Skip to main content

In Silico Disease Models of Breast Cancer

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Breast cancer is a highly heterogeneous disease as a consequence of multiple cells and genetic aberrations. It is the second leading cause of death among women in Western countries. It has been reported that approximately 1 in 8 women is affected by breast cancer and one-third of women die from breast cancer every year. The most common type of breast cancer is infiltrating ductal carcinoma, which represents around 80 % of all malignancies. Recent advances in the area of breast cancer have increased the survival rate of women with breast cancer. The post-genomic area has provided information regarding gene mutations and their effect on pathogenesis as well as on the outcome of breast cancer. A number of interacting biomarkers belonging to different pathways have been reported to influence the progression of breast cancer. However, we need more authenticated and sophisticated technology for early diagnosis and effective treatment in the area of breast cancer. In the past few years, computational modeling or in silico modeling and simulation of disease processes has gained momentum.

Computational models of breast cancer have been developed to aid both biological mechansims and oncologists. The development of in silico models is facilitated by experimental and analytical tools which generate required information and data. Statistical models of cancer at the pathway levels, genomics, and transcriptomics have been proven to be effective in developing prognostics/diagnostics. Statistically inferred network models have been proven to be useful for avoiding data overfitting. Signaling and metabolic models with the knowledge of the biochemical processes involved and metabolism, derived from research studies, can also be reconstructed. At longer length scales, agent-based and continuum models of the breast cancer microenvironment and other tissue-level interactions would enable modeling of cancer cells and predictions of tumor progression.

Even though breast cancer has been studied using genomics, transcriptomics, and systems approaches, significant challenges yet remain in order to translate the enormous potential of in silico cancer biology for the betterment of patients suffering with breast cancer, thus shifting the paradigm from conventional population-based to patient-specific cancer medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taranawski R, Skladowski K, Swienrniaka A, Wygoda A, Mucha A. Repopulation of tumour cells during radiotherapy is doubled during treatment gaps. Comput Math Meth Med. 2000;2:297–305.

    Google Scholar 

  2. Kohandel M, Sivaloganathan S, Oza A. Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol. 2006;242:62–8.

    PubMed  CAS  Google Scholar 

  3. Verschraegen C, Vinh-Hung V, Cserni G, Gordon R, Royce ME, Vlastos G, et al. Modeling the effect of tumor size in early breast cancer. Ann Surg. 2005;241:309–18.

    PubMed  PubMed Central  Google Scholar 

  4. Ayati BP, Webb GF, Anderson ARA. Computational methods and results for structured multiscale models of tumor invasion. Multiscale Model Simul. 2006;5:1–120.

    Google Scholar 

  5. Gupta PB, Kuperwasser C. Disease models of breast cancer. Drug Discovery Today. 2001;1:9–14.

    Google Scholar 

  6. Neely KE, Workman JL. The complexity of chromatin remodeling and its links to cancer. Biochem Biophys Acta. 2002;1603:19–29.

    PubMed  CAS  Google Scholar 

  7. Jones PA. DNA methylation and cancer. Oncogene. 2002;21:5358–60.

    PubMed  CAS  Google Scholar 

  8. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262.

    PubMed  CAS  Google Scholar 

  9. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. DNA. 2007;1:E1.

    Google Scholar 

  10. Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14:65–76.

    Google Scholar 

  11. Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med. 2010;2(4):438–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Tang Y, Nakada MT, Kesavan P, McCabe F, Millar H, Rafferty P, et al. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 2005;65:3193–9.

    PubMed  CAS  Google Scholar 

  13. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    PubMed  CAS  Google Scholar 

  14. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–12.

    PubMed  CAS  Google Scholar 

  15. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    PubMed  CAS  Google Scholar 

  16. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Sheu BC, Chang WC, Cheng CY, Lin HH, Chang DY, Huang SC. Cytokine regulation networks in the cancer microenvironment. Front Biosci. 2008;13:6255–68.

    PubMed  CAS  Google Scholar 

  18. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, et al. The role of the EGFR signaling in tumor microenvironment. J Cell Physiol. 2008;14:559–67.

    Google Scholar 

  19. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.

    PubMed  CAS  Google Scholar 

  20. Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK. The role of acidity in solid tumour growth and invasion. J Theor Biol. 2005;235:476–84.

    PubMed  CAS  Google Scholar 

  21. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, et al. The Stanford microarray database. Nucleic Acids Res. 2001;29:152–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Perier RC, Junier T, Bucher P. The eukaryotic promoter database EPD. Nucleic Acids Res. 1998;26:353–7.

    CAS  Google Scholar 

  24. Zhao F, Xuan Z, Liu L, Zhang MQ. TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies. Nucleic Acids Res. 2005;33:D103–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Cancer.gov [Internet]. Available from: http://www.cancer.gov.

  26. Mangasarian OL, Street WN, Wolberg WH. Breast cancer diagnosis and prognosis via linear programming. University of Wisconsin. Technical Report 94–10 [PDF]; 1994. Available from: ftp://ftp.cs.wisc.edu/math-prog/tech-reports/94-10.pdf.

  27. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer gene networks from expression profiles. Mol Syst Biol. 2007;3:78.

    PubMed  PubMed Central  Google Scholar 

  28. Schafer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 2005;21:754–64.

    PubMed  Google Scholar 

  29. Hartemink AJ. Reverse engineering gene regulatory networks. Nat Biotechnol. 2005;23:554–5.

    PubMed  CAS  Google Scholar 

  30. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat Genet. 2005;37:382–90.

    PubMed  CAS  Google Scholar 

  31. Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol. 2006;7:165–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. Growing genetic regulatory networks from seed genes. Bioinformatics. 2004;20:1241–7.

    PubMed  CAS  Google Scholar 

  33. Geman D. Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol. 2004;3:Article 19.

    Google Scholar 

  34. Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics. 2005;21:3896–904.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Xu L, Geman D, Winslow RL. Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics. 2007;8:275.

    PubMed  PubMed Central  Google Scholar 

  36. Price ND, Trent J, El-Naggar AK, Cogdell D, Taylor E, Hunt KK, et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Nat Acad Sci U S A. 2007;104:3414–9.

    CAS  Google Scholar 

  37. Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet. 2005;37(6):S31–7.

    PubMed  CAS  Google Scholar 

  38. Shen R, Chinnaiyan AM, Ghosh D. Pathway analysis reveals functional convergence of gene expression profiles in breast cancer. BMC Med Genomics. 2008;1:28.

    PubMed  PubMed Central  Google Scholar 

  39. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2006;39:41–51.

    PubMed  Google Scholar 

  40. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23:1111–30.

    PubMed  Google Scholar 

  41. Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005;97:1652–62.

    PubMed  CAS  Google Scholar 

  42. Smith RA, Cokkinides V, Brooks D, Saslow D, Shah M, Brawley OW. Cancer screening in the United States, a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2011;61:8–30.

    PubMed  Google Scholar 

  43. Amir E, Evans DG, Shenton A, Lalloo F, Moran A, Boggis C, et al. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet. 2003;40:807–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Bondy ML, Lustbader ED, Halabi S, Ross E, Vogel VG. Validation of a breast cancer risk assessment model in women with a positive family history. J Natl Cancer Inst. 1994;86:620–5.

    PubMed  CAS  Google Scholar 

  45. Spiegelman D, Colditz GA, Hunter D, Hertzmark E. Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst. 1994;86(8):600–7.

    PubMed  CAS  Google Scholar 

  46. Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91:1541–8.

    PubMed  CAS  Google Scholar 

  47. Jacobi CE, de Bock GH, Siegerink B, van Asperen CJ. Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose? Breast Cancer Res Treat. 2009;115:381–90.

    PubMed  CAS  Google Scholar 

  48. Bellcross C. Approaches to applying breast cancer risk prediction models in clinical practice. Oncol Genet. 2009;6:8.

    Google Scholar 

  49. Quante AS, Whittemore AS, Shriver T, Strauch K, Terry MB. Breast cancer risk assessment across the risk continuum: genetic and nongenetic risk factors contributing to the differential model performance. Breast Cancer Res. 2012;14(6):R144.

    PubMed  PubMed Central  Google Scholar 

  50. Wu X, Li S. Cancer gene prediction using a network approach. doi: 10.1201/9781439811863-c11. CRC Press; 2010. p. 191–212.

  51. Bhagavathi S, Wadhwa G, Prakash A. In silico modelling and validation of differential expressed proteins in lung cancer. Asian Pacific J Trop Dis. 2012;2(1)S524–29.

    Google Scholar 

  52. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nature Rev Genet. 2004;5:101–13.

    PubMed  CAS  Google Scholar 

  53. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, et al. Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A. 2005;102:1974–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    PubMed  CAS  Google Scholar 

  55. Breitkreutz BJ, Stark C, Tyers M. Osprey: a network visualization system. Genome Biol. 2003;4:R22. doi:10.1186/gb-2003-4-3-r22.

    PubMed  PubMed Central  Google Scholar 

  56. Lin J, Gan CM, Velculescu VE, Wood LD, Parsons DW, Papadopoulos N, et al. A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res. 2007;17:1304–18.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Wang E, Lenferink A, O’Connor-McCourt M. Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci. 2007;64(14):1752–62.

    PubMed  CAS  Google Scholar 

  58. Jeong J, Lee D. Inferring candidate regulatory networks in human breast cancer cells. Bioinformatics Biosys. 2007;2(1):26–9.

    Google Scholar 

  59. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2.

    PubMed  CAS  Google Scholar 

  60. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Rodriguez-Viciana P, Tetsu O, Oda K, Okada J, Rauen K, McCormick F. Cancer targets in the Ras pathway. Cold Spring Harb Symp Quant Biol. 2005;70:461–7.

    PubMed  CAS  Google Scholar 

  62. Maayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science. 2005;309:1078–83.

    CAS  Google Scholar 

  63. Gordus A, Krall JA, Beyer EM, Kaushansky A, Wolf-Yadlin A, Sevecka M, et al. Linear combinations of docking affinities explain quantitative differences in RTK signaling. Mol Syst Biol. 2009;5:235.

    PubMed  PubMed Central  Google Scholar 

  64. Cui Q, Yu Z, Purisima EO, Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol. 2006;2:46.

    PubMed  PubMed Central  Google Scholar 

  65. Spyrou G, Kapsimalakou S, Frigas A, Koufopoulos K, Vassilaros S, Ligomenides P. “Hippocrates-mst”: A prototype for computer-aided microcalcification analysis and risk assessment for breast cancer. Med Biol Eng Comput. 2006;44(11):1007–15.

    PubMed  Google Scholar 

  66. Res-Systemica [Internet]. Association Française de Science des Systèmes. Available at: http://www.afscet.asso.fr/resSystemica.

  67. Butler S, Webb G. A case study in feature invention for breast cancer diagnosis using X-Ray scatter images. Lect Notes Artif Intell. 2003;2903:677–85.

    Google Scholar 

  68. Abonyi J, Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett. 2003;24:2195–207.

    Google Scholar 

  69. Osareh A, Shadgar B. A computer-aided diagnosis system for breast cancer. Int J Comput Sci. 2011;8:233–5.

    Google Scholar 

  70. Jung J. Computer-aided patient specific treatment planning of cryosurgery for breast cancer. The University of Texas at Arlington. MS dissertation in Mechanical Engineering; 2006. p. 1–64.

    Google Scholar 

  71. O’Halloran R, Conceicao D, Byrne M, Jones GE. FDTD Modeling of the breast: a review. Prog Electromagnetics Res B. 2009;18(1):1–24.

    Google Scholar 

  72. Lazebnik M, Okoniewski M, Booske JH, Hagness SC. Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies. IEEE Microw Wireless Component Lett. 2007;17:822–4.

    Google Scholar 

  73. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.

    PubMed  PubMed Central  Google Scholar 

  74. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

    PubMed  CAS  Google Scholar 

  75. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson B. Reconstruction of biochemical networks in microbial organisms. Nat Rev Microbiol. 2009;7:129–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Francke C, Siezen RJ, Teusink B. Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol. 2005;13:550–8.

    PubMed  CAS  Google Scholar 

  77. Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional genome annotation. Nat Rev Genet. 2006;7:130–41.

    PubMed  CAS  Google Scholar 

  78. Shlomi T, Cabili MN, Herrgard MJ, Palsson B, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol. 2008;26:1003–10.

    PubMed  CAS  Google Scholar 

  79. Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO. Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol. 2006;2:e101.

    PubMed  PubMed Central  Google Scholar 

  80. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004;429:92–6.

    PubMed  CAS  Google Scholar 

  81. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The Ikappa B-NF-kappa B signaling module: temporal control and selective gene activation. Science. 2002;298:1241–5.

    PubMed  CAS  Google Scholar 

  82. Papin JA, Palsson BO. Topological analysis of mass balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol. 2004;227:283–97.

    PubMed  Google Scholar 

  83. Price ND, Schellenberger J, Palsson BO. Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J. 2004;87:2172–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Thiele I, Price ND, Vo TD, Palsson BO. Candidate metabolic network states in human mitochondria: impact of diabetes, ischemia, and diet. J Biol Chem. 2005;280:11683–95.

    PubMed  CAS  Google Scholar 

  85. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ. Hypoxia-inducible factor-1a and the glycolytic phenotype in tumors. Neoplasia. 2005;7:324–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.

    PubMed  CAS  Google Scholar 

  87. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–7.

    PubMed  CAS  Google Scholar 

  88. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol. 2011;7:501.

    PubMed  PubMed Central  Google Scholar 

  89. Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 2005;309:1857–61.

    PubMed  CAS  Google Scholar 

  90. Segrè D, Zucker J, Katz J, Lin X, D’haeseleer P, Rindone WP, et al. From annotated genomes to metabolic flux models and kinetic parameter fitting. OMICS. 2003;7:301–16.

    PubMed  Google Scholar 

  91. Covert MW, Leung TH, Gaston JE, Baltimore D. Achieving stability of lipopolysaccharide-induced NFkappaB activation. Science. 2005;309:1854–7.

    PubMed  CAS  Google Scholar 

  92. Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Model. 2002;32(3):413–52.

    Google Scholar 

  93. Araujo RP, McElwain DL. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol. 2004;66(5):1039–91.

    PubMed  CAS  Google Scholar 

  94. Quaranta V, Rejniak KA, Gerlee P, Anderson AR. Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. Semin Cancer Biol. 2008;18:338–48.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Alarcon T, Byrne HM, Maini PK. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol. 2004;229:395–411.

    PubMed  CAS  Google Scholar 

  96. Ambrosi D, Mollica F. The role of stress in the growth of a multicell spheroid. J Math Biol. 2004;48:477–99.

    PubMed  CAS  Google Scholar 

  97. Anderson ARA. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol. 2005;22:163–86.

    PubMed  Google Scholar 

  98. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci U S A. 2007;104:4008.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. d’Onofrio A, Tomlinson IPM. A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt. J Theor Biol. 2007;244:367–74.

    PubMed  Google Scholar 

  100. Rosenthal DT, Iyer H, Escudero S, Ventura AC, Arruda EM, Garikipati K, et al. From in vitro to in silico and back again: using biological and mathematical synergy to decipher breast cancer cell motility. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3261–4.

    PubMed  Google Scholar 

  101. Baum M, Chaplain MAJ, Anderson ARA, Douek M, Vaidya JS. Does breast cancer exist in a state of chaos? Eur J Cancer. 1999;35:886–91.

    PubMed  CAS  Google Scholar 

  102. Rew DA. Tumour biology, chaos and non-linear dynamics. Eur J Surg Oncol. 1999;25:86–9.

    PubMed  CAS  Google Scholar 

  103. Mansury Y, Kimura M, Lobo J, Deisboeck TS. Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol. 2002;219:343–70.

    PubMed  Google Scholar 

  104. Kansal AR, Torquato S, Harsh Iv GR, Chiocca EA, Deisboeck TS. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol. 2000;203(4):367–82.

    PubMed  CAS  Google Scholar 

  105. Mallet DG, De Pillis LG. A cellular automata model of tumor–immune system interactions. J Theor Biol. 2006;239(3):334–50.

    PubMed  CAS  Google Scholar 

  106. Alarcon T, Byrne HM, Maini PK. A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol. 2003;225(2):257–74.

    PubMed  CAS  Google Scholar 

  107. Bauer AL, Jackson TL, Jiang Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J. 2007;92(9):3105.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA. A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol. 2001;213(3):315–31.

    PubMed  CAS  Google Scholar 

  109. Macklin P, Edgerton ME. Agent-based cell modelling application to breast cancer. In: Cristini V, Lowengrub J, editors. Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. New York: Cambridge University Press; 2010. p. 216–87.

    Google Scholar 

  110. Mukhopadhyay R, Costes SV, Bazarov AV, Hines WC, Barcellos-Hoff MH, Yaswen P. Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies. Breast Cancer Res. 2010;12(1):R11.

    PubMed  PubMed Central  Google Scholar 

  111. Chapa J, Bourgo RJ, Greene GL, Kulkarni S, An G. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics. PLoS One. 2013;8(5):e64091.

    PubMed  PubMed Central  Google Scholar 

  112. Retsky M, Demicheli R, Hrushesky W, Speer J, Swartzendruber, Wardwell R. Recent translational research: computational studies of breast cancer. 2004. http://www.breastcancerresearch.com.

  113. Lisboa PJ. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 2002;15(1):11–39.

    PubMed  CAS  Google Scholar 

  114. Chih-Lin Chi, Street NW, Wolberg WH. Application of artificial neural network-based survival analysis on two breast cancer datasets AMIA Annu Symp Proc. 2007;11:130–4.

    Google Scholar 

  115. Adjuvant! Online. [Internet]. Available at: www.adjuvantonline.com.

  116. Coldman AJ, Goldie JH. Role of mathematical modeling in protocol formulation in cancer chemotherapy. Cancer Treat Rep. 1985;69:1041–8.

    PubMed  CAS  Google Scholar 

  117. Norton L. Karnofsky memorial lecture: ignoratomotu, ignoraturnatura. Am Soc Clin Oncol virtual meeting, 2004. Available at: www.asco.org.

  118. Saxena S, Kirar VPS, Burse K. A polynomial neural network model for prognostic breast cancer prediction. Intl J Adv Trends Comput Sci Eng. 2013;2(1):103–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Munshi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Munshi, A., Sharma, V. (2014). In Silico Disease Models of Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics