Skip to main content

Glycosidases

  • Chapter
  • First Online:
Enzymatic Transformation

Abstract

Glycosidases catalyse transformations leading to the attachment of carbohydrate molecules to aglycons. Hence, a detailed description of glycosidases is made in this chapter which includes their classification, nature, source, structural features, mechanism of glycosylation and advantages of such reactions. Also mentioned are examples of glycosylation reactions involving a wide variety of aglycons with different carbohydrate molecules in the form of a table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aga H, Yoneyama M, Sakai S, Yamamoto I (1990) Synthesis of 2-O-α-D-glucopyranosyl L-ascorbic acid by cyclomaltodextrin glucotransferase from Bacillus stearothermophilus. Agric Biol Chem 55:1751–1756

    Article  Google Scholar 

  • Akao T, Yoshino T, Kobashi K, Hatlori M (2002) Evaluation of salicin as an antipyretic prodrug that does not cause gastric injury. Planta Med 68:714–718

    Article  PubMed  CAS  Google Scholar 

  • Aleshin AE, Firsov LM, Honzatko RB (1994) Refined structure for the complex of acarbose with glucoamylases from Aspergillus awamori var. X100 to 2.4 Ã… resolution. J Biol Chem 269:15631–15639

    PubMed  CAS  Google Scholar 

  • Ali S, Hossain Z (1991) Characteristics of glucoamylase from Aspergillus terreus. J Appl Bacteriol 71:144–146

    Article  CAS  Google Scholar 

  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Rhizopus raw-starch-degrading glucoamylase Its cloning and expression in yeast. Agric Biol Chem 50:957–964

    Article  CAS  Google Scholar 

  • Auge C, Fernandez RF, Gautheron CM (1990) The use of immobilized glycosyltransferases in the synthesis of sialyl oligosaccharides. Carbohydr Res 200:257–268

    Article  PubMed  CAS  Google Scholar 

  • Balzar D (1991) Alkylglucosides, their physico-chemical properties and their uses. Tenside Surf Det 28:419–427

    Google Scholar 

  • Bender H (1981) A bacterial glucoamylase degrading cyclodextrins. Eur J Biochem 115:287–291

    Article  PubMed  CAS  Google Scholar 

  • Berfoldo C, Anthranikian G (2001) Amylolytic enzymes from hyperthermophiles. Methods Enzymol 330:269–289

    Article  Google Scholar 

  • Braun H, Cogoli A, Semenza G (1977) Carboxyl groups at the two active centers of sucrose-isomaltoase from rabbit small intestine. Eur J Biochem 73:437–442

    Article  PubMed  CAS  Google Scholar 

  • Busch P, Hensen H, Khare J, Tesmann H (1994) Alkylpolyglycosides-a new cosmetic concept for milderness. Agro-Food-Ind Hi-Tech 5:20–28

    CAS  Google Scholar 

  • Chaga G, Porath J, Illeni T (1993) Isolation and purification of amyloglucosidase from Halobacterium sodomenase. Biomed Chromatogr 7:256–261

    Article  PubMed  CAS  Google Scholar 

  • Chahid Z, Montet D, Pina M, Graille J (1992) Effect of water activity on enzymatic synthesis of alkylglycosides. Biotechnol Lett 14(4):281–284

    Article  CAS  Google Scholar 

  • Chahid Z, Montet D, Pina M, Bonnot F, Graille J (1994) Biocatalyzed octylglycoside synthesis from a disaccharide. Biotechnol Lett 16:795–800

    Article  CAS  Google Scholar 

  • Chiba S (1995) In: The Amylase Research Society of Japan (ed) Enzyme chemistry and molecular biology of amylase and related enzymes. CRC Press, Boca Raton/Ann arbor/London/Tokyo, pp 68–82

    Google Scholar 

  • Chiba S (1997) Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotech Biochem 61:1233–1239

    Article  CAS  Google Scholar 

  • Chojecki A, Blaschek HP (1986) Effect of carbohydrate source on alpha-amylase and glucoamylase formation by Clostridium acetobutylicum SA-1. Ind Microbiol 1:63–67

    Article  CAS  Google Scholar 

  • Clarks AJ, Svensson B (1984) Identification of an essential tryptophanyl residue in the primary structure of glucoamylase G2 from Aspergillus niger. Carlesberg Res Commun 49:559–566

    Article  Google Scholar 

  • Crout DHG, Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharides synthesis. Biocatal Biotransform 2:98–111

    CAS  Google Scholar 

  • Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A (2001) The mechanism of substrate (aglcone) specificity in β-glucosidase –DIMBOA, – DIMBOA Glc and –dhurrin complexes. Proc Natl Acad Sci USA 97:13555–13560

    Article  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  PubMed  CAS  Google Scholar 

  • Donho M, Kimura T, Hara H (1996) Methods of producing geranyl β-D-galactopyranoside as flavoring material by enzymatic galactosylation of citronellol. Jpn Kokai Tokkyo Konho JP 8188589–8188591 (CA 125 222344)

    Google Scholar 

  • Ducret A, Carriere JF, Trani M, Lortie R (2002) Enzymatic synthesis of octyl glucoside catalysed by almond β-glucosidase in organic media. Can J Chem 80:653–656

    Article  CAS  Google Scholar 

  • Ermer J, Rose K, Huber G, Schhellenenberger A (1993) Subsite affinities of Aspergillus niger glucoamylase II determined with p-nitophenylmaltooligosaccharides. Biol Chem Hoppe Seyler 374:123–128

    Article  PubMed  CAS  Google Scholar 

  • Ernst B, Hart GW, Sinay P (2000) Carbohydrates in chemistry and biology, vol 1. Willey-VCH, Weinheim, pp 177–193

    Book  Google Scholar 

  • Eveleigh DE, Perlin AS (1969) A proton magnetic resonance study of the anomeric species produced by D-glucosidases. Carbohydr Res 10:87–95

    Article  CAS  Google Scholar 

  • Fagerstrom R (1991) Subsite mapping of Hormoconis resinae glucoamylase and their inhibition by gluconolactone. J Gen Microbiol 137:1001–1008

    Article  CAS  Google Scholar 

  • Fischer E (1894) Einfluss der konfiguration auf die wirkung der enzyme. Ber Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  • Fogarty WM (ed) (1983) Microbial amylases. Microbial enzymes and biotechnology. Appl Science Publishers, London, pp 1–92

    Google Scholar 

  • Frandsen TP, Dupont C, Lehmbeck J, Stoffer B, Sierks MR, Honzatko RB, Svensson B (1994) Site-directed mutagenesis of the catalytic base Glutamic acid 400 in glucoamylase from Aspergillus niger and of Tyrosine 48 and Glutamine 401, both hydrogen bonded to the gamma-carboxylate group of Glutamic acid 400. Biochemistry 33:13808–13816

    Article  PubMed  CAS  Google Scholar 

  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Srasser AWM (1991) Heterologus gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Chatterjee BS, Das A (1990) Characterization of glucoamylase from Aspergillus terreus 4. FEMS Microbial Lett 66:345–349

    Article  Google Scholar 

  • Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Dobye TW (1987) Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicins A1, A2 and A1b. J Am Chem Soc 109:3461–3464

    Article  CAS  Google Scholar 

  • Gomes DCF, Alegrio LV, Leon LL, de Lima MEF (2002) Total synthesis and anti-leishmanial activity of some curcumin analogues. Arzneim-Forsch 52:695–698

    Google Scholar 

  • Gunata Z, Vallier MJ, Sapis JC, Baumes R, Bayonove C (1994) Enzymic synthesis of monoterpeny β-D-glucosides by various β-glucosidases. Enzyme Microb Technol 16:1055–1058

    Article  CAS  Google Scholar 

  • Gygax D, Spies P, Winkler T, Pfaar U (1991) Enzymatic synthesis of β-D-glucuronides with in situ regeneration of uridine 5’-diphosphoglucuronic acid. Tetrahedron 47:5119–5122

    Article  CAS  Google Scholar 

  • Haasum I, Ericksen SH, Jensen B, Olsen J (1991) Growth and glucoamylase production by the thermophilic fungus Thermophilus lanuginose in a synthetic medium. Appl Microbiol Biotechnol 34:656–660

    Article  CAS  Google Scholar 

  • Hamada H, Nishida K, Furuya T, Ishihara K, Nakajima N (2003) Preparation of a new pepper: chemoenzymatic synthesis of capsaicin oligosaccharide and 8-nordihydrocapsaicin. J Mol Catal B: Enzym 16:115–119

    Article  Google Scholar 

  • Harris EMS, Aleshin AE, Firsov LM, Honzatko RB (1993) Refined structure of the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var X100. Biochemistry 32:1618–1626

    Article  PubMed  CAS  Google Scholar 

  • Hays WS, Vander Jagt DJ, Bose B, Serianni AS, Glew RH (1998) Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic β-glucosidase from guinea pig liver. J Biol Chem 273:34941–34948

    Article  PubMed  CAS  Google Scholar 

  • He S, Withers SG (1997) Assignment of sweet almond β-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem 272:24864–24867

    Article  PubMed  CAS  Google Scholar 

  • Hiromi K, Kawai M, Ono S (1966a) Kinetic studies on glucoamylase IV. Hydrolysis of isomaltose. J Biochem 59:476–480

    PubMed  CAS  Google Scholar 

  • Hiromi K, Takahashi K, Hamazu Z, Ono S (1966b) Kinetic studies on glucoamylase III. The influence of pH on the rates of hydrolysis of maltose and panose. J Biochem 59:469–475

    PubMed  CAS  Google Scholar 

  • Hiromi K, Nitta Y, Numata C, Ono S (1973) Subsite affinities if glucoamylase examination of the validity of the subsite theory. Biochem Biophys Acta 302:362–375

    Article  PubMed  CAS  Google Scholar 

  • Hofmann RW, Swinny EE, Bloor SJ, Markham KR, Ryan KG, Campbell BD, Jordan BR, Fountain DW (2000) Responses of nine Trifolium repens L. populations to ultraviolet-B radiation. Differential flavonol glycoside accumulation and biomass production. Ann Bot 86:527–537

    Article  CAS  Google Scholar 

  • Hyun HH, Zeikus JG (1985) General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Appl Environ Microbiol 49:1168–1173

    PubMed  CAS  Google Scholar 

  • Igarashi K (1977) The Koenigs-Knorr reaction. Adv Carbohydr Chem Biochem 34:243–283

    Article  CAS  Google Scholar 

  • Ikeda D, Umezawa S (1999) Aminoglycoside antibiotics. In: Ikan R (ed) Naturally occurring glycosides. Wiley, England, pp 1–42

    Google Scholar 

  • Ismail A, Linder M, Ghoul M (1999a) Optimization of butylgalactoside synthesis by β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol 25:208–213

    Article  CAS  Google Scholar 

  • Ismail A, Soultani S, Ghoul M (1999b) Enzymatic-catalyzed synthesis of alkylglycosides in monophasic and biphasic systems. I. The transglycosylation reaction. J Biotechnol 69:135–143

    Article  CAS  Google Scholar 

  • Itoh T, Sakata Y, Akada R, Nimi O, Yamshita I (1989) Construction and characterization of mutant glucoamylases from the yeast Saccharomycopsis fibuligera. Agric Biol Chem 53:3159–3168

    Article  CAS  Google Scholar 

  • IUBMB (1992) Enzyme nomenclature. Academic Press, San Diego, California, ISBN 0-12-227164-5

    Google Scholar 

  • Jacobson RH, Zhang X-J, DuBose RF, Matthews BW (1994) Three dimensional structure of β-galactosidase from E. Coli. Nature 369:761–766

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RH, Kuroki R, Weaver LH, Zhang X-J, Matthews BW (1995) In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates, vol 618. ACS Symposium Series, Washington, DC, pp 38–50

    Chapter  Google Scholar 

  • James JA, Lee BH (1995) Cultural conditions for production of glucoamylase from Lactobacillus amylovorus ATCC 33621. J Appl Bacteriol 79:499–505

    Article  PubMed  CAS  Google Scholar 

  • Kaljuzhin OV, Shkalev MV (2000) Immunomodulator and pharmaceutical compositions with antitumor properties, and a food additive. Patent EP1038532 (CA 129 335732)

    Google Scholar 

  • Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, Mizukami H (2003) Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett 555:311–316

    Article  PubMed  CAS  Google Scholar 

  • Kaper T, Lebbink JHG, Pouwels J, Kopp J, Schulz GE, Oost JV, Vos WM (2000) Comparative structural analysis and substrate specificity engineering of the hyperthermostable β-glucosidase CelB from Pyrococcus furious. Biochemistry 39:4963–4970

    Article  PubMed  CAS  Google Scholar 

  • Katusumi K, Mikio F, Yoshiteru I, Hiroyuki A (2004) Simple synthesis of β-D-glycopyranosides using β-glycosidase from almonds. Chem Pharm Bull 52:270–275

    Article  Google Scholar 

  • Kengen SWM, Luesink EJ, Stams AJM, Zehnder AJB (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcucus furious. Eur J Biochem 213:305–312

    Article  PubMed  CAS  Google Scholar 

  • Kleinman MJ, Wilkinson AE, Wright IP, Evans IH, Bevan EA (1988) Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem J 249:163–170

    PubMed  CAS  Google Scholar 

  • Kohda H, Kasai R, Yamasaki K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15:981–983

    Article  CAS  Google Scholar 

  • Kojima M, Maruo S, Ohgi T, Ezure Y (1996) Enzymatic synthesis of 4-O-β-D-glactopyranosylmoranoline and 3-O-β-D-galactopyranosylmoranoline by using β-galactosidase from Bacillus circullans. Biosci Biotech Biochem 60:694–696

    Article  CAS  Google Scholar 

  • Kometani T, Tanimoto H, Nishimura T, Kanbara I, Okada S (1993a) Glucosylation of capsaicin by cell suspension cultures of Coffea arabica. Biosci Biotech Biochem 57:2192–2193

    Article  CAS  Google Scholar 

  • Kometani T, Tanimoto H, Nishimura T, Okada S (1993b) Glucosylation of vanillin by cultured plant cells. Biosci Biotech Biochem 57:1290–1293

    Article  CAS  Google Scholar 

  • Konstantinovic S, Predojevic J, Gojkovic S, Ratkovic Z, Mojsilovic B, Pavlovic V (2001) Synthesis of C7-C16 alkyl 2,3 dideoxy glucosides from glucose and fatty acids. Ind J Chem 40B:1242–1244

    CAS  Google Scholar 

  • Krause DR, Wood CJ, MacLean DJ (1991) Glucoamylase (exo-1,4-α-D-gluanohydrolase, E.C. 3.2.1.3) is the major starch-degrading enzyme secreted by the phytopathogenic fungus Colletotrichm gloeosporiodes. J Gen Microbiol 137:2463–2468

    Article  CAS  Google Scholar 

  • Kren V (2001) Chemical biology and biomedicine of glycosylated natural compounds. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience chemistry and chemical biology, vol 3. Springer, Berlin, pp 2471–2529

    Chapter  Google Scholar 

  • Kren V, Cvak L (1999) Ergot genus Claviceps, medicinal and aromatic plants-industrial profiles. Harwood Publ. Ltd., Amsterdam/London

    Google Scholar 

  • Kren V, Martinkova L (2001) Glycosides in medicine: the role of glycosidic residue in biological activity. Curr Med Chem 8:1313–1338

    Article  Google Scholar 

  • Laroute V, Willemot RM (1992) Glucoside synthesis by glucoamylase or β-glucosidase in organic solvents. Biotechnol Lett 14:169–174

    Article  CAS  Google Scholar 

  • Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, McGahren WJ, Borders DB (1987) Calichemicines, a novel family of antitumor antibiotics 2. Chemistry and structure of calichemicin, γI. J Am Chem Soc 109:3466–3468

    Article  CAS  Google Scholar 

  • Lehinger AL (1975) Sugars, storage polysaccharides and cell walls. In: Biochemistry. Worth Publishers Inc., New York, pp 249–276

    Google Scholar 

  • Ljunger G, Adlercreutz P, Mattiasson B (1994) Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water activity. Enzyme Microb Technol 16:751–755

    Article  CAS  Google Scholar 

  • Madsen T, Petersen G, Seiero C, Torslov J (1996) Biodegradability and aquatic toxicity of glycoside surfactants and a nonionic alcohol etherate. J Am Oil Chem Soc 73:929–933

    Article  CAS  Google Scholar 

  • Malek SAS, Hossain Z (1994) Purification and characterization of a thermostable glucoamylase from Myrothecium isolate. J Appl Bacteriol 76:210–215

    Article  Google Scholar 

  • Matsumura Y, Kasunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of taka amylase A. J Biochem 95:697–702

    Google Scholar 

  • Matsumura S, Imai K, Yoshikawa S, Kawada K, Uchibori T (1990) Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, manosides and galactosides. J Am Oil Chem Soc 67:996–1001

    Article  CAS  Google Scholar 

  • McCarter J, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  PubMed  CAS  Google Scholar 

  • Mohri K, Watanabe Y, Yoshida Y, Satoh M, Isobe K, Sugimoto N, Tsuda Y (2003) Synthesis of glycosylcurcuminoids. Chem Pharm Bull 51:1268–1272

    Article  PubMed  CAS  Google Scholar 

  • Monsan PF, Paul F, Pelenc P, Bouler E (1996) Enzymatic production of α-butyl glucoside and its fatty acid esters. Ann NY Acad Sci 799:633–641

    Article  CAS  Google Scholar 

  • Mutua LN, Akoh CC (1993) Synthesis of alkyl glucoside fatty acid esters in non aqueous media by Candida sp. lipase. J Am Oil Chem Soc 70:43–46

    Article  CAS  Google Scholar 

  • Nakamura T, Komori C, Lee Y-Y, Hashimoto F, Yohara S, Nohara T, Ejima A (1996) Cytotoxic activities of solanum steroidal glycosides. Biol Pharm Bull 19:546–566

    Google Scholar 

  • Nakamura T, Toshima K, Matsumura S (2000) One-step synthesis of n-octyl β-D-xylotrioside, xylobioside and xyloside from xylan and n-octanol using acetone powder of Aureobasidium pullulans in supercritical fluids. Biotechnol Lett 22:1183–1189

    Article  CAS  Google Scholar 

  • Nilsson KGI (1987) A simple strategy for changing the regio selectivity of glycosidase catalyzed formation of disaccharides. Carbohydr Res 167:95–103

    Article  PubMed  CAS  Google Scholar 

  • Ohinishi M (1990) Subsite structure of Rhizopus niveus glucoamylase, estimated with the binding parameters for maltooligosaccharides. Starch/Starke 42:311–313

    Article  Google Scholar 

  • Ohinishi H, Sakai H, Ohta T (1991) Purification and some properties of a glucoamylasse from Clostridium sp. G0005. Agric Biol Chem 55:1901–1902

    Article  Google Scholar 

  • Okada G, Unno T (1989) A glucodextranase accompanied by glucoamylase activity from Arthrobacter globiformis I 42. Agric Biol Chem 53:223–228

    Article  CAS  Google Scholar 

  • Ooi Y, Hashimoto T, Mitsuo N, Satoh T (1985) Enzymatic formation of β-galactosidase from Aspergillus oryzae and its application to the synthesis of chemically unstable cardiac glycosides. Chem Pharm Bull 33:1808–1814

    Article  CAS  Google Scholar 

  • Orihara Y, Furuya T, Hashimoto N, Deguchi Y, Tokoro K, Kanisawa T (1992) Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 31:827–831

    PubMed  CAS  Google Scholar 

  • Panintrarux C, Adachi S, Araki Y, Kimura Y, Matsuno R (1995) Equilibrium yield of n-alkyl-β-D-glucoside through condensation of glucose and n-octanol by β-galactosidase in a biphasic system. Enzyme Microb Technol 17:32–40

    Article  CAS  Google Scholar 

  • Payen A, Persoz JF (1833) Mémoire sur la diastase, les principaux produits de ses reactions et leur applications aux arts industriels. Annales de chimie et de physique 53:73–92

    Google Scholar 

  • Post CB, Karplus M (1986) Does lusozyme follow the lusozyme pathway? An alternative based on dynamic structural and stereoelectronic considerations. J Am Chem Soc 108:1317–1319

    Article  CAS  Google Scholar 

  • Pretorius IS, Lambrechts MG, Marmur J (1991) The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus an overview. CRC Crit Rev Biochem Mol Biol 26:53–76

    Article  CAS  Google Scholar 

  • Pugh TA, Shah JC, Magee PT, Clancy MJ (1989) Characterization and localization of the sporulation glucoamylase from Saccharomyces cerevisiae. Biochem Biophys Acta 994:200–209

    Article  PubMed  CAS  Google Scholar 

  • Rantwijk FV, Oosterom MW, Sheldon RA (1999) Glycosidase-catalyzed synthesis of alkyl glycosides. J Mol Catal B: Enzym 6:511–532

    Article  Google Scholar 

  • Rao VB, Sastri NVS, Rao PVS (1981) Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginose. Biochem J 193:379–385

    Google Scholar 

  • Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York, pp 64–68

    Book  Google Scholar 

  • Roitsch T, Lehle L (1989) Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast influence and site-directed mutagenesis around a sequon sequence. Eur J Biochem 181:525–529

    Article  PubMed  CAS  Google Scholar 

  • Rubio E, Fernandez MA, Klibanov AM (1991) Effect of the solvent on enzyme regio selectivity. J Am Chem Soc 113:695–696

    Article  CAS  Google Scholar 

  • Saha BC, Zeikus JG (1989) Microbial glucoamylases biochemical and biotechnological features. Starch/Starke 41:57–64

    Article  CAS  Google Scholar 

  • Sakata I, Maruyama I, Kobayashi A, Yamamoto I (1998) Production of phenethyl alcohol glycoside. Jpn Kokai Tokkyo Konho, Japan Patent JP 10052297 (CA 128 229438)

    Google Scholar 

  • San-Aparicio J, Hermoso JA, Martinz-Ripoll M, Laquerica JL, Polaina J (1998) Crystal structure of β-glucosidase A from Bacillus polymyxa insights into the catalytic activity in family1 glycosyl hydrolases. J Mol Biol 275:491–502

    Article  Google Scholar 

  • Sato T, Takeuchi H, Takahashi K, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kino K, Kirimura K (2003) Selective α-glucosylation of eugenol by α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. J Biosci Bioeng 96:199–202

    PubMed  CAS  Google Scholar 

  • Schmid B, Kotter I, Heide L (2001) Pharmacokinetics of salicin after oral administration of a standard willow bark extract. Eur J Clin Pharmacol 57:387–391

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Sonoke S, Ochiai H, Nishihashi H, Yamada M (1991) Glucosylation of steviol and steviol glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiol 95:152–156

    Article  PubMed  CAS  Google Scholar 

  • Shin HK, Kong JY, Lee JD, Lee TH (2000) Synthesis of hydroxy benzyl-α-glucosides by amyloglucosidase-catalysed transglycosylation. Biotechnol Lett 22:321–325

    Article  CAS  Google Scholar 

  • Shinoyama H, Kamiyama Y, Yasui T (1988) Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of Aspergillus niger β-xylosidase. Agric Biol Chem 52:2197–2202

    Article  CAS  Google Scholar 

  • Sierks MR, Ford C, Reilly PJ, Svensson B (1990) Catalytic mechanism of fungal glucoamylases as defined by mutagenesis of Asp 176, Glu179, and Glu180 in the enzyme from Aspergillus awamori. Protein Eng 3:193–198

    Article  PubMed  CAS  Google Scholar 

  • Sills AM, Saunder ME, Stewart GG (1984) Isolation and characterization of the amylolytic system of Schwanniomyces castellii. J Inst Brew 90:311–316

    CAS  Google Scholar 

  • Sinnot ML (1990) Catalytic mechanism of glycosyl transfer. Chem Rev 90:1171–1202

    Article  Google Scholar 

  • Sivakumar R (2009) Enzymatic synthesis of selected phenolic and vitamin glycosides. PhD thesis, University of Mysore

    Google Scholar 

  • Soni BK, Kapp C, Goma G, Soucaille P (1992) Solvent production from starch effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium. Appl Microbiol Biotechnol 37:539–543

    Article  CAS  Google Scholar 

  • Specka U, Mayer F, Antranikian G (1991) Purification and properties of thermoactive glucoamylase from Clostridium thermosaccharolyticum. Appl Environ Microbiol 57:2317–2323

    PubMed  CAS  Google Scholar 

  • Srivastava RAK (1984) Studies on extracellular and intracellular purified amylases from a thermophilic Bacillus stearothermophilus. Enzyme Microb Technol 6:422–426

    Article  CAS  Google Scholar 

  • Stevenson DE, Furneaux RH (1996) High yield synthesis of ethyl and 2-fluroethyl β-D-galactopyranosides using Streptococcus thermophilus β-galactosidase. Enzyme Microb Technol 18:513–518

    Article  CAS  Google Scholar 

  • Stevenson DE, Stanley RA, Furneaux RH (1993) Optimization of alkyl β-D-galactopyronoside synthesis from lactose using commercially available β-galactosidase. Biotechnol Bioeng 42:657–666

    Article  PubMed  CAS  Google Scholar 

  • Stoffer B, Frandsen T, Busk P, Schneider P, Svendsen I, Svensson B (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 292:197–202

    PubMed  CAS  Google Scholar 

  • Stoffer B, Aleshin AE, Firsov LM, Svensson B, Honzatko RB (1995) Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylases from Aspergillus awamori var. X100 to 2.2 Ã… resolution dual conformation for extended inhibitors bound to the active site of glucoamylases. FEBS Lett 358:57–61

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Suzuki K (1991) Enzymatic formation of 4 G-α-D-glucopyranosyl rutin. Agric Biol Chem 55:181–187

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Uchida K (1994) Enzymatic formation of a new derivative of thiamin, β-galactosylthiamin. Biosci Biotech Biochem 58:1273–1276

    Article  Google Scholar 

  • Svensson B, Larsen K, Svendsen I, Boel E (1983) The complete amino acid sequence of the glycoprotein glucoamylase G1 from Aspergillus niger. Carlsberg Res Commun 48:529–544

    Article  CAS  Google Scholar 

  • Svensson B, Clarke AJ, Svendsen I, Moller H (1990) Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in the catalysis and substrate binding. Eur J Biochem 18:29–38

    Article  Google Scholar 

  • Takahashi T, Kato K, Ikegami Y, Irie M (1985) Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem 98:663–671

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem 50:965–969

    Article  CAS  Google Scholar 

  • Tapavicza SV, Bell D, Kopp-Holtwiesche B (2000) Plant growth enhancement against phytopathogenic fungi and/or soil borne pests. Patent WO 451 (CA 132 60488)

    Google Scholar 

  • Taylor PM, Napier EJ, Fleming ID (1978) Some properties of a glucoamylase produced by the thermophilic fungus Humicola lanuginose. Carbohydr Res 16:301–308

    Google Scholar 

  • Trincone A, Pagnotta E, Giordano A, Perugino G, Rossi M, Moracci M (2003) Enzymatic synthesis of 2-deoxyglycosides using the β-glycosidase of the archaeon Sulfolobus solfataricus. Biocatal Biotransform 21:17–24

    Article  CAS  Google Scholar 

  • Uchida K, Suzuki Y (1998) Enzymatic synthesis of a new derivative of thiamin, O-α-glucosylthiamin. Biosci Biotech Biochem 62(2):221–224

    Article  CAS  Google Scholar 

  • Verdoucq L, Czjzek M, Moriniere J, Beven DR, Esen A (2003) Mutational and structural analysis of aglycone specificity in maize and sorghum β-glucosidase. J Biol Chem 278:25055–25062

    Article  PubMed  CAS  Google Scholar 

  • Vic G, Crout DHG (1995) Synthesis of allyl and benzyl β-D-glucopyranosides and allyl β-D-galactopyranoside from D-glucose or D-galactose and the corresponding alcohol using almond β-D-glucosidase. Carbohydr Res 279:315–319

    Article  CAS  Google Scholar 

  • Vic G, Thomas D (1992) Enzyme-catalyzed synthesis of alkyl-β-D-glucosides in organic media. Tetrahedron Lett 33:4567–4570

    Article  CAS  Google Scholar 

  • Vic G, Biton J, Beller DL, Michel JM, Thomas D (1995) Enzymatic glycosylation of hydrolytic alcohols in organic medium by the reverse hydrolysis reaction using almond β-D-glucosidase. Biotechnol Bioeng 46:109–116

    Article  PubMed  CAS  Google Scholar 

  • Vic G, Thomas D, Crout DHG (1997) Solvent effect on enzyme-catalyzed synthesis of β-D-glucosides using the reverse hydrolysis method application to the preparative-scale synthesis of 2-hydroxybenzyl and octyl β-D-glucopyronosides. Enzyme Microb Technol 20:597–603

    Article  CAS  Google Scholar 

  • Vijayakumar GR (2007) Enzymatic synthesis of selected glycosides. PhD thesis, University of Mysore

    Google Scholar 

  • Voorhorst WGB, Eggen RIK, Luesink EJ, De Vos WM (1995) Characterization of the Cel B gene coding for β-glucosidase from the hyperthermophilic archean Pyroccus furiosus and its expression and site directed mutation in Escherichia coli. J Bacteriol 177:7105–7111

    PubMed  CAS  Google Scholar 

  • Vulfson EN, Patel R, Beecher JE, Andrews AT, Law BA (1990) Glycosidases in organic solvents I. Alkyl-β-glucoside synthesis in a water-organic two-phase system. Enzyme Microb Technol 12:950–954

    Article  CAS  Google Scholar 

  • Williamson G, Belshaw NJ, Williamson MP (1992) O-Glycosylation in Aspergillus glucoamylase. Confirmation and role in binding. Biochem J 282:423–428

    PubMed  CAS  Google Scholar 

  • Withers SG, Street IP (1988) Identification of a covalent α-D-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J Am Chem Soc 110:8551–8553

    Article  CAS  Google Scholar 

  • Withers GG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Abersold R (1990) Unequivocal demonstration of the involvement in the mechanism of a retaining glycosidase. J Am Chem Soc 112:5887–5889

    Article  CAS  Google Scholar 

  • Yoon SH, Fulton DB, Robyt JF (2004) Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydr Res 339:1517–1529

    Article  PubMed  CAS  Google Scholar 

  • Yu RC, Hang YD (1991) Purification and characterization of a glucoamylase from Rhizopus oryzae. Food Chem 40:301–308

    Article  CAS  Google Scholar 

  • Zechel DL, Withers SG (2001) Dissection of nucleophilic and acid–base catalysis in glycosidases. Curr Opin Chem Biol 5:643–649

    Article  PubMed  CAS  Google Scholar 

  • Zhou JH (2000) Herbal sweetening and preservative composition comprising licorice extract and mogrosides obtained from plants belonging to cucurbitaceae and/or momordica. Patent US 6103240 (CA 133 168393)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundar Divakar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Divakar, S. (2013). Glycosidases. In: Enzymatic Transformation. Springer, India. https://doi.org/10.1007/978-81-322-0873-0_2

Download citation

Publish with us

Policies and ethics