Skip to main content

Breast Cancer Gene Therapy

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Breast cancer, one of the most common female malignancy around the world, is a major public health problem. It is estimated that 1 woman in 9 will develop breast cancer during her lifetime. Conventional therapies, such as radiotherapy, chemotherapy, and hormonal therapy, have become more efficient in recent years. However, even if response is relatively good to treatments for cancers detected and treated early, the prognosis remains poor for advanced cancers due to the presence of metastases. As alternative to these conventional therapies, gene therapy is increasingly designed as a treatment solution to treat different types of cancers, such as breast cancer, ovarian cancer, lung cancer, cervix cancer, etc. Gene therapy is to repair a defective gene by introducing a healthy gene having a sequence of genetic information (DNA or RNA) into a cell to modify the expression of specific genetic program of that cell. It permits to target the causes of a disease that it is due to the mutation of a single gene or a more complex disorder. However, this repair usually requires the use of a kind of Trojan horse, which will introduce a healthy gene into the genome of the mutant cell responsible for cancer. Defined in the broad sense, gene therapy includes immunogene therapy, suicide gene therapy, correction of tumor suppressor genes, as well as oncogenes and antiangiogenic gene therapy. At this time, since gene therapy is experimental and far from clinical application running, the current data do not allow to use this approach as a alternative treatment to conventional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cusack Jr JC, Tanabe KK. Introduction to cancer gene therapy. Surg Oncol Clin N Am. 2002;11:497–519.

    PubMed  Google Scholar 

  2. Bertram JS. The molecular biology of cancer. Mol Aspects Med. 2001;21:167–223.

    Google Scholar 

  3. Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet. 2003;33(Suppl):238–44.

    PubMed  CAS  Google Scholar 

  4. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of twenty-five major cancers in 1990. Intl J Cancer. 1999;80:827–41.

    CAS  Google Scholar 

  5. Muzavir RS, Zahra AS, Ahmad A. Gene therapy a promising treatment for breast cancer: current scenario in Pakistan. Sci Tech Dev. 2012;31:35–50.

    Google Scholar 

  6. Lynch HT, Bewtra C, Wells IC, Schuelke GS, Lynch JF. Hereditary ovarian cancer. In: Lynch HT, Kullander S, editors. Cancer genetics in women, vol. 1. 2nd ed. Boca Raton: CRC Press; 1987. p. 49–97.

    Google Scholar 

  7. Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med. 2003;5(348):2339–47.

    Google Scholar 

  8. Reilly R. Breast cancer. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier; 2007.

    Google Scholar 

  9. Mulligan RC. The basic science of gene therapy. Science. 1993;260(5110):926–32.

    PubMed  CAS  Google Scholar 

  10. McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001;1:130–41.

    PubMed  CAS  Google Scholar 

  11. Rubanyi GM. The future of human gene therapy. Mol Aspects Med. 2001;22:113–42.

    PubMed  CAS  Google Scholar 

  12. Leiden JM. Gene therapy–promise, pitfalls, and prognosis. N Engl J Med. 1995;333:871–3.

    PubMed  CAS  Google Scholar 

  13. Romano G, Pacilio C, Giordano A. Gene transfer technology in therapy: current applications and future goals. Stem Cells. 1999;17:191–202.

    PubMed  CAS  Google Scholar 

  14. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12:316–28.

    PubMed  CAS  Google Scholar 

  15. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9:361–77.

    PubMed  CAS  Google Scholar 

  16. Slos P, De Meyer M, Leroy P, Rousseau C, Acres B. Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: induction of CD8(+) T-cell immunity and NK activity. Cancer Gene Ther. 2001;8:321–32.

    PubMed  CAS  Google Scholar 

  17. Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, et al. Antitumor and antimetastatic activity of IL-23. J Immunol. 2003;171:600–7.

    PubMed  CAS  Google Scholar 

  18. Lichtor T, Glick RP, Lin H, O-Sullivan I, Cohen EP. Intratumoral injection of IL-secreting syngeneic/allogeneic fibroblasts transfected with DNA from breast cancer cells prolongs the survival of mice with intracerebral breast cancer. Cancer Gene Ther. 2005;12:708–14.

    PubMed  CAS  Google Scholar 

  19. Weichselbaum RR, Kufe D. Gene therapy of cancer. Lancet. 1997;349 Suppl 2:SII10–2.

    PubMed  Google Scholar 

  20. Strachnan T, Read AP, editors. Human molecular genetics. 3rd ed. New York: Garland Publishing; 2004.

    Google Scholar 

  21. Anderson WF. Human gene therapy. Nature. 1998;392(6679 Suppl):25–30.

    PubMed  CAS  Google Scholar 

  22. Jinturkar KA, Rathi MN, Misra A. Gene delivery using physical methods. In: Misra A, editor. Challenges in delivery of therapeutic genomics and proteomics. Amsterdam: Elsevier; 2011. p. 83–126.

    Google Scholar 

  23. Hatefi A, Canine BF. Perspectives in vector development for systemic cancer gene therapy. Gene Ther Mol Biol. 2009;13:15–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14:46–60.

    PubMed  CAS  Google Scholar 

  25. Liu FF. Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:505–15.

    PubMed  CAS  Google Scholar 

  26. Dolgin E. Gene therapies advance, but some see manufacturing challenges. Nat Med. 2012;18:1718–9.

    PubMed  CAS  Google Scholar 

  27. Abaan OG, Criss WE. Gene therapy in human breast cancer. Turk J Med Sci. 2002;32:283–91.

    CAS  Google Scholar 

  28. Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med. 2011;25:293–306.

    PubMed  PubMed Central  Google Scholar 

  29. Schlenk F, Grund S, Fischer D. Recent developments and perspectives on gene therapy using synthetic vectors. Ther Deliv. 2013;4:95–113.

    PubMed  CAS  Google Scholar 

  30. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agentsinto vehicles of therapeutics. Nat Med. 2001;7:33–40.

    PubMed  CAS  Google Scholar 

  31. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270:475–80.

    PubMed  CAS  Google Scholar 

  32. Nemunaitis J, Cunningham C. Emerging new therapies for chemotherapy-resistant cancer using adenoviral vectors. Drug Resist Updat. 2002;5:34–46.

    PubMed  CAS  Google Scholar 

  33. Harrington KJ, Bateman AR, Melcher AA, Ahmed A, Vile RG. Cancer gene therapy: Part 1. Vector development and regulation of gene expression. Clin Oncol (R Coll Radiol). 2002;14:3–16.

    Google Scholar 

  34. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998;80:35–47.

    PubMed  CAS  Google Scholar 

  35. Barquinero J, Eixarch H, Perez-Melgosa M. Retroviral vectors: new applications for an old tool. Gene Ther. 2004;11 Suppl 1:S3–9.

    PubMed  CAS  Google Scholar 

  36. Daniel R, Smith JA. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences. Hum Gene Ther. 2008;19:557–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Varmus H. Retroviruses. Science. 1998;240:1427–35.

    Google Scholar 

  38. Frakel AD, Young JA. HIV-1: fifteen proteins and a RNA. Annu Rev Biochem. 1998;67:1–25.

    Google Scholar 

  39. Amado R, Chen YS. Lentiviral vectors—the promise of gene therapy within reach? Science. 1999;285:674–6.

    PubMed  CAS  Google Scholar 

  40. Weiss RA. How does HIV cause AIDS? Science. 1993;260 Suppl 5112:1273–9.

    PubMed  CAS  Google Scholar 

  41. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994;68:510–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–7.

    PubMed  CAS  Google Scholar 

  43. Goldman M, Lee P, Yang J, Wilson J. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther. 1997;8:2261–8.

    PubMed  CAS  Google Scholar 

  44. Vigna E, Naldini L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med. 2000;2:308–16.

    PubMed  CAS  Google Scholar 

  45. Kovesdi I, Brough DE, Bruder JT, Wickham TJ. Adenoviral vectors for gene transfer. Curr Opin Biotechnol. 1997;8:583–9.

    PubMed  CAS  Google Scholar 

  46. Campos SK, Barry MA. Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther. 2007;7:189–204.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Yoshida T, Kondoh M, Ojima M, Mizuguchi H, Yamagishi Y, Sakamoto N, et al. Adenovirus vector-mediated assay system for hepatitis C virus replication. Nucleic Acids Res. 2011;39:e64.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Templeton NS. Gene and cell therapy: therapeutic mechanisms and strategies. 3rd ed. Boca Raton: CRC Press, Taylor & Francis Group; 2009.

    Google Scholar 

  49. Warnock JN, Daigre C, Al-Rubeai M. Introduction to viral vectors. In: Merten OW, Al-Rubeai M, editors. Viral vectors for gene therapy methods and protocols. Philadelphia: Springer Science + Business Media, LLC; 2011. p. 1–25.

    Google Scholar 

  50. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A. 1998;95:7866–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol. 2011;6:357–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Coura Rdos S, Nardi NB. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J. 2007;4:1–7.

    Google Scholar 

  53. Samulski RJ. Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin Genet Dev. 1993;3:74–80.

    PubMed  CAS  Google Scholar 

  54. Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15:817–22.

    PubMed  CAS  Google Scholar 

  55. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–9.

    PubMed  CAS  Google Scholar 

  56. Pathak A, Patnaik S, Gupta KC. Recent trends in non-viral vector-mediated gene delivery. Biotechnol J. 2009;4:1559–72.

    PubMed  CAS  Google Scholar 

  57. Davis HL, Demeneix BA, Quantin B, Coulombe J, Whalen RG. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther. 1993;4:733–40.

    PubMed  CAS  Google Scholar 

  58. Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science. 1993;261:209–11.

    PubMed  CAS  Google Scholar 

  59. Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J. 2007;9:E92–104.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.

    PubMed  CAS  Google Scholar 

  61. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, et al. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol. 1994;33:779–86.

    PubMed  CAS  Google Scholar 

  62. Lee MJ, Straubinger RM, Jusko WJ. Physicochemical, pharmacokinetic and pharmacodynamic evaluation of liposomal tacrolimus (FK 506) in rats. Pharm Res. 1995;12:1055–9.

    PubMed  CAS  Google Scholar 

  63. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA transfection procedure. Proc Natl Acad Sci U S A. 1987;84:7413–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, et al. Cationic liposomes for gene delivery. Expert Opin Drug Deliv. 2005;2:237–54.

    PubMed  Google Scholar 

  65. Stephan DJ, Yang ZY, San H, Simari RD, Wheeler CJ, Felgner PL, et al. A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Hum Gene Ther. 1996;7:1803–12.

    PubMed  CAS  Google Scholar 

  66. Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release. 2010;142:299–311.

    PubMed  CAS  Google Scholar 

  67. Lasic DD, Templeton NS. In: Templeton NS, Lasic DD, Basel M, editors. Bioorganic colloids. New York: Dekker Inc; 2000. p. 241–66.

    Google Scholar 

  68. Varkouhi AK, Lammers T, Schiffelers RM, van Steenbergen MJ, Hennink WE, Storm G. Gene silencing activity of siRNA polyplexes based on biodegradable polymers. Eur J Pharm Biopharm. 2011;77:450–7.

    PubMed  CAS  Google Scholar 

  69. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    PubMed  CAS  Google Scholar 

  70. Wiechec E. Implications of genomic instability in the diagnosis and treatment of breast cancer. Expert Rev Mol Diagn. 2011;11:445–53.

    PubMed  CAS  Google Scholar 

  71. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342(6250):705–8.

    PubMed  CAS  Google Scholar 

  72. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53.

    PubMed  CAS  Google Scholar 

  73. Coles C, Condie A, Chetty U, Steel CM, Evans HJ, Prosser J. p53 mutations in breast cancer. Cancer Res. 1992;52:5291–8.

    PubMed  CAS  Google Scholar 

  74. Puzio-Kuter AM. The role of p53 in metabolic regulation. Genes Cancer. 2011;2:85–91.

    Google Scholar 

  75. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.

    PubMed  CAS  Google Scholar 

  76. Lai D, Visser-Grieve S, Yang X. Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep. 2012;32:361–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. El-Aneed A. Current strategies in cancer gene therapy. Eur J Pharmacol. 2004;498(1–3):1–8.

    PubMed  CAS  Google Scholar 

  78. Cristofanilli M, Krishnamurthy S, Guerra L, Broglio K, Arun B, Booser DJ, et al. A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer: safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer. 2006;107:935–44.

    PubMed  CAS  Google Scholar 

  79. Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–55.

    PubMed  CAS  Google Scholar 

  80. Stoff-Khalili MA, Dall P, Curiel DT. Gene therapy for carcinoma of the breast. Cancer Gene Ther. 2006;13:633–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Kibler-Herzog L, Kell B, Zon G, Shinozuka K, Mizan S, Wilson WD. Sequence dependent effects in methylphosphonate deoxyribonucleotide double and triple helical complexes. Nucleic Acids Res. 1990;18:3545–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Helene C, Thuong NT, Harel-Bellan A. Control of gene expression by triple helix-forming oligonucleotides. The antigene strategy. Ann N Y Acad Sci. 1992;660:27–36.

    PubMed  CAS  Google Scholar 

  83. Holt JT, Arteaga CB, Robertson D, Moses HL. Gene therapy for the treatment of metastatic breast cancer by in vivo transduction with breast-targeted retroviral vector expressing antisense c-fos RNA. Hum Gene Ther. 1996;7:1367–80.

    PubMed  CAS  Google Scholar 

  84. Arteaga CL, Holt JT. Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice. Cancer Res. 1996;56:1098–103.

    PubMed  CAS  Google Scholar 

  85. Nass SJ, Dickson RB. Defining a role for c-Myc in breast tumorigenesis. Breast Cancer Res Treat. 1997;44:1–22.

    PubMed  CAS  Google Scholar 

  86. Chana JS, Grover R, Tulley P, Lohrer H, Sanders R, Grobbelaar AO, et al. The c-myc oncogene: use of a biological prognostic marker as a potential target for gene therapy in melanoma. Br J Plast Surg. 2002;55:623–7.

    PubMed  CAS  Google Scholar 

  87. Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001;3:385–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    PubMed  CAS  Google Scholar 

  89. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007;608:119–29.

    PubMed  CAS  Google Scholar 

  90. Yan DH, Chang LS, Hung MC. Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus E1a gene products. Oncogene. 1991;6:343–5.

    PubMed  CAS  Google Scholar 

  91. Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol. 2001;19:3422–33.

    PubMed  CAS  Google Scholar 

  92. Yoo GH, Hung MC, Lopez-Berestein G, LaFollette S, Ensley JF, Carey M, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res. 2001;7:1237–45.

    PubMed  CAS  Google Scholar 

  93. Suzuki T, Anderegg B, Ohkawa T, Irie A, Engebraaten O, Halks-Miller M, et al. Adenovirus-mediated ribozyme targeting of HER-2/neu inhibits in vivo growth of breast cancer cells. Gene Ther. 2000;7:241–8.

    PubMed  CAS  Google Scholar 

  94. Elion G. The biochemistry and mechanism of action of acyclovir. J Antimicrob Chemother. 1983;12(suppl B):9–17.

    PubMed  CAS  Google Scholar 

  95. Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K, et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol. 1999;17:2180–9.

    PubMed  CAS  Google Scholar 

  96. Braybrooke JP, Slade A, Deplanque G, Harrop R, Madhusudan S, Forster MD, et al. Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for with advanced breast cancer or melanoma. Clin Cancer Res. 2005;11:1512–20.

    PubMed  CAS  Google Scholar 

  97. Mhashilkar A, Chada S, Roth JA, Ramesh R. Gene therapy. Therapeutic approaches and implications. Biotechnol Adv. 2001;19:279–97.

    PubMed  CAS  Google Scholar 

  98. Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med. 2007;28:4–41.

    PubMed  CAS  Google Scholar 

  99. Freeman SM, Ramesh R, Marrogi AJ. Immune system in suicide gene therapy. Lancet. 1997;349:2–3.

    PubMed  CAS  Google Scholar 

  100. Lal S, Lauer UM, Niethammer D, Beck JF, Schlegel PG. Suicide genes: past, present and future perspectives. Immunol Today. 2000;21:48–54.

    PubMed  CAS  Google Scholar 

  101. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.

    PubMed  CAS  Google Scholar 

  102. Fan TPD, Jagger R, Bicknell R. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci. 1995;16:52–66.

    Google Scholar 

  103. Davidoff AM, Nathwani AC. Antiangiogenic gene therapy for cancer treatment. Curr Hematol Rep. 2004;3:267–73.

    PubMed  Google Scholar 

  104. Boehm-Viswanathan T. Why angiogenesis inhibition? Int J Mol Med. 1999;4:413–7.

    PubMed  CAS  Google Scholar 

  105. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 1999;59:3308–12.

    PubMed  CAS  Google Scholar 

  106. Oga M, Takenaga K, Sato Y, Nakajima H, Koshikawa N, Osato K. Inhibition of metastatic brain tumor growth by intramuscular administration of the endostatin gene. Int J Oncol. 2003;23:73–9.

    PubMed  CAS  Google Scholar 

  107. Sacco MG, Soldati S, Mira Cató E, Cattaneo L, Pratesi G, Scanziani E, et al. Combined effects on tumor growth and metastasis by anti-estrogenic and antiangiogenic therapies in MMTV-neu mice. Gene Ther. 2002;9:1338–41.

    PubMed  CAS  Google Scholar 

  108. Strong TV. Gene therapy for carcinoma of the breast: genetic immunotherapy. Breast Cancer Res. 2000;2:15–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Biagi E, Rousseau RF, Yvon E, Vigouroux S, Dotti G, Brenner MK. Cancer vaccines: dream, reality, or nightmare? Clin Exp Med. 2002;2:109–18.

    PubMed  CAS  Google Scholar 

  110. Stewart AK, Lassam NJ, Graham FL, Gauldie J, Addison CL, Bailey DJ, et al. A phase I study of adenovirus-mediated gene transfer of interleukin 2 cDNA into metastatic breast cancer or melanoma. Hum Gene Ther. 1997;8:1403–14.

    PubMed  CAS  Google Scholar 

  111. Dunphy FR, Spitzer G, Fornoff JE, Yau JC, Huan SD, Dicke KA, et al. Factors predicting long-term survival for metastatic breast cancer patients treated with high-dose chemotherapy and bone marrow support. Cancer. 1994;73:2157–67.

    PubMed  CAS  Google Scholar 

  112. Peters WP, Dansey RD, Klein JL, Baynes RD. High-dose chemotherapy and peripheral blood progenitor cell transplantation in the treatment of breast cancer. Oncologist. 2000;5:13.

    Google Scholar 

  113. Berry DA, Broadwater G, Klein JP, Antman K, Aisner J, Bitran J, et al. High-dose versus standard chemotherapy in metastatic breast cancer: comparison of Cancer and Leukemia Group B trials with data from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol. 2002;20:743–50.

    PubMed  CAS  Google Scholar 

  114. Chen KG, Sikic BI. Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res. 2012;18:1863–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Aksentijevich I, Cardarelli CO, Pastan I, Gottesman MM. Retroviral transfer of the human MDR1 gene confers resistance to bisantrene-specific hematotoxicity. Clin Cancer Res. 1996;2:973–80.

    PubMed  CAS  Google Scholar 

  116. Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol. 1998;16:165–72.

    PubMed  CAS  Google Scholar 

  117. Cowan KH, Moscow JA, Huang H, Zujewski JA, O’Shaughnessy J, Sorrentino B, et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res. 1999;5:1619–28.

    PubMed  CAS  Google Scholar 

  118. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science. 1992;257:99–103.

    PubMed  CAS  Google Scholar 

  119. Takahashi S, Ito Y, Hatake K, Sugimoto Y. Gene therapy for breast cancer. Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital. Breast Cancer. 2006;13(1):8–15.

    PubMed  Google Scholar 

  120. Maier P, Veldwijk MR, Wenz F. Radioprotective gene therapy. Expert Opin Biol Ther. 2011;11:1135–51.

    PubMed  CAS  Google Scholar 

  121. Imrich S, Hachmeister M, Gires O. EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr. 2012;6:30–8.

    PubMed  PubMed Central  Google Scholar 

  122. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 2004;64:5818–24.

    PubMed  CAS  Google Scholar 

  123. Tucker CL, Fields S. Lethal combinations. Nat Genet. 2003;35:204–5.

    PubMed  CAS  Google Scholar 

  124. Bridges CB. The origin of variation. Amer Nat. 1922;6:51–63.

    Google Scholar 

  125. Dobzhansky T. Genetics of natural populations. XIII. Recombination and variability in populations of Drosphila pseudoobscura. Genetics. 1946;31:269–90.

    PubMed Central  Google Scholar 

  126. Ferrari E, Lucca C, Foiani M. A lethal combination for cancer cells: synthetic lethality screenings for drug discovery. Eur J Cancer. 2010;46:2889–95.

    PubMed  Google Scholar 

  127. Nijman SM. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011;585:1–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Brough R, Frankum JR, Costa-Cabral S, Lord CJ, Ashworth A. Searching for synthetic lethality in cancer. Curr Opin Genet Dev. 2011;21:34–41.

    PubMed  CAS  Google Scholar 

  129. Iglehart JD, Silver DP. Synthetic lethality–a new direction in cancer-drug development. N Engl J Med. 2009;361:189–91.

    PubMed  CAS  Google Scholar 

  130. Caestecker KW, Van de Walle GR. The role of BRCA1 in DNA double-strand repair: past and present. Exp Cell Res. 2013;319:575–87.

    PubMed  CAS  Google Scholar 

  131. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7:517–28.

    PubMed  CAS  Google Scholar 

  132. Dantzer F, Amé JC, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G. Poly (ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006;409:493–510.

    PubMed  CAS  Google Scholar 

  133. Ashworth A. A synthetic lethal therapeutic approach: poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–90.

    PubMed  CAS  Google Scholar 

  134. Sandhu SK, Yap TA, de Bono JS. Poly (ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer. 2010;46:9–20.

    PubMed  CAS  Google Scholar 

  135. Wivel N. Cilinical overview of human gene transfer trials. In: Gene delivery systems. Paris: OECD; 1996. p. 127–40.

    Google Scholar 

  136. Kim CK, Haider KH, Lim SJ. Gene medicine: a new field of molecular medicine. Arch Pharm Res. 2001;24:1–15.

    PubMed  CAS  Google Scholar 

  137. Guinn BA, Mulherkar R. International progress in cancer gene therapy. Cancer Gene Ther. 2008;15:765–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Büyükköroğlu, G., Abbasoğlu, D., Hızel, C. (2014). Breast Cancer Gene Therapy. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_26

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics