Advertisement

Microorganisms and Enzymes Involved in Lignin Degradation Vis-à-vis Production of Nutritionally Rich Animal Feed: An Overview

  • Ramesh Chander Kuhad
  • Sarika Kuhar
  • Krishna Kant Sharma
  • Bhuvnesh Shrivastava
Chapter

Abstract

Lignocellulosics are the major structural component of woody and nonwoody plants and represent a major source of renewable organic matter. The plant cell wall consists of three major polymers: cellulose, hemicellulose, and lignin. Lignocellulose biomass, available in huge quantity, has attracted considerable attention as an alternate resource for pulp and paper, fuel alcohol, chemicals, and protein for food and feed using microbial bioconversion processes. The current industrial activity of lignocellulosic fermentation is limited because of the difficulty in economic bioconversion of these materials to value-added products. Lignin is degraded to different extents by variety of microorganisms including bacteria, actinomycetes, and fungi, of which wood-rotting fungi are the most effective, white-rot fungi in particular. White-rot fungi degrade wood by a simultaneous attack on the lignin, cellulose, and hemicellulose, but few of them are specific lignin degraders. The selective lignin degraders hold a potential role in economically bioconversion of plant residues into cellulose-rich materials for subsequent bioethanol and animal feed production. Different fungi adapt in accordance to conditions existing in the ecosystem and complete their task of carbon recycling of the lignified tissues, and some white-rot fungi have capability to completely mineralize it. It is known that white-rot fungi are able to perform lignin degradation by an array of extracellular oxidative enzymes, the best characterized of which are lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase. However, the regulation of the production of individual enzymes and lignin degradation is a complex phenomenon. Unfortunately, even selected white-rot fungi take long in delignifying the lignocellulosic substrates. Therefore, it is necessary to improve these fungi for their ability to degrade lignin through various conventional and modern approaches. A considerable progress has been made in this direction during the past two decades; LiP, MnP, and laccase genes have been cloned, and an efficient Agrobacterium-mediated transformation system has been developed, which will eventually help in successful expression of the desired protein. This chapter presents an overview of diversity of lignin-degrading microorganisms and their enzymes especially in developing animal feed. In addition to that, advances in molecular approaches to enhance the delignification capability of microorganisms are also discussed.

Keywords

Wheat Straw Rice Straw Lignin Degradation Lignin Peroxidase Laccase Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdullah N, Khan AD, Ejaz N (2004) Influence of nutrients carbon and nitrogen supplementation on biodegradation of wheat straw by Trametes versicolor. Mycol Appl Int 16:7–12Google Scholar
  2. Adamovic M, Grubic G, Milenkovic I, Jovanovic R, Protic R, Sretenovic L, Stoicevic L (1998) The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Anim Feed Sci Technol 71:357–362CrossRefGoogle Scholar
  3. Adhi TP, Korus RA, Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl Environ Microbiol 55:1165–1168PubMedGoogle Scholar
  4. Aggelis G, Ehaliotis C, Nerud F, Stoychev I, Lyberatos G, Zervakis G (2002) Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl Microbiol Biotechnol 59:353–360PubMedCrossRefGoogle Scholar
  5. Agosin E, Monties B, Odier E (1985) Structural changes in wheat straw components during decay by lignin-degrading white-rot fungi in relation to improvement of digestibility for ruminants. J Sci Food Agric 36:925–935CrossRefGoogle Scholar
  6. Aguirre F, Maldonado O, Rolz C, Menchu JF, Espinosa R, de Cabrera S (1976) Protein from waste: growing fungi on coffee waste. Chem Technol 6:636–642Google Scholar
  7. Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GR, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6:815–821PubMedCrossRefGoogle Scholar
  8. Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin/Heidelberg, pp 159–195Google Scholar
  9. Akin DE (1993a) In: Shimada K, Ohmiya K, Kobayashi Y, Hoshino S, Sakka K, Karita S (eds) Genetics biochemistry and ecology of lignocellulose degradation. UNI, Tokyo, p 95Google Scholar
  10. Akin DE, Sethuraman A, Morrison WH III, Martin SA, Eriksson K-EL (1993b) Microbial delignification with white-rot fungi improves forage digestibility. Appl Environ Microbiol 61:1591–1598Google Scholar
  11. Akinyele BJ, Olaniyi OO, Arotupin DJ (2011) Bioconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: an edible mushroom. Res J Microbiol 6:63–70CrossRefGoogle Scholar
  12. Albores S, Pinazzola MJ, Soubes M, Cedeiras MP (2006) Biodegradation of agroindustrial wastes by Pleurotus sp. for its use as ruminant feed. Electron J Biotechnol 9:215–220CrossRefGoogle Scholar
  13. Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42PubMedCrossRefGoogle Scholar
  14. Alic M, Akileswaran L, Gold MH (1997) Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochim Biophys Acta 1338:1–7PubMedCrossRefGoogle Scholar
  15. Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200PubMedCrossRefGoogle Scholar
  16. Ander P, Maezullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidases as related to lignin degradation. J Biotechnol 53:115–131PubMedCrossRefGoogle Scholar
  17. Archana PI, Mahadevan A (2002) Lignin degradation by bacteria. Prog Ind Microbiol 36:311–330CrossRefGoogle Scholar
  18. Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a non phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958PubMedCrossRefGoogle Scholar
  19. Arora DS, Gill PK (2001) Effects of various media and supplements on laccase production by some white rot fungi. Bioresour Technol 77:89–91PubMedCrossRefGoogle Scholar
  20. Arora DS, Rampal P (2002) Laccase production by some Phlebia species. J Basic Microbiol 42:295–301PubMedCrossRefGoogle Scholar
  21. Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeter Biodegr 50:115–120CrossRefGoogle Scholar
  22. Arora DS, Sharma RK, Chandra P (2011) Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Int Biodeter Biodegr 65:352–358CrossRefGoogle Scholar
  23. Asada Y, Watanabe A, Irie T, Nakayama T, Kuwahara M (1995) Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim Biophys Acta 1251:205–209PubMedCrossRefGoogle Scholar
  24. Ball A, Betts W, McCarthy A (1989) Degradation of lignin-related compounds by Actinomycetes. Appl Environ Microbiol 55:1642–1644PubMedGoogle Scholar
  25. Bals B, Murnen H, Allen M, Dale B (2010) Ammonia fiber expansion (AFEX) treatment of eleven different forages: improvements to fiber digestibility in vitro. Anim Feed Sci Technol 155:147–155CrossRefGoogle Scholar
  26. Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713PubMedCrossRefGoogle Scholar
  27. Barr DP, Aust SD (1994) Mechanisms white-rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87Google Scholar
  28. Basu S, Gaur R, Gomes J, Sreekrishnan TR, Bisaria VS (2002) Effect of seed culture on solid state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. J Biosci Bioeng 1:25–30Google Scholar
  29. Belewu MA (2006) Conversion of masonia tree sawdust and cotton plant by product into feed by white rot fungus (Pleurotus sajor caju). Afr J Biotechnol 5:503–504Google Scholar
  30. Belyaeva ON, Haynes RJ (2009) Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour Technol 100:5203–5209PubMedCrossRefGoogle Scholar
  31. Bhatnagar A, Kumar S, Gomes J (2008) Operating conditions of a 200 l staged vertical reactor for bioconversion of wheat straw by Phanerochaete chrysosporium. Bioresour Technol 99:6917–6927PubMedCrossRefGoogle Scholar
  32. Black AK, Reddy CA (1991) Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem Biophys Res Commun 179:428–435PubMedCrossRefGoogle Scholar
  33. Blanchette RA (1995) Degradation of lignocellulose complex in wood. Can J Bot 73:S999–S1010CrossRefGoogle Scholar
  34. Blanchette RA, Abad AR, Farrell RL, Leathers TD (1989) Detection of lignin peroxidase and xylanase by immunocytochemical labeling in wood decayed by basidiomycetes. Appl Environ Microbiol 55:1457–1465PubMedGoogle Scholar
  35. Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115CrossRefGoogle Scholar
  36. Boer CG, Obici L, de Souza CGM, Peralta RM (2006) Purification and some properties of Mn peroxidase from Lentinula edodes. Process Biochem 41:1203–1207CrossRefGoogle Scholar
  37. Bohlin C, Jönsson LJ, Roth R, Vanzyl WH (2006) Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol 129–132:195–214PubMedCrossRefGoogle Scholar
  38. Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854PubMedGoogle Scholar
  39. Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217PubMedGoogle Scholar
  40. Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom Agaricus bisporus. Appl Environ Mic­robiol 60:960–965PubMedGoogle Scholar
  41. Bonugli-Santos RC, Durrant LR, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian-derived fungi. Enzyme Microb Technol 46:32–37CrossRefGoogle Scholar
  42. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102PubMedCrossRefGoogle Scholar
  43. Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Bornemann S (1996) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632Google Scholar
  44. Breccia JD, Bettucci L, Sineriz F (1997) Degradation of sugarcane bagasse by several white-rot fungi. Acta Biotechnol 17:177–184CrossRefGoogle Scholar
  45. Brown JA, Alic M, Gold MH (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173:4101–4106PubMedGoogle Scholar
  46. Brune A (2007) Woodworker’s digest. Nature 450:487–488PubMedCrossRefGoogle Scholar
  47. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400PubMedCrossRefGoogle Scholar
  48. Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60CrossRefGoogle Scholar
  49. Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (lignozyme(R)-process). J Biotechnol 53:163–202CrossRefGoogle Scholar
  50. Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330PubMedCrossRefGoogle Scholar
  51. Cambria MT, Cambria A, Ragusa S, Rizzarelli E (2000) Production, purification, and properties of an extracellular laccase from Rigidoporus lignosus. Protein Expr Purif 18:141–147PubMedCrossRefGoogle Scholar
  52. Capeleri M, Zadrazil F (1997) Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol 42:481–487CrossRefGoogle Scholar
  53. Cassland P, Jönssson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400PubMedCrossRefGoogle Scholar
  54. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microbiol Technol 29:473–477CrossRefGoogle Scholar
  55. Chahal DS, Moo-Young M, Dhillon GS (1979) Biocon­version of wheat straw and wheat straw components into single-cell protein. Can J Microbiol 25:793–797PubMedCrossRefGoogle Scholar
  56. Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846PubMedCrossRefGoogle Scholar
  57. Chen J, Fales SL, Varga GA, Royse DJ (1995) Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in vitro digestibility. J Sci Food Agric 68:91–98CrossRefGoogle Scholar
  58. Chen S, Ge W, Buswell JA (2004) Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Europian. J Biochem 271:318–328Google Scholar
  59. Chesson A (1981) Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. J Sci Food Agric 32:745–758CrossRefGoogle Scholar
  60. Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin degrading enzymes. Int Biodeter Biodegr 59:32–39CrossRefGoogle Scholar
  61. Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772PubMedCrossRefGoogle Scholar
  62. Choi GH, Larson TG, Nuss DL (1992) Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact 5:119–128PubMedCrossRefGoogle Scholar
  63. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150PubMedGoogle Scholar
  64. Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14PubMedCrossRefGoogle Scholar
  65. Clutterbuck AJ (1972) Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Appl Microbiol 70:423–435CrossRefGoogle Scholar
  66. Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513CrossRefGoogle Scholar
  67. Couto SR, Gundin M, Lorenzo M, Sanroman MN (2002) Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem 38:249–255CrossRefGoogle Scholar
  68. Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. US Dep Agr Tech Bull 1258. US Department of Agriculture, Washington, DC, 79 pGoogle Scholar
  69. Cui F, Dolphin D (1990) The role of manganese in model systems related to lignin biodegradation. Holzforschung 44:279–283CrossRefGoogle Scholar
  70. Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Kinghorn JR, Turner G (eds) JR applied molecular genetics of filamentous fungi. Blackie Academic and Professional (Chapman & Hall), Glasgow, pp 100–131CrossRefGoogle Scholar
  71. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The Mycota III: biochemistry and molecular biology. Springer, Berlin, pp 249–273CrossRefGoogle Scholar
  72. D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of lactase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744PubMedGoogle Scholar
  73. D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313PubMedGoogle Scholar
  74. Daniel GF, Nilsson T, Singh AP (1987) Degradation of lignocellulosics by unique tunnel-forming bacteria. Can J Microbiol 33:943–948CrossRefGoogle Scholar
  75. Das N, Chakraborty TK, Mukherjee M (1999) Role of potato extract in extracellular laccase production of Pleurotus florida. J Basic Microbiol 39:299–303CrossRefGoogle Scholar
  76. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595PubMedCrossRefGoogle Scholar
  77. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedGoogle Scholar
  78. De Jong E, De Vries FP, Field JA, Van der Zwan RP, De Bont JAM (1992) Isolation and screening of basidiomycetes with high peroxidative activity. Mycol Res 96:1098–1104CrossRefGoogle Scholar
  79. Deacon JW (1997) Modern mycology, 3rd edn. Blackwell Scientific, OxfordGoogle Scholar
  80. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072PubMedCrossRefGoogle Scholar
  81. Dey S, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase- producing brown-rot fungus, Polyporus osteiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60:4216–4218PubMedGoogle Scholar
  82. Dhawan S, Kuhad RC (2002) Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38PubMedCrossRefGoogle Scholar
  83. Dhawan S, Lal R, Hanspal M, Kuhad RC (2004) Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Bioresour Technol 96:1415–1418CrossRefGoogle Scholar
  84. Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, LondonCrossRefGoogle Scholar
  85. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davie GJ (1998) Crystal structure of the pe-2 Cu depleted lactase from Coprinus cinereus at 2.2× resolution. Nat Struct Biol 5:310–316PubMedCrossRefGoogle Scholar
  86. Duran N, Esposito E (2000) Potential application of oxidative enzymes and phenoloxidase like compounds in wastewater and soil treatment: a review. Appl Catal Environ 28:83–99CrossRefGoogle Scholar
  87. Edens WA, Goins TQ, Dooley D, Henson JM (1999) Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 65:3071–3074PubMedGoogle Scholar
  88. Eggert C, Temp U, Dean JFD, Eriksson K-EL (1996) A fungal metabolite mediates oxidation of non-phenolic lignin model compounds and synthetic lignin by laccase. FEBS Lett 391:144–148PubMedCrossRefGoogle Scholar
  89. Eggert C, Lafayette PR, Temp U, Eriksson KEL, Dean JFD (1998) Molecular analysis of a laccase gene from white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64:3151–3157Google Scholar
  90. Ek M, Eriksson K-E (1975) Conversion of cellulosic waste into protein. Appl Polym Symp 28:197–203Google Scholar
  91. Ek M, Eriksson K-E-L (1980) Utilization of the white-rot fungus Sporotrichum pulverulentum for water purification and protein production on mixed lignocellulosic wastewaters. Biotechnol Bioeng 22:2273–2284CrossRefGoogle Scholar
  92. Elisashvili V, Kachlishvili E, Penninckx M (2008) Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J Ind Microbiol Biotechnol 35:1531–1538PubMedCrossRefGoogle Scholar
  93. Endo K, Hayashi Y, Hibi T, Hosana K, Beppu T, Ueda K (2003a) Enzymological characterization of EpoA, a laccase like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677PubMedCrossRefGoogle Scholar
  94. Endo K, Hosono K, Beppu T, Ueda K (2003b) A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776Google Scholar
  95. Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  96. Fahr K, Wetzstein H-G, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132PubMedCrossRefGoogle Scholar
  97. Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40PubMedCrossRefGoogle Scholar
  98. Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335PubMedCrossRefGoogle Scholar
  99. Fenice M, Sermanni GG, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85PubMedCrossRefGoogle Scholar
  100. Ferrer I, Esposito E, Duran N (1992) Lignin peroxidase from Chrysonilia sitophila: heat denaturation kinetics and pH stability. Enzyme Microb Technol 14:402–406CrossRefGoogle Scholar
  101. Flachowsky G, Kamra DN, Zadrazil F (1999) Cereal straws as animal feed-possibilities and limitations. J Appl Anim Res 16:105–118CrossRefGoogle Scholar
  102. Freeman IC, Nayar PG, Begley TP, Villafranca JJ (1993) Stoichiometry and spectroscopic identity of copper centers in phenoxazinone synthase: a new addition to the blue copper oxidase family. Biochemistry 32:4826–4830PubMedCrossRefGoogle Scholar
  103. Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12:267–271CrossRefGoogle Scholar
  104. Galliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol 13:478–482CrossRefGoogle Scholar
  105. Garg SK, Neelakantan S (1982) Studies on the properties of cellulase enzyme from Aspergillus terreus, GNI. Biotechnol Bioeng 24:737–742PubMedCrossRefGoogle Scholar
  106. Gaskell J, Stewart P, Kersten P, Covert S, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Bio/technology 12:1372–1375PubMedCrossRefGoogle Scholar
  107. Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49:388–394CrossRefGoogle Scholar
  108. Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, del Mar Jimenez-Gasco M, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937PubMedCrossRefGoogle Scholar
  109. Gelpke MDS, Mayfield M, Cereghino GPL, Gold MH (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674Google Scholar
  110. Germann UA, Milller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase: amino- and carboxyl-terminal processing precursor. J Biol Chem 263:885–896PubMedGoogle Scholar
  111. Ghosh A, Frankland JC, Thurston CF, Robinson CH (2003) Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycol Res 107:996–1008PubMedCrossRefGoogle Scholar
  112. Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4:13–23CrossRefGoogle Scholar
  113. Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a lactase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413PubMedGoogle Scholar
  114. Giardina P, Palmieri G, Scaloni A, Fontanella B, Farazo V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663PubMedCrossRefGoogle Scholar
  115. Gilbertson RL (1980) Wood rotting fungi of North America. Mycologica 72:1–49CrossRefGoogle Scholar
  116. Gill PK, Arora DS (2003) Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J Ind Microbiol Biotechnol 30:28–33PubMedGoogle Scholar
  117. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341PubMedCrossRefGoogle Scholar
  118. Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083PubMedCrossRefGoogle Scholar
  119. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622PubMedGoogle Scholar
  120. Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white-rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology, ACS Symp. Ser. No. 389. The American Chemical Society, Washington, DC, pp 128–140Google Scholar
  121. Grant GA, Han YM, Anderson AW (1978) Pilot-scale semi-solid fermentation of straw. Appl Environ Microbiol 35:549–553PubMedGoogle Scholar
  122. Grey R, Hofer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1,4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38:371–382PubMedCrossRefGoogle Scholar
  123. Gunther T, Sack U, Hofrichter M, Latz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122CrossRefGoogle Scholar
  124. Guo M, Lu F, Pu J, Bai D, Du L (2005) Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl Microbiol Biotechnol 69:178–183PubMedCrossRefGoogle Scholar
  125. Gupta BN (1987) Report: Indo-Dutch project on bioconversion of crop residues. National Dairy Research Institute, Karnal, pp 1–66Google Scholar
  126. Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804PubMedCrossRefGoogle Scholar
  127. Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood rotting polypores and corticoid fungi for the decay and biopulping of Norway spruce( Picea abies) wood. Enzyme Microb Technol 34:255–263CrossRefGoogle Scholar
  128. Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A (2005) Manganese peroxidases, laccase and oxalic acid from the selective white rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36:461–468CrossRefGoogle Scholar
  129. Hakala T, Hilden K, Maijala P, Olsson C, Hadakka A (2006) Differential regulation of manganese pero­xidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849PubMedCrossRefGoogle Scholar
  130. Hamman OB, de la Rubia T, Martinez J (1999) The effect of manganese on the production of Phanerochaete flavido-alba ligninolytic peroxidases in nitrogen limited cultures. FEMS Microbiol Lett 177:137–142CrossRefGoogle Scholar
  131. Han JR, An CH, Yuan JM (2005) Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J Appl Microbiol 99:910–915PubMedCrossRefGoogle Scholar
  132. Haselwandter K, Bobbleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354CrossRefGoogle Scholar
  133. Hatakka AI (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135CrossRefGoogle Scholar
  134. Hatakka AI (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Lignin, humic substances and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180Google Scholar
  135. Hatakka AI, Pirhonen TI (1985) Cultivation of wood rotting fungi on agricultural lignocellulosic materials for the production of crude protein. Agric Wastes 12:81–97CrossRefGoogle Scholar
  136. Hatakka AI, Kantelinen A, Tervilä-wilo A, Viikari L (1987) Production of ligninases by Phlebia radiata in agitated cultures. In: Odier E (ed) Lignin enzymic and microbial degradation, Symp Intern. INRA, Paris, pp 185–189Google Scholar
  137. Hatvani N, Mecs I (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochem 37:491–496CrossRefGoogle Scholar
  138. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese independent reaction. Appl Environ Microbiol 64:2788–2793PubMedGoogle Scholar
  139. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606PubMedGoogle Scholar
  140. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113PubMedCrossRefGoogle Scholar
  141. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316PubMedGoogle Scholar
  142. Highley TL, Dashek WV (1998) Biotechnology in the study of brown- and white-rot decay. In: Bruce A, John W (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36Google Scholar
  143. Higuchi T (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lewis NG, Paice MG (eds) Biogenesis and bio­degradation of plant cell Polymers acs symposium series. American Chemical Society, Washington, DC, pp 482–502CrossRefGoogle Scholar
  144. Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466CrossRefGoogle Scholar
  145. Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:419–424CrossRefGoogle Scholar
  146. Hofrichter M, Scheibner K, Schneegass I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404PubMedGoogle Scholar
  147. Hofrichter M, Scheibner K, Bublitz F, Schneegaß I, Ziegenhagen D, Martens R, Fritsche W (1999a) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53:161–166CrossRefGoogle Scholar
  148. Hofrichter M, Vares K, Scheibner K, Galkin S, Sipila J, Hatakka A (1999b) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67:217CrossRefGoogle Scholar
  149. Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hataka A (1999c) Production of manganese peroxidase and organic acids and mineralisation of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870PubMedGoogle Scholar
  150. Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pinewood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593PubMedCrossRefGoogle Scholar
  151. Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380PubMedGoogle Scholar
  152. Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003PubMedCrossRefGoogle Scholar
  153. Huang ST, Tzean SS, Tsai BY, Hsieh HJ (2009) Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiology 155:424–433PubMedCrossRefGoogle Scholar
  154. Huang DL, Zeng GM, Feng CL, Hu S, Lai C, Zhao MH, Su FF, Tang L, Liu HL (2010) Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour Technol 101:4062–4067PubMedCrossRefGoogle Scholar
  155. Huang SJ, Liu ZM, Huang XL, Guo LQ, Lin J-F (2011) Molecular cloning and characterization of a novel laccase gene from a white-rot fungus Polyporus grammocephalus TR16 and expression in Pichia pastoris. Lett Appl Microbiol 52:290–297PubMedCrossRefGoogle Scholar
  156. Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
  157. Huoponen K, Ollikka P, Kalin M, Walther I, Mantsala P, Reiser J (1990) Characterization of lignin peroxidase-encoding gene from lignin-degrading basidiomycetes. Gene 89:145–150PubMedCrossRefGoogle Scholar
  158. Hüttermann A, Milstein O, Nicklas B, Trojanowski J, Haars A, Kharazipour A (1989) Enzymatic modification of lignin for technical use. In: Glasser WG, Sarkanen S (eds) Lignin – properties and materials, ACS symposium series. ACS Publications, Washington, DC, pp 361–370CrossRefGoogle Scholar
  159. Iqbal M, Mercer DK, Miller PGG, McCarthy AJ (1994) Thermostable extracellular peroxidases from Streptomyces thermoviolaceus. Microbiology 140:1457–1465CrossRefGoogle Scholar
  160. Irie T, Honda Y, Watanabe T, Kuwahara M (2001) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570PubMedCrossRefGoogle Scholar
  161. Jalc D, Nerud F, Erbanova P, Siroka P (1996) Effect of white-rot basidiomycetes-treated wheat straw on rumen fermentation in artificial rumen. Reprod Nutr Dev 36:263–270PubMedCrossRefGoogle Scholar
  162. Jalc D, Siroka P, Ceresnakova Z (1997) Effect of six species of white-rot basidiomycetes on the chemical composition and rumen degradability of wheat straw. J Gen Appl Microbiol 43:133–137PubMedCrossRefGoogle Scholar
  163. Johansson T, Nyman PO (1996) A cluster of genes encoding major isozymes of lignin peroxidase, and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38PubMedCrossRefGoogle Scholar
  164. Johansson T, Nymann P, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase encoding gene from the lignolytic fungus Trametes versicolor PRL572. Appl Environ Microbiol 68:2077–2080PubMedCrossRefGoogle Scholar
  165. Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456PubMedCrossRefGoogle Scholar
  166. Jonsson L, Nyman PO (1992) Characterization of a lignin peroxidase gene from the white rot fungus Trametes versicolor. Biochimie 74:177–182PubMedCrossRefGoogle Scholar
  167. Jonsson L, Nyman PO (1994) Tandem lignin peroxidase genes from the fungus Trametes versicolor. Biochim Biophys Acta 218:408–412Google Scholar
  168. Jonsson L, SjSstrsm K, Hlggstriim I, Nyman PO (1995) Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta 1251:210–215PubMedCrossRefGoogle Scholar
  169. Jönsson L, Saloheimo M, Penttil M (1997) Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet 32:425–430PubMedCrossRefGoogle Scholar
  170. Joo SS, Ryu IW, Park JK (2008) Molecular cloning and expression of a laccase from Ganoderma lucidum and its antioxidative properties. Mol Cells 25:112–118PubMedGoogle Scholar
  171. Jung H-JG, Valdez FR, Abad AR, Blanchette RA, Hat-field RD (1992a) Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. J Anim Sci 70:1928–1935PubMedGoogle Scholar
  172. Jung H-JG, Valdez FR, Hatfield RD, Blanchette RA (1992b) Cell wall composition and degradability of forage stems following chemical and biological delignification. J Sci Food Agric 8:347–355CrossRefGoogle Scholar
  173. Kaal EEJ, Field JA, Joyce TW (1995) Increasing ligninolyic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour Technol 53:133–139CrossRefGoogle Scholar
  174. Kahlon SS (1986) SCP production by Chaetomium cellulolyticum on treated waste cellulose. J Res Punjab Agric Univ 23:330–335Google Scholar
  175. Kajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K, Iimura Y (2004) Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Appl Microbiol Biotechnol 66:194–199PubMedCrossRefGoogle Scholar
  176. Kakkar VK, Dhanda S (1998) Comparative evaluation of wheat and paddy straws for mushroom production and feeding residual straws to ruminants. Bioresour Technol 66:175–177CrossRefGoogle Scholar
  177. Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2004) Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65:287–294PubMedCrossRefGoogle Scholar
  178. Karunanandaa K, Varga GA (1996) Colonization of rice straw by white-rot fungi (Cyathus stercoreus): effect on ruminal fermentation pattern, nitrogen metabolism and fibre utilization during continuous culture. Anim Feed Sci Technol 61:1–16CrossRefGoogle Scholar
  179. Karunanandaa K, Fales SL, Varga GA, Akin DE, Rigsby LL, Royse DJ (1992) Chemical composition and biodegradability of crop residues colonized by white rot fungi. J Sci Food Agric 60:105–112CrossRefGoogle Scholar
  180. Kersten PJ, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87PubMedCrossRefGoogle Scholar
  181. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201PubMedGoogle Scholar
  182. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480PubMedGoogle Scholar
  183. Kiiskinen LL, Kruus K, Bailey M, Ylosmaki E, Siikaaho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074PubMedCrossRefGoogle Scholar
  184. Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U (2006) Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 71:200–210PubMedCrossRefGoogle Scholar
  185. Kim Y, Yeo S, Kum J, Song H-G, Choi HT (2005) Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol 43:569–571PubMedGoogle Scholar
  186. Kim J-M, Park S-M, Kim D-H (2010) Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae. BMC Biotechnol 10:18–27PubMedCrossRefGoogle Scholar
  187. Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32:436–442PubMedCrossRefGoogle Scholar
  188. Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480PubMedGoogle Scholar
  189. Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–308Google Scholar
  190. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505PubMedCrossRefGoogle Scholar
  191. Kishi K, Wariishi H, Marquez L, Dunford HB, Gold MH (1994) Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33:8694–8701PubMedCrossRefGoogle Scholar
  192. Klonowska A, Le Petit J, Tron T (2001) Enhancement of minor laccase production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiol Lett 200:25–30PubMedCrossRefGoogle Scholar
  193. Kojima Y, Tsukuda Y, Kawai Y, Tsukamato A, Sugiura J, Sakaino M, Yukio K (1990) Cloning, sequence analysis and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 260:15224–15230Google Scholar
  194. Koroleva OV, Garilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by co-cultivated white-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580CrossRefGoogle Scholar
  195. Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693PubMedCrossRefGoogle Scholar
  196. Krcmar P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol 43:79–84CrossRefGoogle Scholar
  197. Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5PubMedCrossRefGoogle Scholar
  198. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172CrossRefGoogle Scholar
  199. Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Eriksson KE (ed) Advances in biochemical engineering biotechnology. Springer, Berlin, pp 46–125Google Scholar
  200. Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313PubMedCrossRefGoogle Scholar
  201. Kumar S, Gomes J (2008) Performance evaluation of reactors designed for bioconversion of wheat straw to animal feed. Anim Feed Sci Technol 144:149–166CrossRefGoogle Scholar
  202. Kumar AG, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97:1521–1528CrossRefGoogle Scholar
  203. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32–49PubMedCrossRefGoogle Scholar
  204. Kurt S, Buyukalaca S (2010) Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajorcaju) cultivated on different agricultural wastes. Bioresour Technol 101:3164–3169PubMedCrossRefGoogle Scholar
  205. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of 2 extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250CrossRefGoogle Scholar
  206. Lackner R, Srebotnik E, Messner K (1991) Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 178:1092–1098PubMedCrossRefGoogle Scholar
  207. Leatham G, Stahman MA (1981) Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 125:147–157Google Scholar
  208. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185PubMedCrossRefGoogle Scholar
  209. Levin L, Forchiassin F, Ramos AM (2001) Ligninolytic enzymes of the white-rot basidiomycete Trametes trogii. Acta Biotechnol 21:179–186CrossRefGoogle Scholar
  210. Levin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94:377–383PubMedCrossRefGoogle Scholar
  211. Levy JF (1975) Bacteria associated with wood in ground contact. In: Liese W (ed) Biological transformation of wood by microorganisms. Springer, Berlin, pp 64–73CrossRefGoogle Scholar
  212. Li KC, Helm RF, Eriksson KEL (1998) Mechanistic studies of the oxidation of a non-phenolic lignin model compound by the laccase/1-hydroxybenzotriazole redox system. Biotechnol Appl Biochem 27:239–243Google Scholar
  213. Li L, Li XZ, Tang WZ, Zhao J, Qu Y-B (2008) Screening of a fungus capable of powerful and selective delignification on wheat straw. Lett Appl Microbiol 47:415–420PubMedCrossRefGoogle Scholar
  214. Li J, Yuan H, Yang J (2009) Bacteria and lignin degradation. Front Biol China 4:29–38CrossRefGoogle Scholar
  215. Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231CrossRefGoogle Scholar
  216. Liu W, Chao Y, Liu S, Qian S (2003) Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Appl Microbiol Biotechnol 63:174–181PubMedCrossRefGoogle Scholar
  217. Lobos S, Larrain J, Salas L, Cullen D, Vicuna R (1994) Isozymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. J Gen Microbiol 140:2691–2698Google Scholar
  218. Lobos S, Larrondo L, Salas L, Karahanian E, Vicuña R (1998) Cloning and molecular analysis of a cDNA and the Cs-mnp1 gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene 206:185–193PubMedCrossRefGoogle Scholar
  219. Lomascola E, Record I, Herpoe-Gimbert M, Delattre J, Robert L, Georis J, Dauvrin T, Sigoillot J-C, Asther M (2003) Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbiol 94:618–624CrossRefGoogle Scholar
  220. Lomascolo A, Cayol JL, Roche M, Guo L, Robert JL, Record E, Lessage-Meessen L, Olliver B, Sigoillot JC, Asther M (2002) Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction. Mycol Res 106:1193–1203CrossRefGoogle Scholar
  221. López M, Loera O, Guerrero-Olazarán M, Viader-Salvadó JM, Gallegos-López JA, Fernández FJ, Favela-Torres E, Viniegra-González G (2010) Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. J Chem Technol Biotechnol 85:435–440Google Scholar
  222. Lundell T (1993) Ligninolytic system of the white rot fungus Phlebia radiata: Lignin model compound studies. Dissertation, University of HelsinkiGoogle Scholar
  223. Ma B, Mayfield MB, Gold MH (2003) Homologous expression system of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker. Curr Genet 43:407–414PubMedCrossRefGoogle Scholar
  224. Machuca A, Ferraz A (2001) Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb Technol 29:386–391CrossRefGoogle Scholar
  225. Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341CrossRefGoogle Scholar
  226. Mäkelä MR, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30:542–549CrossRefGoogle Scholar
  227. Mäkelä MR, Hilden K, Hatakka A, Lundell TK (2009) Oxalate decarboxylase of the white rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology 155:2726–2738PubMedCrossRefGoogle Scholar
  228. Maltseva OV, Niku-Paavola M-L, Leontievsky AA, Myasoedova NM, Golovleva LA (1991) Ligninolytic enzymes of the white rot fungus Panus tigrinus. Biotechnol Appl Biochem 13:291–302Google Scholar
  229. Manubens A, Avila M, Canessa P, Vicuna R (2003) Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438PubMedCrossRefGoogle Scholar
  230. Martinez AT, Camarero S, Guillen F, Gutierrez A, Munoz C, Varela E, Martinez MJ, Barrasa JM, Ruel K, Pelayo JM (1994) Progress in biopulping of non-woody materials – chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13:265–274CrossRefGoogle Scholar
  231. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700PubMedCrossRefGoogle Scholar
  232. Mayfield MB, Kishi T, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60:4303–4309PubMedGoogle Scholar
  233. McGuirl MA, Dooley DM (1999) Copper-containing oxidases. Curr Opin Chem Biol 3:138–144PubMedCrossRefGoogle Scholar
  234. Mendonça RT, Jara JF, González V, Elissetche JP, Freer J (2008) Evaluation of the white rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330PubMedCrossRefGoogle Scholar
  235. Mercer DK, Iqbal M, Miller PGG, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190PubMedGoogle Scholar
  236. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417PubMedCrossRefGoogle Scholar
  237. Mhlanga CYL (2001) Thermophilic lignin degrading enzymes from actinomycetes for biotechnological applications. MSc thesis, Rhodes UniversityGoogle Scholar
  238. Micales JA (1997) Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia pacenta. Int Biodeter Biodegr 39:125–132CrossRefGoogle Scholar
  239. Moo-Young M, Chahal DS, Vlach D (1978) Single cell protein from various chemically pretreated wood substrates using Chaetomium cellulolyticum. Biotechnol Bioeng 21:1361–1371Google Scholar
  240. Moo-Young M, Moreira AR, Daugulis AJ (1979) Economics of fermentation processes for SCP production from agricultural wastes. Can J Chem Eng 57:741–749CrossRefGoogle Scholar
  241. Moreira MT, Feijoo G, Lema JM (2000a) Manganese peroxidase production by Bjerkandera sp. BOS55.1. Regulation of enzymatic production. Bioprocess Eng 23:657–661CrossRefGoogle Scholar
  242. Moreira MT, Mielgo I, Feijoo G, Lema JM (2000b) Evaluation of different fungal strains in the decolorization of synthetic dyes. Biotechnol Lett 22:1499–1503CrossRefGoogle Scholar
  243. Moreira MT, Torrado A, Feijoo G, Lema JM (2000c) Manganese peroxidase production by Bjerkandera sp. BOS55.2. Operation in stirred tank reactors. Bioprocess Eng 23:663–667CrossRefGoogle Scholar
  244. Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère JM, Malcata FX, Duarte JC (2005) Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol 118:339–352PubMedCrossRefGoogle Scholar
  245. Moyson E, Verachtert H (1991) Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate. Appl Microbiol Biotechnol 36:421–424CrossRefGoogle Scholar
  246. Muheim A, Waldner R, Leisola MSA, Fiechter A (1990) An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb Technol 12:204–209CrossRefGoogle Scholar
  247. Munoz C, Guillen F, Martinez AT, Martinez MJ (1997a) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol 63:2166–2174PubMedGoogle Scholar
  248. Munoz C, Guillen F, Martinez AT, Martinez MJ (1997b) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5PubMedCrossRefGoogle Scholar
  249. Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462PubMedCrossRefGoogle Scholar
  250. Nagai M, Sakamoto Y, Nakade K, Sato T (2007) Isolation and characterization of the gene encoding a manganese peroxidase from Lentinula edodes. Mycoscience 48:125–130CrossRefGoogle Scholar
  251. Nair LM (2006) Bioconversion of Prosopis juliflora (Vilayati babul) hydrolysate in to ethanol by Pichia stipis NCIM-3498. MPhil thesis, University of Delhi, New DelhiGoogle Scholar
  252. Nerud F, Misurcova Z (1989) Production of ligninolytic peroxidases by the white-rot fungus Coriolopsis occidentalis. Biotechnol Lett 11:427–432CrossRefGoogle Scholar
  253. Nerud F, Zouchova Z, Misurcova Z (1991) Ligninolytic properties of different white-rot fungi. Biotechnol Lett 13:657–660CrossRefGoogle Scholar
  254. Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparation suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304CrossRefGoogle Scholar
  255. Nigam JN (1998) Single cell protein from pineapple cannery effluent. World J Microbiol Biotechnol 14:693–696CrossRefGoogle Scholar
  256. Niku-Paavola ML, Raaska L, Itavaara M (1990) Detection of white-rot fungi by a non-toxic stain. Mycol Res 94:27–31CrossRefGoogle Scholar
  257. Nilsson T, Daniel GF (1983) Tunnelling bacteria. Document, International Research Group/Wood Pre­ser­vation, No. 1186. FranceGoogle Scholar
  258. Nilsson T, Daniel GF, Kirk TK, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18CrossRefGoogle Scholar
  259. Novotny C, Erbanova P, Cathaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853PubMedCrossRefGoogle Scholar
  260. Nuske J, Scheibner K, Dornberger U, Ullrich R, Hofrichter M (2002) Large scale production of manganese-peroxidase using agaric white-rot fungi. Enzyme Microb Technol 30:556–561CrossRefGoogle Scholar
  261. O’Callaghan J, O’Brien MM, McClean K, Dobson AD (2002) Optimization of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29:55–59PubMedCrossRefGoogle Scholar
  262. O’Hara EB, Timberlake WE (1989) molecular characterization of the Aspergillus nidulans yA locus. Genetics 121:249–254PubMedGoogle Scholar
  263. Okano K, Kitagawa M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminant by white-rot basidiomycetes. Anim Feed Sci Technol 120:235–243CrossRefGoogle Scholar
  264. Okano K, Iida Y, Samsuri M, Prasetya B, Usagava T, Watanabe T (2006) Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white rot fungi. Anim Sci J 77:308–313CrossRefGoogle Scholar
  265. Okano K, Ohkoshi N, Nishiyama A, Usagawa T, Kitagawa M (2009) Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora. Anim Feed Sci Technol 152:278–285CrossRefGoogle Scholar
  266. Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023PubMedGoogle Scholar
  267. Otjen L, Blanchette RA, Leatham GF (1988) Lignin distribution in wood delignified by white rot fungi- X-ray-microanalysis of decayed wood treated with bromine. Holzforschung 42:281–288CrossRefGoogle Scholar
  268. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307PubMedCrossRefGoogle Scholar
  269. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the lignolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedCrossRefGoogle Scholar
  270. Papinutti VL, Diorio LA, Forchiassin F (2003) Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. J Ind Microbiol Biotechnol 30:157–160PubMedCrossRefGoogle Scholar
  271. Pease EA, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540PubMedGoogle Scholar
  272. Périé FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white-rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245PubMedGoogle Scholar
  273. Phillippi F (1893) Die Pilze Chiles, soweit dieselben als Nahrungsmittel gebraucht werden. Hedwigia 32:115–118Google Scholar
  274. Pickard MA, Vandertol H, Roman R, Vazquez-Duhalt R (1999) High production of ligninolytic enzymes from white-rot fungi in cereal bran liquid medium. Can J Microbiol 45:627–631CrossRefGoogle Scholar
  275. Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:428–439PubMedCrossRefGoogle Scholar
  276. Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526PubMedCrossRefGoogle Scholar
  277. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  278. Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144CrossRefGoogle Scholar
  279. Raeder U, Thompson W, Broda P (1989) RFLP-based genetic map of Phanerochaete chrysosporium ME446: lignin peroxidase genes occur in clusters. Mol Microbiol 7:911–918CrossRefGoogle Scholar
  280. Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) liP-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663PubMedGoogle Scholar
  281. Ralph JP, Graham LA, Catcheside DEA (1996) Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi. Appl Microbiol Biotechnol 46:226–232CrossRefGoogle Scholar
  282. Ramachandra M, Crawford DL, Hertel G (1988) Charac­terization of an extracellular lignin per­oxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063PubMedGoogle Scholar
  283. Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Wiley, LondonGoogle Scholar
  284. Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CAMJJ, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609PubMedCrossRefGoogle Scholar
  285. Reddy GV, Babu PR, Komaraih P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of ligninolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462CrossRefGoogle Scholar
  286. Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes. CRC Press, Boca Raton, pp 1–35Google Scholar
  287. Ricotta A, Unz RF, Bollag JM (1996) Role of laccase in the degradation of pentachlorophenol. Bull Environ Contam Toxicol 57:560–567PubMedCrossRefGoogle Scholar
  288. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226PubMedCrossRefGoogle Scholar
  289. Robene-Soustrade I, Lung-Escarmant B, Bono JJ, Taris B (1992) Identification and partial characterization of an extracellular manganese-dependent peroxidase in Armillaria ostoyae and Armillaria mellea. Eur J Forest Pathol 22:227–236CrossRefGoogle Scholar
  290. Robertson SA, Mason SL, Hack E, Abbott GD (2008) A comparison of lignin oxidation, enzymatic activity and fungal growth during white-rot decay of wheat straw. Org Geochem 39:945–951CrossRefGoogle Scholar
  291. Robinson T, Chandran B, Nigam P (2001) Studies on the production of enzymes by white-rot fungi for the decolorisation of textile dyes. Enzyme Microb Technol 29:575–579CrossRefGoogle Scholar
  292. Rodríguez E, Ruiz-Dueñas FJ, Kooistra R, Ram A, Martínez AT, Martínez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19PubMedCrossRefGoogle Scholar
  293. Romero E, Speranza M, García-Guinea J, Martínez AT, Martínez MJ (2007) An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. FEMS Microbiol Lett 275:122–129PubMedCrossRefGoogle Scholar
  294. Rothschild N, Hadar Y, Dosoretz CG (1997) Lignin peroxidase isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl Environ Microbiol 63:857–861PubMedGoogle Scholar
  295. Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235PubMedCrossRefGoogle Scholar
  296. Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martınez MJ, Martınez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116–122PubMedCrossRefGoogle Scholar
  297. Ruttiman GB, Vicuna R, Sapag C, Seenlenfreund D (1998) Biochemical and genetic studies of bacteria metabolizing lignin-related compounds. Arch Biol Med Exp 21:247–255Google Scholar
  298. Ruttimann C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16:64–76Google Scholar
  299. Sakamoto Y, Nakade K, Nagai M, Uchimiya H, Sato T (2009) Cloning of Lentinula edodes lemnp2, a manganese peroxidase that is secreted abundantly in sawdust medium. Mycoscience 50:116–122CrossRefGoogle Scholar
  300. Saloheimo M, Barajas V, Niku-Paavola M-L, Knowles JKC (1989) A lignin peroxidase-encoding cDNA from the white rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85:343–351PubMedCrossRefGoogle Scholar
  301. Saloheimo M, Leena M, Paavola N (1991) Heterologous production of a lignolytic enzyme: expression of the Phlebia radiate laccase gene in Trichoderma reesei. Nat Biotechnol 9:987–990CrossRefGoogle Scholar
  302. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefGoogle Scholar
  303. Saparrat MCN, Guillén F, Arambarri AM, Martínez AT, Martínez MJ (2002) Induction, isolation and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 68:1534–1540PubMedCrossRefGoogle Scholar
  304. Schmidt O, Nagashima Y, Liese W, Schmitt U (1987) Bacterial wood degradation studies under laboratory conditions in lakes. Holzforschung 41:137–140CrossRefGoogle Scholar
  305. Schoemaker HE, Leisola MSA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13:101–109CrossRefGoogle Scholar
  306. Sermanni GG, D’Annibale A, Di Lena G, Vitale NS, Di Mattia E, Minelli V (1994) The production of exo-enzymes by Lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw. Bioresour Technol 48:173–178CrossRefGoogle Scholar
  307. Shah MP, Reddy GV, Banerjee R, Babu PR, Kothari IL (2005) Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem 40:445–451CrossRefGoogle Scholar
  308. Sharma RK, Arora DS (2010a) Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101:9248–9253PubMedCrossRefGoogle Scholar
  309. Sharma RK, Arora DS (2010b) Changes in biochemical constituents of paddy straw during degradation by white rot fungi and its impact on in vitro digestibility. J Appl Microbiol 109:679–686PubMedGoogle Scholar
  310. Sharma KK, Kuhad RC (2010) Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol 10:67–75PubMedCrossRefGoogle Scholar
  311. Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 41:24–31PubMedCrossRefGoogle Scholar
  312. Sharma KK, Gupta S, Kuhad RC (2006) Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem 43:181–186PubMedCrossRefGoogle Scholar
  313. Shary S, Ralph SA, Hammel KE (2007) New insights into the ligninolytic capability of a wood decay ascomycete. Appl Environ Microbiol 20:6691–6694CrossRefGoogle Scholar
  314. Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831PubMedCrossRefGoogle Scholar
  315. Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Pérez-Boada M, Martínez MJ, Sigoillot J-C, Asther M, Colom JF (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115:333–343PubMedCrossRefGoogle Scholar
  316. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1991) Influence of nutritional factors on cellulase production from natural lignocellulosic residues by Aspergillus niger. Agric Biol Res 7:19–27Google Scholar
  317. Singh A, Bajar S, Bishnoi NR, Singh N (2010) Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. J Hazard Mater 15:79–82Google Scholar
  318. Sirohi SK, Rai SN (1999) Synergistic effect of urea and lime treatment of wheat straw on chemical composition, in sacco and in vitro digestibility. Asian Aust J Anim Sci 12:1049–1053Google Scholar
  319. Sjoblad RD, Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA, Ladd JN (eds) Soil biochemistry. Marcel Dekker, New York, pp 113–152Google Scholar
  320. Steffen KT (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Dissertationes Biocentri Viikki Universitatis Helsingiensis, 23/2003. PhD thesis, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, p 68Google Scholar
  321. Steffen KT, Hofrichter M, Hatakka A (2002a) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 30:550–555CrossRefGoogle Scholar
  322. Steffen KT, Hatakka A, Hofrichter M (2002b) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448PubMedCrossRefGoogle Scholar
  323. Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier, New York, pp 21–76Google Scholar
  324. Stewart P, Kersten P, Wymelenberg AV, Gaskell J, Cullen D (1992) Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol 174:5036–5042PubMedGoogle Scholar
  325. Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M (1996) Efficient expression of a Phanero­chaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Microbiol Biotechnol 62:860–864Google Scholar
  326. Straatsma G, Samson RA, Olijnsma TW, Op den Camp HJM, Gerrits JPG, van Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–458PubMedGoogle Scholar
  327. Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798PubMedCrossRefGoogle Scholar
  328. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  329. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269:32759–32767PubMedGoogle Scholar
  330. Sundstol F, Owen E (1984) Straw and other fibrous by-products as feed. Elsevier, Amsterdam, 604Google Scholar
  331. Sutherland JB, Blanchette RA, Crawford DL, Pometto AL (1979) Breakdown of Douglas-fir phloem by a lignocellulose-degrading Streptomyces. Curr Microbiol 2:123–126CrossRefGoogle Scholar
  332. Suzuki Y, Okano K, Kato S (1995) Characteristics of white-rotted woody materials obtained from shiitake mushroom (Lentinus edodes) and nameko mushroom (Pholiota nameko) cultivation with in vitro rumen fermentation. Anim Feed Sci Technol 24:130–137Google Scholar
  333. Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175PubMedCrossRefGoogle Scholar
  334. Szklarz GD, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of Phenol oxidases and Peroxidases by wood-rotting fungi. Mycologia 8:234–240CrossRefGoogle Scholar
  335. Tagger S, Perissol C, Gil G, Vogt G, Le Petit J (1998) Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme Microb Technol 23:372–379CrossRefGoogle Scholar
  336. Tamaru H, Inoue H (1989) Isolation and characterization of a laccase-depressed mutant of Neurospora crassa. J Bacteriol 171:6288–6293PubMedGoogle Scholar
  337. Tekere M, Zvvauya R, Read JS (2001) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41:115–129PubMedCrossRefGoogle Scholar
  338. Temp U, Zierold U, Claudia E (1999) Cloning and characterization of a second lactase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236:169–177PubMedCrossRefGoogle Scholar
  339. Ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413PubMedCrossRefGoogle Scholar
  340. Teunissen PJM, Field JA (1998) 2-Chloro-14-dimethoxybenzene as a novel catalytic cofactor for oxidation of anisyl alcohol by lignin peroxidase. Appl Environ Microbiol 64:830PubMedGoogle Scholar
  341. Thomke S, Rundgren M, Eriksson S (1980) Nutritional evaluation of the white rot fungus – Sporotrichum pulverulentum – as a feedstuff to rats, pigs and sheep. Biotechnol Bioeng 22:2285–2303CrossRefGoogle Scholar
  342. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663PubMedCrossRefGoogle Scholar
  343. Tien M, Tu C-PD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520–523PubMedCrossRefGoogle Scholar
  344. Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3, 4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261:1687–1693PubMedGoogle Scholar
  345. Touchburn SP, Chavex ER, Moo-Young M (1986) Chaetomium cellulolyticum microbial biomass protein evaluation with rats, chicks and piglets. In: Moo-Young M, Gregory KF (eds) Microbial biomass proteins. Elsevier Applied Science, London, pp 175–185Google Scholar
  346. Tripathi JP, Yadav JS (1992) Optimisation of solid substrate fermentation of wheat straw into animal feed by Pleurotus ostreatus – a pilot effort. Anim Feed Sci Technol 37:59–72CrossRefGoogle Scholar
  347. Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439PubMedCrossRefGoogle Scholar
  348. Tuncer M, Ball AS (2002) Degradation of lignocellulose by extracellular enzymes produced by Thermomono­spora fusca BD25. Appl Microbiol Biotechnol 58:608–611PubMedCrossRefGoogle Scholar
  349. Urzúa U, Larrondo LF, Lobos S, Larraín J, Vicuña R (1995) Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett 371:132–136PubMedCrossRefGoogle Scholar
  350. Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus – production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:123613–123622CrossRefGoogle Scholar
  351. Valdez ODM, Flores EOG, García JAM et al (2008) Use of Pleurotus pulmonarius to change the nutritional quality of wheat straw. I. Effect on chemical composition. Interciencia 33:435–438Google Scholar
  352. Varela E, Martinez AT, Martinez MJ (2000) Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. J Biotechnol 83:245–251PubMedCrossRefGoogle Scholar
  353. Vares T (1996) Ligninolytic enzymes and lignin-degrading activity of taxonomically different white-rot fungi. PhD thesis, vol 44, Department of Applied Chemistry and Microbiology, University of Helsinki, Finland, p 67Google Scholar
  354. Vares T, Lundell TK, Hattaka AI (1992) Novel heme-containing enzyme possibly involved in lignin degradation by the white-rot fungus Junghuhnia separabilima. FEMS Microbiol Lett 99:53–58CrossRefGoogle Scholar
  355. Vares T, Lundell TK, Hattaka AI (1993) Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme Microb Technol 15:664–669CrossRefGoogle Scholar
  356. Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14 C-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60:569–575PubMedGoogle Scholar
  357. Vasdev K, Kuhad RC (1994) Induction of laccase production in C. bulleri under shaking and static culture conditions. Folia Microbiol 39:326–330CrossRefGoogle Scholar
  358. Vasdev K, Dhawan S, Kapoor KR, Kuhad RC (2005) Biochemical characterization and molecular evidence of a laccase from the birds nest fungus Cyathus bulleri. Fungal Genet Biol 42:684–693PubMedCrossRefGoogle Scholar
  359. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177PubMedCrossRefGoogle Scholar
  360. Villas-Boas SG, Esposito E, Mitchell DA (2002) Microbial conversion of lignocellulosic residues for production of animal feeds. Anim Feed Sci Technol 98:1–12CrossRefGoogle Scholar
  361. Villas-Boas SG, Esposito E, De Mendonca MM (2003) Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. Word J Microbiol Biotechnol 19:461–467CrossRefGoogle Scholar
  362. Volc J, Kubatova E, Daniel G, Sedmera P, Haltrich D (2001) Screening of basidiomycete fungi for the quinone-dependent sugar C-2/C-3 oxidoreductase, pyranose dehydrogenase, and properties of the enzyme from Macrolepiota rhacodes. Arch Microbiol 176:178–186PubMedCrossRefGoogle Scholar
  363. Von Hunolstein C, Valenti CP, Visca P, Antonini G, Nicolini L, Orsi N (1986) Production of laccases A and B by a mutant strain of Trametes versicolor. J Gen Appl Microbiol 32:185–191CrossRefGoogle Scholar
  364. Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A, Schneider P (1996) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403PubMedCrossRefGoogle Scholar
  365. Waldner R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400–407CrossRefGoogle Scholar
  366. Walker HG (1984) Physical treatment. In: Straw and other fibrous byproducts as feed. Elsevier, Amsterdam, pp 79–101Google Scholar
  367. Wariishi H, Valli K, Renganathan V, Gold MH (1989) Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem 264:14185–14191PubMedGoogle Scholar
  368. Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801PubMedCrossRefGoogle Scholar
  369. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209PubMedCrossRefGoogle Scholar
  370. Wood PM (1994) Pathways for production of Fenton’s reagent by wood-rotting fungi. FEMS Microbiol Rev 13:313–320CrossRefGoogle Scholar
  371. Yadav JS, Tripathi JP (1991) Optimization of cultiva­tion and nutrition conditions and substrate pretreatment for solid-substrate fermentation of wheat straw by Coriolus versicolor. Folia Microbiol 36:249–301CrossRefGoogle Scholar
  372. Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841PubMedGoogle Scholar
  373. Yeo S, Park N, Song H, Choi HT (2007) Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of Mnp gene in Trametes versicolor. J Microbiol 45:213–218PubMedGoogle Scholar
  374. Zadrazil F (1985) Screening of fungi for lignin decomposition and conversion of straw into feed. Angew Bot 59:433–452Google Scholar
  375. Zadrazil F, Puniya AK (1995) Studies on effect of particle size on solid state fermentation of sugar cane bagasse into animal feed using white-rot fungi. Bioresour Technol 54:85–87CrossRefGoogle Scholar
  376. Zadrazil F, Kamra DN, Isikhuemhen OS, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi. J Appl Anim Res 10:105–124CrossRefGoogle Scholar
  377. Zeng GM, Yu M, Chen YN, Huang DL, Zhang JC, Huang HL et al (2010) Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol 101:222–227PubMedCrossRefGoogle Scholar
  378. Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Ramesh Chander Kuhad
    • 1
  • Sarika Kuhar
    • 1
  • Krishna Kant Sharma
    • 1
  • Bhuvnesh Shrivastava
    • 1
  1. 1.Lignocellulose Biotechnology Laboratory, Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations