Advertisement

Glycosidases

  • Soundar Divakar
Chapter

Abstract

Glycosidases catalyse transformations leading to the attachment of carbohydrate molecules to aglycons. Hence, a detailed description of glycosidases is made in this chapter which includes their classification, nature, source, structural features, mechanism of glycosylation and advantages of such reactions. Also mentioned are examples of glycosylation reactions involving a wide variety of aglycons with different carbohydrate molecules in the form of a table.

Keywords

Phenolic Glycoside Glycosyl Donor Transglycosylation Reaction Anomeric Configuration Glycosylation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aga H, Yoneyama M, Sakai S, Yamamoto I (1990) Synthesis of 2-O-α-D-glucopyranosyl L-ascorbic acid by cyclomaltodextrin glucotransferase from Bacillus stearothermophilus. Agric Biol Chem 55:1751–1756CrossRefGoogle Scholar
  2. Akao T, Yoshino T, Kobashi K, Hatlori M (2002) Evaluation of salicin as an antipyretic prodrug that does not cause gastric injury. Planta Med 68:714–718PubMedCrossRefGoogle Scholar
  3. Aleshin AE, Firsov LM, Honzatko RB (1994) Refined structure for the complex of acarbose with glucoamylases from Aspergillus awamori var. X100 to 2.4 Å resolution. J Biol Chem 269:15631–15639PubMedGoogle Scholar
  4. Ali S, Hossain Z (1991) Characteristics of glucoamylase from Aspergillus terreus. J Appl Bacteriol 71:144–146CrossRefGoogle Scholar
  5. Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Rhizopus raw-starch-degrading glucoamylase Its cloning and expression in yeast. Agric Biol Chem 50:957–964CrossRefGoogle Scholar
  6. Auge C, Fernandez RF, Gautheron CM (1990) The use of immobilized glycosyltransferases in the synthesis of sialyl oligosaccharides. Carbohydr Res 200:257–268PubMedCrossRefGoogle Scholar
  7. Balzar D (1991) Alkylglucosides, their physico-chemical properties and their uses. Tenside Surf Det 28:419–427Google Scholar
  8. Bender H (1981) A bacterial glucoamylase degrading cyclodextrins. Eur J Biochem 115:287–291PubMedCrossRefGoogle Scholar
  9. Berfoldo C, Anthranikian G (2001) Amylolytic enzymes from hyperthermophiles. Methods Enzymol 330:269–289CrossRefGoogle Scholar
  10. Braun H, Cogoli A, Semenza G (1977) Carboxyl groups at the two active centers of sucrose-isomaltoase from rabbit small intestine. Eur J Biochem 73:437–442PubMedCrossRefGoogle Scholar
  11. Busch P, Hensen H, Khare J, Tesmann H (1994) Alkylpolyglycosides-a new cosmetic concept for milderness. Agro-Food-Ind Hi-Tech 5:20–28Google Scholar
  12. Chaga G, Porath J, Illeni T (1993) Isolation and purification of amyloglucosidase from Halobacterium sodomenase. Biomed Chromatogr 7:256–261PubMedCrossRefGoogle Scholar
  13. Chahid Z, Montet D, Pina M, Graille J (1992) Effect of water activity on enzymatic synthesis of alkylglycosides. Biotechnol Lett 14(4):281–284CrossRefGoogle Scholar
  14. Chahid Z, Montet D, Pina M, Bonnot F, Graille J (1994) Biocatalyzed octylglycoside synthesis from a disaccharide. Biotechnol Lett 16:795–800CrossRefGoogle Scholar
  15. Chiba S (1995) In: The Amylase Research Society of Japan (ed) Enzyme chemistry and molecular biology of amylase and related enzymes. CRC Press, Boca Raton/Ann arbor/London/Tokyo, pp 68–82Google Scholar
  16. Chiba S (1997) Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotech Biochem 61:1233–1239CrossRefGoogle Scholar
  17. Chojecki A, Blaschek HP (1986) Effect of carbohydrate source on alpha-amylase and glucoamylase formation by Clostridium acetobutylicum SA-1. Ind Microbiol 1:63–67CrossRefGoogle Scholar
  18. Clarks AJ, Svensson B (1984) Identification of an essential tryptophanyl residue in the primary structure of glucoamylase G2 from Aspergillus niger. Carlesberg Res Commun 49:559–566CrossRefGoogle Scholar
  19. Crout DHG, Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharides synthesis. Biocatal Biotransform 2:98–111Google Scholar
  20. Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A (2001) The mechanism of substrate (aglcone) specificity in β-glucosidase –DIMBOA, – DIMBOA Glc and –dhurrin complexes. Proc Natl Acad Sci USA 97:13555–13560CrossRefGoogle Scholar
  21. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859PubMedCrossRefGoogle Scholar
  22. Donho M, Kimura T, Hara H (1996) Methods of producing geranyl β-D-galactopyranoside as flavoring material by enzymatic galactosylation of citronellol. Jpn Kokai Tokkyo Konho JP 8188589–8188591 (CA 125 222344)Google Scholar
  23. Ducret A, Carriere JF, Trani M, Lortie R (2002) Enzymatic synthesis of octyl glucoside catalysed by almond β-glucosidase in organic media. Can J Chem 80:653–656CrossRefGoogle Scholar
  24. Ermer J, Rose K, Huber G, Schhellenenberger A (1993) Subsite affinities of Aspergillus niger glucoamylase II determined with p-nitophenylmaltooligosaccharides. Biol Chem Hoppe Seyler 374:123–128PubMedCrossRefGoogle Scholar
  25. Ernst B, Hart GW, Sinay P (2000) Carbohydrates in chemistry and biology, vol 1. Willey-VCH, Weinheim, pp 177–193CrossRefGoogle Scholar
  26. Eveleigh DE, Perlin AS (1969) A proton magnetic resonance study of the anomeric species produced by D-glucosidases. Carbohydr Res 10:87–95CrossRefGoogle Scholar
  27. Fagerstrom R (1991) Subsite mapping of Hormoconis resinae glucoamylase and their inhibition by gluconolactone. J Gen Microbiol 137:1001–1008CrossRefGoogle Scholar
  28. Fischer E (1894) Einfluss der konfiguration auf die wirkung der enzyme. Ber Chem Ges 27:2985–2993CrossRefGoogle Scholar
  29. Fogarty WM (ed) (1983) Microbial amylases. Microbial enzymes and biotechnology. Appl Science Publishers, London, pp 1–92Google Scholar
  30. Frandsen TP, Dupont C, Lehmbeck J, Stoffer B, Sierks MR, Honzatko RB, Svensson B (1994) Site-directed mutagenesis of the catalytic base Glutamic acid 400 in glucoamylase from Aspergillus niger and of Tyrosine 48 and Glutamine 401, both hydrogen bonded to the gamma-carboxylate group of Glutamic acid 400. Biochemistry 33:13808–13816PubMedCrossRefGoogle Scholar
  31. Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Srasser AWM (1991) Heterologus gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295PubMedCrossRefGoogle Scholar
  32. Ghosh A, Chatterjee BS, Das A (1990) Characterization of glucoamylase from Aspergillus terreus 4. FEMS Microbial Lett 66:345–349CrossRefGoogle Scholar
  33. Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Dobye TW (1987) Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicins A1, A2 and A1b. J Am Chem Soc 109:3461–3464CrossRefGoogle Scholar
  34. Gomes DCF, Alegrio LV, Leon LL, de Lima MEF (2002) Total synthesis and anti-leishmanial activity of some curcumin analogues. Arzneim-Forsch 52:695–698Google Scholar
  35. Gunata Z, Vallier MJ, Sapis JC, Baumes R, Bayonove C (1994) Enzymic synthesis of monoterpeny β-D-glucosides by various β-glucosidases. Enzyme Microb Technol 16:1055–1058CrossRefGoogle Scholar
  36. Gygax D, Spies P, Winkler T, Pfaar U (1991) Enzymatic synthesis of β-D-glucuronides with in situ regeneration of uridine 5’-diphosphoglucuronic acid. Tetrahedron 47:5119–5122CrossRefGoogle Scholar
  37. Haasum I, Ericksen SH, Jensen B, Olsen J (1991) Growth and glucoamylase production by the thermophilic fungus Thermophilus lanuginose in a synthetic medium. Appl Microbiol Biotechnol 34:656–660CrossRefGoogle Scholar
  38. Hamada H, Nishida K, Furuya T, Ishihara K, Nakajima N (2003) Preparation of a new pepper: chemoenzymatic synthesis of capsaicin oligosaccharide and 8-nordihydrocapsaicin. J Mol Catal B: Enzym 16:115–119CrossRefGoogle Scholar
  39. Harris EMS, Aleshin AE, Firsov LM, Honzatko RB (1993) Refined structure of the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var X100. Biochemistry 32:1618–1626PubMedCrossRefGoogle Scholar
  40. Hays WS, Vander Jagt DJ, Bose B, Serianni AS, Glew RH (1998) Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic β-glucosidase from guinea pig liver. J Biol Chem 273:34941–34948PubMedCrossRefGoogle Scholar
  41. He S, Withers SG (1997) Assignment of sweet almond β-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem 272:24864–24867PubMedCrossRefGoogle Scholar
  42. Hiromi K, Kawai M, Ono S (1966a) Kinetic studies on glucoamylase IV. Hydrolysis of isomaltose. J Biochem 59:476–480PubMedGoogle Scholar
  43. Hiromi K, Takahashi K, Hamazu Z, Ono S (1966b) Kinetic studies on glucoamylase III. The influence of pH on the rates of hydrolysis of maltose and panose. J Biochem 59:469–475PubMedGoogle Scholar
  44. Hiromi K, Nitta Y, Numata C, Ono S (1973) Subsite affinities if glucoamylase examination of the validity of the subsite theory. Biochem Biophys Acta 302:362–375PubMedCrossRefGoogle Scholar
  45. Hofmann RW, Swinny EE, Bloor SJ, Markham KR, Ryan KG, Campbell BD, Jordan BR, Fountain DW (2000) Responses of nine Trifolium repens L. populations to ultraviolet-B radiation. Differential flavonol glycoside accumulation and biomass production. Ann Bot 86:527–537CrossRefGoogle Scholar
  46. Hyun HH, Zeikus JG (1985) General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Appl Environ Microbiol 49:1168–1173PubMedGoogle Scholar
  47. Igarashi K (1977) The Koenigs-Knorr reaction. Adv Carbohydr Chem Biochem 34:243–283CrossRefGoogle Scholar
  48. Ikeda D, Umezawa S (1999) Aminoglycoside antibiotics. In: Ikan R (ed) Naturally occurring glycosides. Wiley, England, pp 1–42Google Scholar
  49. Ismail A, Linder M, Ghoul M (1999a) Optimization of butylgalactoside synthesis by β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol 25:208–213CrossRefGoogle Scholar
  50. Ismail A, Soultani S, Ghoul M (1999b) Enzymatic-catalyzed synthesis of alkylglycosides in monophasic and biphasic systems. I. The transglycosylation reaction. J Biotechnol 69:135–143CrossRefGoogle Scholar
  51. Itoh T, Sakata Y, Akada R, Nimi O, Yamshita I (1989) Construction and characterization of mutant glucoamylases from the yeast Saccharomycopsis fibuligera. Agric Biol Chem 53:3159–3168CrossRefGoogle Scholar
  52. IUBMB (1992) Enzyme nomenclature. Academic Press, San Diego, California, ISBN 0-12-227164-5Google Scholar
  53. Jacobson RH, Zhang X-J, DuBose RF, Matthews BW (1994) Three dimensional structure of β-galactosidase from E. Coli. Nature 369:761–766PubMedCrossRefGoogle Scholar
  54. Jacobson RH, Kuroki R, Weaver LH, Zhang X-J, Matthews BW (1995) In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates, vol 618. ACS Symposium Series, Washington, DC, pp 38–50CrossRefGoogle Scholar
  55. James JA, Lee BH (1995) Cultural conditions for production of glucoamylase from Lactobacillus amylovorus ATCC 33621. J Appl Bacteriol 79:499–505PubMedCrossRefGoogle Scholar
  56. Kaljuzhin OV, Shkalev MV (2000) Immunomodulator and pharmaceutical compositions with antitumor properties, and a food additive. Patent EP1038532 (CA 129 335732)Google Scholar
  57. Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, Mizukami H (2003) Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett 555:311–316PubMedCrossRefGoogle Scholar
  58. Kaper T, Lebbink JHG, Pouwels J, Kopp J, Schulz GE, Oost JV, Vos WM (2000) Comparative structural analysis and substrate specificity engineering of the hyperthermostable β-glucosidase CelB from Pyrococcus furious. Biochemistry 39:4963–4970PubMedCrossRefGoogle Scholar
  59. Katusumi K, Mikio F, Yoshiteru I, Hiroyuki A (2004) Simple synthesis of β-D-glycopyranosides using β-glycosidase from almonds. Chem Pharm Bull 52:270–275CrossRefGoogle Scholar
  60. Kengen SWM, Luesink EJ, Stams AJM, Zehnder AJB (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcucus furious. Eur J Biochem 213:305–312PubMedCrossRefGoogle Scholar
  61. Kleinman MJ, Wilkinson AE, Wright IP, Evans IH, Bevan EA (1988) Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem J 249:163–170PubMedGoogle Scholar
  62. Kohda H, Kasai R, Yamasaki K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15:981–983CrossRefGoogle Scholar
  63. Kojima M, Maruo S, Ohgi T, Ezure Y (1996) Enzymatic synthesis of 4-O-β-D-glactopyranosylmoranoline and 3-O-β-D-galactopyranosylmoranoline by using β-galactosidase from Bacillus circullans. Biosci Biotech Biochem 60:694–696CrossRefGoogle Scholar
  64. Kometani T, Tanimoto H, Nishimura T, Kanbara I, Okada S (1993a) Glucosylation of capsaicin by cell suspension cultures of Coffea arabica. Biosci Biotech Biochem 57:2192–2193CrossRefGoogle Scholar
  65. Kometani T, Tanimoto H, Nishimura T, Okada S (1993b) Glucosylation of vanillin by cultured plant cells. Biosci Biotech Biochem 57:1290–1293CrossRefGoogle Scholar
  66. Konstantinovic S, Predojevic J, Gojkovic S, Ratkovic Z, Mojsilovic B, Pavlovic V (2001) Synthesis of C7-C16 alkyl 2,3 dideoxy glucosides from glucose and fatty acids. Ind J Chem 40B:1242–1244Google Scholar
  67. Krause DR, Wood CJ, MacLean DJ (1991) Glucoamylase (exo-1,4-α-D-gluanohydrolase, E.C. 3.2.1.3) is the major starch-degrading enzyme secreted by the phytopathogenic fungus Colletotrichm gloeosporiodes. J Gen Microbiol 137:2463–2468CrossRefGoogle Scholar
  68. Kren V (2001) Chemical biology and biomedicine of glycosylated natural compounds. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience chemistry and chemical biology, vol 3. Springer, Berlin, pp 2471–2529CrossRefGoogle Scholar
  69. Kren V, Cvak L (1999) Ergot genus Claviceps, medicinal and aromatic plants-industrial profiles. Harwood Publ. Ltd., Amsterdam/LondonGoogle Scholar
  70. Kren V, Martinkova L (2001) Glycosides in medicine: the role of glycosidic residue in biological activity. Curr Med Chem 8:1313–1338CrossRefGoogle Scholar
  71. Laroute V, Willemot RM (1992) Glucoside synthesis by glucoamylase or β-glucosidase in organic solvents. Biotechnol Lett 14:169–174CrossRefGoogle Scholar
  72. Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, McGahren WJ, Borders DB (1987) Calichemicines, a novel family of antitumor antibiotics 2. Chemistry and structure of calichemicin, γI. J Am Chem Soc 109:3466–3468CrossRefGoogle Scholar
  73. Lehinger AL (1975) Sugars, storage polysaccharides and cell walls. In: Biochemistry. Worth Publishers Inc., New York, pp 249–276Google Scholar
  74. Ljunger G, Adlercreutz P, Mattiasson B (1994) Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water activity. Enzyme Microb Technol 16:751–755CrossRefGoogle Scholar
  75. Madsen T, Petersen G, Seiero C, Torslov J (1996) Biodegradability and aquatic toxicity of glycoside surfactants and a nonionic alcohol etherate. J Am Oil Chem Soc 73:929–933CrossRefGoogle Scholar
  76. Malek SAS, Hossain Z (1994) Purification and characterization of a thermostable glucoamylase from Myrothecium isolate. J Appl Bacteriol 76:210–215CrossRefGoogle Scholar
  77. Matsumura Y, Kasunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of taka amylase A. J Biochem 95:697–702Google Scholar
  78. Matsumura S, Imai K, Yoshikawa S, Kawada K, Uchibori T (1990) Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, manosides and galactosides. J Am Oil Chem Soc 67:996–1001CrossRefGoogle Scholar
  79. McCarter J, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892PubMedCrossRefGoogle Scholar
  80. Mohri K, Watanabe Y, Yoshida Y, Satoh M, Isobe K, Sugimoto N, Tsuda Y (2003) Synthesis of glycosylcurcuminoids. Chem Pharm Bull 51:1268–1272PubMedCrossRefGoogle Scholar
  81. Monsan PF, Paul F, Pelenc P, Bouler E (1996) Enzymatic production of α-butyl glucoside and its fatty acid esters. Ann NY Acad Sci 799:633–641CrossRefGoogle Scholar
  82. Mutua LN, Akoh CC (1993) Synthesis of alkyl glucoside fatty acid esters in non aqueous media by Candida sp. lipase. J Am Oil Chem Soc 70:43–46CrossRefGoogle Scholar
  83. Nakamura T, Komori C, Lee Y-Y, Hashimoto F, Yohara S, Nohara T, Ejima A (1996) Cytotoxic activities of solanum steroidal glycosides. Biol Pharm Bull 19:546–566Google Scholar
  84. Nakamura T, Toshima K, Matsumura S (2000) One-step synthesis of n-octyl β-D-xylotrioside, xylobioside and xyloside from xylan and n-octanol using acetone powder of Aureobasidium pullulans in supercritical fluids. Biotechnol Lett 22:1183–1189CrossRefGoogle Scholar
  85. Nilsson KGI (1987) A simple strategy for changing the regio selectivity of glycosidase catalyzed formation of disaccharides. Carbohydr Res 167:95–103PubMedCrossRefGoogle Scholar
  86. Ohinishi M (1990) Subsite structure of Rhizopus niveus glucoamylase, estimated with the binding parameters for maltooligosaccharides. Starch/Starke 42:311–313CrossRefGoogle Scholar
  87. Ohinishi H, Sakai H, Ohta T (1991) Purification and some properties of a glucoamylasse from Clostridium sp. G0005. Agric Biol Chem 55:1901–1902CrossRefGoogle Scholar
  88. Okada G, Unno T (1989) A glucodextranase accompanied by glucoamylase activity from Arthrobacter globiformis I 42. Agric Biol Chem 53:223–228CrossRefGoogle Scholar
  89. Ooi Y, Hashimoto T, Mitsuo N, Satoh T (1985) Enzymatic formation of β-galactosidase from Aspergillus oryzae and its application to the synthesis of chemically unstable cardiac glycosides. Chem Pharm Bull 33:1808–1814CrossRefGoogle Scholar
  90. Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T (1992) Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 31:827–831PubMedGoogle Scholar
  91. Panintrarux C, Adachi S, Araki Y, Kimura Y, Matsuno R (1995) Equilibrium yield of n-alkyl-β-D-glucoside through condensation of glucose and n-octanol by β-galactosidase in a biphasic system. Enzyme Microb Technol 17:32–40CrossRefGoogle Scholar
  92. Payen A, Persoz JF (1833) Mémoire sur la diastase, les principaux produits de ses reactions et leur applications aux arts industriels. Annales de chimie et de physique 53:73–92Google Scholar
  93. Post CB, Karplus M (1986) Does lusozyme follow the lusozyme pathway? An alternative based on dynamic structural and stereoelectronic considerations. J Am Chem Soc 108:1317–1319CrossRefGoogle Scholar
  94. Pretorius IS, Lambrechts MG, Marmur J (1991) The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus an overview. CRC Crit Rev Biochem Mol Biol 26:53–76CrossRefGoogle Scholar
  95. Pugh TA, Shah JC, Magee PT, Clancy MJ (1989) Characterization and localization of the sporulation glucoamylase from Saccharomyces cerevisiae. Biochem Biophys Acta 994:200–209PubMedCrossRefGoogle Scholar
  96. Rantwijk FV, Oosterom MW, Sheldon RA (1999) Glycosidase-catalyzed synthesis of alkyl glycosides. J Mol Catal B: Enzym 6:511–532CrossRefGoogle Scholar
  97. Rao VB, Sastri NVS, Rao PVS (1981) Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginose. Biochem J 193:379–385Google Scholar
  98. Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York, pp 64–68CrossRefGoogle Scholar
  99. Roitsch T, Lehle L (1989) Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast influence and site-directed mutagenesis around a sequon sequence. Eur J Biochem 181:525–529PubMedCrossRefGoogle Scholar
  100. Rubio E, Fernandez MA, Klibanov AM (1991) Effect of the solvent on enzyme regio selectivity. J Am Chem Soc 113:695–696CrossRefGoogle Scholar
  101. Saha BC, Zeikus JG (1989) Microbial glucoamylases biochemical and biotechnological features. Starch/Starke 41:57–64CrossRefGoogle Scholar
  102. Sakata I, Maruyama I, Kobayashi A, Yamamoto I (1998) Production of phenethyl alcohol glycoside. Jpn Kokai Tokkyo Konho, Japan Patent JP 10052297 (CA 128 229438)Google Scholar
  103. San-Aparicio J, Hermoso JA, Martinz-Ripoll M, Laquerica JL, Polaina J (1998) Crystal structure of β-glucosidase A from Bacillus polymyxa insights into the catalytic activity in family1 glycosyl hydrolases. J Mol Biol 275:491–502CrossRefGoogle Scholar
  104. Sato T, Takeuchi H, Takahashi K, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kino K, Kirimura K (2003) Selective α-glucosylation of eugenol by α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. J Biosci Bioeng 96:199–202PubMedGoogle Scholar
  105. Schmid B, Kotter I, Heide L (2001) Pharmacokinetics of salicin after oral administration of a standard willow bark extract. Eur J Clin Pharmacol 57:387–391PubMedCrossRefGoogle Scholar
  106. Shibata H, Sonoke S, Ochiai H, Nishihashi H, Yamada M (1991) Glucosylation of steviol and steviol glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiol 95:152–156PubMedCrossRefGoogle Scholar
  107. Shin HK, Kong JY, Lee JD, Lee TH (2000) Synthesis of hydroxy benzyl-α-glucosides by amyloglucosidase-catalysed transglycosylation. Biotechnol Lett 22:321–325CrossRefGoogle Scholar
  108. Shinoyama H, Kamiyama Y, Yasui T (1988) Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of Aspergillus niger β-xylosidase. Agric Biol Chem 52:2197–2202CrossRefGoogle Scholar
  109. Sierks MR, Ford C, Reilly PJ, Svensson B (1990) Catalytic mechanism of fungal glucoamylases as defined by mutagenesis of Asp 176, Glu179, and Glu180 in the enzyme from Aspergillus awamori. Protein Eng 3:193–198PubMedCrossRefGoogle Scholar
  110. Sills AM, Saunder ME, Stewart GG (1984) Isolation and characterization of the amylolytic system of Schwanniomyces castellii. J Inst Brew 90:311–316Google Scholar
  111. Sinnot ML (1990) Catalytic mechanism of glycosyl transfer. Chem Rev 90:1171–1202CrossRefGoogle Scholar
  112. Sivakumar R (2009) Enzymatic synthesis of selected phenolic and vitamin glycosides. PhD thesis, University of MysoreGoogle Scholar
  113. Soni BK, Kapp C, Goma G, Soucaille P (1992) Solvent production from starch effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium. Appl Microbiol Biotechnol 37:539–543CrossRefGoogle Scholar
  114. Specka U, Mayer F, Antranikian G (1991) Purification and properties of thermoactive glucoamylase from Clostridium thermosaccharolyticum. Appl Environ Microbiol 57:2317–2323PubMedGoogle Scholar
  115. Srivastava RAK (1984) Studies on extracellular and intracellular purified amylases from a thermophilic Bacillus stearothermophilus. Enzyme Microb Technol 6:422–426CrossRefGoogle Scholar
  116. Stevenson DE, Furneaux RH (1996) High yield synthesis of ethyl and 2-fluroethyl β-D-galactopyranosides using Streptococcus thermophilus β-galactosidase. Enzyme Microb Technol 18:513–518CrossRefGoogle Scholar
  117. Stevenson DE, Stanley RA, Furneaux RH (1993) Optimization of alkyl β-D-galactopyronoside synthesis from lactose using commercially available β-galactosidase. Biotechnol Bioeng 42:657–666PubMedCrossRefGoogle Scholar
  118. Stoffer B, Frandsen T, Busk P, Schneider P, Svendsen I, Svensson B (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 292:197–202PubMedGoogle Scholar
  119. Stoffer B, Aleshin AE, Firsov LM, Svensson B, Honzatko RB (1995) Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylases from Aspergillus awamori var. X100 to 2.2 Å resolution dual conformation for extended inhibitors bound to the active site of glucoamylases. FEBS Lett 358:57–61PubMedCrossRefGoogle Scholar
  120. Suzuki Y, Suzuki K (1991) Enzymatic formation of 4 G-α-D-glucopyranosyl rutin. Agric Biol Chem 55:181–187PubMedCrossRefGoogle Scholar
  121. Suzuki Y, Uchida K (1994) Enzymatic formation of a new derivative of thiamin, β-galactosylthiamin. Biosci Biotech Biochem 58:1273–1276CrossRefGoogle Scholar
  122. Svensson B, Larsen K, Svendsen I, Boel E (1983) The complete amino acid sequence of the glycoprotein glucoamylase G1 from Aspergillus niger. Carlsberg Res Commun 48:529–544CrossRefGoogle Scholar
  123. Svensson B, Clarke AJ, Svendsen I, Moller H (1990) Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in the catalysis and substrate binding. Eur J Biochem 18:29–38CrossRefGoogle Scholar
  124. Takahashi T, Kato K, Ikegami Y, Irie M (1985) Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem 98:663–671PubMedGoogle Scholar
  125. Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem 50:965–969CrossRefGoogle Scholar
  126. Tapavicza SV, Bell D, Kopp-Holtwiesche B (2000) Plant growth enhancement against phytopathogenic fungi and/or soil borne pests. Patent WO 451 (CA 132 60488)Google Scholar
  127. Taylor PM, Napier EJ, Fleming ID (1978) Some properties of a glucoamylase produced by the thermophilic fungus Humicola lanuginose. Carbohydr Res 16:301–308Google Scholar
  128. Trincone A, Pagnotta E, Giordano A, Perugino G, Rossi M, Moracci M (2003) Enzymatic synthesis of 2-deoxyglycosides using the β-glycosidase of the archaeon Sulfolobus solfataricus. Biocatal Biotransform 21:17–24CrossRefGoogle Scholar
  129. Uchida K, Suzuki Y (1998) Enzymatic synthesis of a new derivative of thiamin, O-α-glucosylthiamin. Biosci Biotech Biochem 62(2):221–224CrossRefGoogle Scholar
  130. Verdoucq L, Czjzek M, Moriniere J, Beven DR, Esen A (2003) Mutational and structural analysis of aglycone specificity in maize and sorghum β-glucosidase. J Biol Chem 278:25055–25062PubMedCrossRefGoogle Scholar
  131. Vic G, Crout DHG (1995) Synthesis of allyl and benzyl β-D-glucopyranosides and allyl β-D-galactopyranoside from D-glucose or D-galactose and the corresponding alcohol using almond β-D-glucosidase. Carbohydr Res 279:315–319CrossRefGoogle Scholar
  132. Vic G, Thomas D (1992) Enzyme-catalyzed synthesis of alkyl-β-D-glucosides in organic media. Tetrahedron Lett 33:4567–4570CrossRefGoogle Scholar
  133. Vic G, Biton J, Beller DL, Michel JM, Thomas D (1995) Enzymatic glycosylation of hydrolytic alcohols in organic medium by the reverse hydrolysis reaction using almond β-D-glucosidase. Biotechnol Bioeng 46:109–116PubMedCrossRefGoogle Scholar
  134. Vic G, Thomas D, Crout DHG (1997) Solvent effect on enzyme-catalyzed synthesis of β-D-glucosides using the reverse hydrolysis method application to the preparative-scale synthesis of 2-hydroxybenzyl and octyl β-D-glucopyronosides. Enzyme Microb Technol 20:597–603CrossRefGoogle Scholar
  135. Vijayakumar GR (2007) Enzymatic synthesis of selected glycosides. PhD thesis, University of MysoreGoogle Scholar
  136. Voorhorst WGB, Eggen RIK, Luesink EJ, De Vos WM (1995) Characterization of the Cel B gene coding for β-glucosidase from the hyperthermophilic archean Pyroccus furiosus and its expression and site directed mutation in Escherichia coli. J Bacteriol 177:7105–7111PubMedGoogle Scholar
  137. Vulfson EN, Patel R, Beecher JE, Andrews AT, Law BA (1990) Glycosidases in organic solvents I. Alkyl-β-glucoside synthesis in a water-organic two-phase system. Enzyme Microb Technol 12:950–954CrossRefGoogle Scholar
  138. Williamson G, Belshaw NJ, Williamson MP (1992) O-Glycosylation in Aspergillus glucoamylase. Confirmation and role in binding. Biochem J 282:423–428PubMedGoogle Scholar
  139. Withers SG, Street IP (1988) Identification of a covalent α-D-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J Am Chem Soc 110:8551–8553CrossRefGoogle Scholar
  140. Withers GG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Abersold R (1990) Unequivocal demonstration of the involvement in the mechanism of a retaining glycosidase. J Am Chem Soc 112:5887–5889CrossRefGoogle Scholar
  141. Yoon SH, Fulton DB, Robyt JF (2004) Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydr Res 339:1517–1529PubMedCrossRefGoogle Scholar
  142. Yu RC, Hang YD (1991) Purification and characterization of a glucoamylase from Rhizopus oryzae. Food Chem 40:301–308CrossRefGoogle Scholar
  143. Zechel DL, Withers SG (2001) Dissection of nucleophilic and acid–base catalysis in glycosidases. Curr Opin Chem Biol 5:643–649PubMedCrossRefGoogle Scholar
  144. Zhou JH (2000) Herbal sweetening and preservative composition comprising licorice extract and mogrosides obtained from plants belonging to cucurbitaceae and/or momordica. Patent US 6103240 (CA 133 168393)Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Central Food Technological Research InstituteMysoreIndia

Personalised recommendations