermentors. J Food Eng 74:263–267

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Kato K, Yokogawa Y, Nishida M, Yamashita N (2004) Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J Biosci Bioeng 98:64–66

    PubMed  CAS  Google Scholar 

  • Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    Article  PubMed  CAS  Google Scholar 

  • Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the diazodye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Technol 27:100–107

    Article  PubMed  CAS  Google Scholar 

  • Score AJ, Palfreyman JW, White NA (1997) Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. Int Biodeter Biodegr 39(2–3):225–233

    Article  CAS  Google Scholar 

  • Sharma KK, Kuhad RC (2008) Laccase: enzyme revisited and functions redefined. Indian J Microbiol 48:309–316

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Kuhad RC (2009) An evidence of laccase in archaea. Indian J Microbiol 49:142–150

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Soares GMB, Costa-Ferreira M, Pessoa de Amorim MT (2001a) Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresour Technol 79:171–177

    Article  PubMed  CAS  Google Scholar 

  • Soares GMB, Pessoa de Amorim MT, Costa-Ferreira M (2001b) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89:123–129

    Article  PubMed  CAS  Google Scholar 

  • Soares GMB, Pessoa Amorim MT, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587

    Article  CAS  Google Scholar 

  • Soares A, Jonasson K, Terrazas E, Guieysse B, Mattiasson B (2005) The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Appl Microbiol Biotechnol 66:719–725

    Article  PubMed  CAS  Google Scholar 

  • Soares A, Guieysse B, Mattiasson B (2006) Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28:139–143

    Article  PubMed  CAS  Google Scholar 

  • Solano F, Garcia E, Perez D, Egea E, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63:3499–3506

    PubMed  CAS  Google Scholar 

  • Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908

    Article  PubMed  CAS  Google Scholar 

  • Steenken S (1998) Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase “Mediator”. J Phys Chem A 102:7337–7342

    Article  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hattaka A, Hofrichter M (2007a) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soils by litter-decomposing fungi. Biodegradation 18:359–363

    Article  PubMed  CAS  Google Scholar 

  • Steffen TK, Cajthaml T, Šnajdr J, Baldrian P (2007b) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455

    Article  PubMed  CAS  Google Scholar 

  • Strom PF (1985a) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    PubMed  CAS  Google Scholar 

  • Strom PF (1985b) Identification of thermophilic bacteria in solid- waste composting. Appl Environ Microbiol 50:907–913

    Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    Article  PubMed  CAS  Google Scholar 

  • Tamagawa Y, Hirai H, Kawai S, Nishida T (2005) Removal of estrogenic activity of endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi. FEMS Microbiol Lett 244:93–98

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Tonosaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T (2001) Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with lactase from Trametes sp. in a rotating reactor. J Biosci Bioeng 92:312–316

    PubMed  CAS  Google Scholar 

  • Tanaka T, Nose M, Endo A, Fujii T, Taniguchi M (2003) Treatment of nonylphenol with laccase in a rotating reactor. J Biosci Bioeng 96:541–546

    Article  PubMed  CAS  Google Scholar 

  • Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85(1):39–42

    Article  PubMed  CAS  Google Scholar 

  • Tavares APM, Gamelas JAF, Gaspar AR, Evtuguin DV, Xavier AMRB (2004) A novel approach for the oxidative catalysis employing polyoxometalate–laccase system: application to the oxygen bleaching of kraft pulp. Catal Commun 5:485–489

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tien M, Kirk K (1983) Lignin-degrading enzyme from the hymenocete Phanerochaete chrysosporium. Science 221:661–663

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81(8):2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Toh Y-C, Yen JJL, Obbard JP, Ting Y-P (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzym Microb Technol 33(5):569–575

    Article  CAS  Google Scholar 

  • Trejo-Hernandez MR, Lopez-Munguia A, Quintero Ramirez R (2001) Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Process Biochem 36(7):635–639

    Article  CAS  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. In respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    Article  PubMed  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Ünyayar A, Mazmanci MA, Ataçağ H, Erkurt EA, Coral G (2005) A Drimaren Blue X3LR dye decolorizing enzyme from Funalia trogii one step isolation and identification. Enzyme Microb Technol 36:10–16

    Article  CAS  Google Scholar 

  • Vandertol-Vanier HA (2000) The role of laccase from Coriolopsis gallica in polycyclic aromatic hydrocarbon metabolism, PhD thesis Faculty of Graduate Studies and Research, Dept. of Biological Sciences, University of Alberta, Canada

    Google Scholar 

  • Vandertol-Vanier HA, Vazquez-Duhalt R, Tinoco R, Pickard MA (2002) Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase. J Ind Microbiol Biotechnol 29:214–20

    Article  PubMed  CAS  Google Scholar 

  • Varadachari V, Ghosh K (1984) On humus formation. Plant Soil 77:305–313

    Article  CAS  Google Scholar 

  • Vasdev K, Kuhad RC, Saxena RK (1995) Decolorization of triphenylmethane dyes by Cyathus bulleri. Curr Microbiol 30(5):269–272

    Article  Google Scholar 

  • Vasdev K, Kuhad RC (1994) Induction of Laccase production in Cyathus bulleri under shaking and static conditions. Folia Microbiol 39(4):326–330

    Article  Google Scholar 

  • Viswanath B, Chandra MS, Kumar KP, Rajasekhar-reddy B (2008) Production and purification of laccase from Stereum ostrea and its ability to decolorize textile dyes. Dyn Biochem Process Biotechnol Mol Biol 2:19–25

    Google Scholar 

  • Waksman SA, Cordon TC, Hulpoi N (1939) Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Sci 47:83–114

    Article  CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    Article  PubMed  CAS  Google Scholar 

  • Wood J, Wood P (1992) Evidence that cellobiose: quinine oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochem Biophys Acta 1119:90–96

    Article  PubMed  CAS  Google Scholar 

  • Wyatt AM, Broda P (1995) Informed strain improvement for lignin degradation by Phanerochaete chrysosporium. Microbiology 141:2811–2822

    Article  PubMed  CAS  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  • Yamanaka R, Soares CF, Matheus DR, Machado KMG (2008) Lignolytic enzymes produced by Trametes villosa CCB 176 under different culture conditions. Braz J Microbiol 39:78–84

    Article  Google Scholar 

  • Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem 44:1185–1189

    Article  CAS  Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49(3):257–280

    Article  CAS  Google Scholar 

  • Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SY (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus: an in vitro study. Soil Biol Biochem 36:359–69

    Article  CAS  Google Scholar 

  • Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamentals of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7:359–366

    CAS  Google Scholar 

  • Zille A, Tzanov T, Guebitz GM, Cavaco-Paulo A (2003) Immobilized laccase for decolourization of Reactive Black dyeing effluent. Biotechnol Lett 25:1473–1477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the research grant from University Grant Commission, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sharma, K.K., Singh, D., Sapna, Singh, B., Kuhad, R.C. (2013). Ligninolytic Enzymes in Environmental Management. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_12

Download citation

Publish with us

Policies and ethics