Skip to main content

Omics of Chemoresistant and Metastatic Breast Cancer

  • Chapter
  • First Online:
  • 1879 Accesses

Abstract

Advances in research and knowledge, especially in the two last decades, have elucidated key pathways involved in the pathobiology, heterogeneous phenotype, molecular classification, risk, diagnosis, prognosis, and treatments for breast cancer. In spite of these advances, breast cancer still remains one of the major causes of death in developed countries. While advances in personalized medicine have allowed for management of the disease within a large and diverse number of clinical cases, and targeted treatment approaches that are less aggressive and more effective have been an important development, chemoresistance and metastasis are still the principal unsolved biological pitfalls of breast cancer. These areas deserve special attention from biomedical researchers. Thus, this chapter summarizes and highlights important analyses with regard to omics technologies, genomics, epigenetics, pharmacogenetics, transcriptomics, and metabolomics that integrate data and elucidate causes and putative solutions within the complex biological system that frames the recurrence status of the breast cancer patient. The most important milestones have been the discoveries of specific gene expression signatures, specific pathways, and miRNAs. In this context, some recent hypotheses about breast cancer stem cells or initiation tumor cell theories have gained a foothold. Nevertheless, greater efforts and higher-throughput investigations will be necessary to overcome many fundamental obstacles in the remission of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glinsky GV. “Stemness” genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol. 2008;26(17):2846–53. doi:10.1200/JCO.2008.17.0266.

    Article  PubMed  Google Scholar 

  2. Olopade OI, Grushko TA, Nanda R, Huo D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res. 2008;14(24):7988–99. doi:10.1158/1078-0432.CCR-08-1211.

    Article  PubMed  CAS  Google Scholar 

  3. International Cancer Genome Consortium. International network of cancer genome projects. Nature. 2010;464:993–8.

    Article  Google Scholar 

  4. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HYK, Miriami E, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2010;148(6):1293–307. doi:10.1016/j.cell.2012.02.009.

    Article  Google Scholar 

  5. Toft DJ, Cryns VL. Minireview: Basal-like breast cancer: from molecular profiles to targeted therapies. Mol Endocrinol. 2011;25(2):199–211. doi:10.1210/me.2010-0164.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bouchalova K, Cizkova M, Cwiertka K, Trojanec R, Hajduch M. Triple negative breast cancer–current status and prospective targeted treatment based on HER1 (EGFR), TOP2A and C-MYC gene assessment. Biomed Pap Med Fac Univ Palacký Olomouc Czech Repub. 2009;153(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  7. Bao L, Haque A, Jackson K, Hazari S, Moroz K, Jetly R, et al. Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol. 2011;178(2):838–52. doi:10.1016/j.ajpath.2010.10.029.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1and BRCA2 in diverse populations. Nat Rev Cancer. 2007;7:937–48.

    Article  PubMed  CAS  Google Scholar 

  9. Boekhout AH, Beijnen JH, Schellens JHM. Trastuzumab. Oncologist. 2011;16(6):800–10. doi:10.1634/the oncologist.2010-0035.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Roukos DH. Personal genomics and genome-wide association studies: novel discoveries but limitations for practical personalized medicine. Ann Surg Oncol. 2009;16(3):772–3.

    Article  PubMed  Google Scholar 

  11. Conzen S, Grushko TA, Olopade OI. The molecular biology of breast cancer. In: DeVita VTJ, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman, and Rosenberg’s cancer: principles and practice of oncology. 8th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. p. 1595–605.

    Google Scholar 

  12. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics. 2011;2(2):171–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Toyoda Y, Ishikawa T. Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem. 2010;10(8):617–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Frati A, Lesieur B, Benbara A, Bezu C, Uzan S, Rouzier R, Coutant C. Clinicopathological and genomics predictors of response to neoadjuvant chemotherapy in breast cancer. Gynecol Obstet Fertil. 2010;38(7–8):475–80. doi:10.1016/j.gyobfe.2010.05.004. Epub 2010 Jun 25. Review. French. PubMed PMID: 20579923.

    Article  PubMed  CAS  Google Scholar 

  15. Kim SR, Paik S. Genomics of adjuvant therapy for breast cancer. Cancer J. 2011;17(6):500–4. doi:10.1097/PPO.0b013e31823e5370. Review. PubMed PMID: 22157294.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 2010;5:e13735.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Tan G, Dong L, Cheng L, Li K, Wang Z, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One. 2012;7(4):e34210.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol. 2011;2011:941876. doi:10.1155/2011/941876.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol. 2010;596:95–121.

    Article  PubMed  CAS  Google Scholar 

  20. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther. 2006;112(2):457–73.

    Article  PubMed  CAS  Google Scholar 

  21. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.

    Article  PubMed  CAS  Google Scholar 

  22. Prasad B, Lai Y, Lin Y, Unadkat JD. Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype. J Pharm Sci. 2013;102(3):787–93. doi:10.1002/jps.

    Article  PubMed  CAS  Google Scholar 

  23. Park BH, Davidson NE. PI3 kinase activation and response to trastuzumab therapy: what’s neu with herceptin resistance? Cancer Cell. 2007;12:297–9.

    Article  PubMed  CAS  Google Scholar 

  24. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007;13:1198–207.

    Article  PubMed  CAS  Google Scholar 

  25. Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa M, Lorente JA. Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS One. 2013;8(1):e53983.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Fang FS, Turcan A, Rimner A, Kaufman A, Giri D, Morris LG, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3(75):75ra25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chang H, Rha SY, Jeung HC, Im CK, Ahn JB, Kwon WS, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20(2):272–7.

    Article  PubMed  CAS  Google Scholar 

  28. Braun R, Buetow K. Pathways of distinction analysis: a new technique for multi-SNP analysis of GWAS data. PLoS Genet. 2011;7:e1002101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Gröger CJ, Grubinger M, Waldhör T, Vierlinger K, Mikulits W. Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PLoS One. 2012;7(12):e51136. doi:10.1371/journal.pone.0051136.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCartan D, Bolger JC, Fagan A, Byrne C, Hao Y, Qin L, et al. Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer. Cancer Res. 2012;72(1):220–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O, et al. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer. 2012;12:391. doi:10.1186/1471-2407-12-391.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hortobagyi GN. Toward individualized breast cancer therapy: translating biological concepts to the bedside. Oncologist. 2012;17(4):577–84.

    Google Scholar 

  33. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19:27–32.

    Article  PubMed  Google Scholar 

  34. Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D, et al. Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res. 2011;13(6):R127.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011;12(10):924–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Saukko PM, Reed M, Britten N, Hogarth S. Negotiating the boundary between medicine and consumer culture: online marketing of nutrigenetic tests. Soc Sci Med. 2010;70(5):744–53.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Riscuta G, Dumitrescu RG. Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol. 2012;863:343–58.

    Article  PubMed  CAS  Google Scholar 

  38. Corella D, Ordovás JM. Interactions between dietary n-3 fatty acids and genetic variants and risk of disease. Br J Nutr. 2012;107 Suppl 2:S271–83.

    Article  PubMed  CAS  Google Scholar 

  39. Xue HY, Wong HL. Targeting megalin to enhance delivery of anti-clusterin small-interfering RNA nanomedicine to chemo-treated breast cancer. Eur J Pharm Biopharm. 2012;81(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  40. Antoon JW, Liu J, Ponnapakkam AP, Gestaut MM, Foroozesh M, Beckman BS. Novel D: −erythro N-octanoyl sphingosine analogs as chemo and endocrine-resistant breast cancer therapeutics. Cancer Chemother Pharmacol. 2010;65(6):1191–5.

    Article  PubMed  CAS  Google Scholar 

  41. Aluise CD, Rose K, Boiani M, Reyzer ML, Manna JD, Tallman K, et al. Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles. Chem Res Toxicol. 2013;26(2):270–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Saunus JM, Momeny M, Simpson PT, Lakhani SR, Da Silva L. Molecular aspects of breast cancer metastasis to the brain. Genet Res Int. 2011;2011:1–9.

    Google Scholar 

  43. Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene. 2012;31(17):2121–8.

    Article  PubMed  CAS  Google Scholar 

  44. Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res. 2007;13(18):5355–60.

    Article  PubMed  CAS  Google Scholar 

  45. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209.

    Article  PubMed  CAS  Google Scholar 

  46. Takebe N, Ivy SP. Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res. 2010;16(12):3106–12. doi:10.1158/1078-0432.CCR-09-2934.

    Article  PubMed  CAS  Google Scholar 

  47. Brabletz T. EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell. 2012;22(6):699–701. doi:10.1016/j.ccr.2012.11.009.

    Article  PubMed  CAS  Google Scholar 

  48. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, et al. Genome-wide DNA methylation profiling of CpG Islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71(8):2988–99.

    Article  PubMed  CAS  Google Scholar 

  49. Rodenhiser DI, Andrews J, Kennette W, Sadikovic B, Mendlowitz A, Tuck AB, et al. Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res. 2008;10(4):R62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Samantarrai D, Dash S, Chhetri B, Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res. 2013;11(4):315–28. doi:10.1158/1541-7786.MCR-12-0649.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang L, Yang M, Gan L, He T, Xiao X, Stewart MD, et al. DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis. Int J Biol Sci. 2012;8(8):1178–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Blanco MA, Kang Y. Signaling pathways in breast cancer metastasis—novel insights from functional genomics. Breast Cancer Res. 2011;13(2):206. doi:10.1186/bcr2831.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    Article  PubMed  CAS  Google Scholar 

  54. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol. 2008;130(6):1091–103.

    Article  PubMed  CAS  Google Scholar 

  57. Flanagan L, Whyte L, Chatterjee N, Tenniswood M. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer. BMC Cancer. 2010;10:107. doi:10.1186/1471-2407-10-107.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Terp MG, Lund RR, Jensen ON, Leth-Larsen R, Ditzel HJ. Identification of markers associated with highly aggressive metastatic phenotypes using quantitative comparative proteomics. Cancer Genomics Proteomics. 2012;9(5):265–73. PubMed PMID: 22990106.

    PubMed  CAS  Google Scholar 

  59. Niu M, Klingler-Hoffmann M, Brazzatti JA, Forbes B, Akekawatchai C, Hoffmann P, et al. Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kγ in the MDA-MB-231 metastatic breast cancer cell line. Proteome Sci. 2013;11(1):4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Fry SA, Sinclair J, Timms JF, Leathem AJ, Dwek MV. A targeted glycoproteomic approach identifies cadherin-5 as a novel biomarker of metastatic breast cancer. Cancer Lett. 2013;328(2):335–44.

    Article  PubMed  CAS  Google Scholar 

  61. Kanojia D, Zhou W, Zhang J, Jie C, Lo PK, Wang Q, et al. Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics. 2012;12(22):3407–15.

    Article  PubMed  CAS  Google Scholar 

  62. Oakman C, Tenori L, Claudino WM, Cappadona S, Nepi S, Battaglia A, et al. Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann Oncol. 2011;22(6):1295–301.

    Article  PubMed  CAS  Google Scholar 

  63. Vermeer LS, Fruhwirth GO, Pandya P, Ng T, Mason AJ. NMR metabolomics of MTLn3E breast cancer cells identifies a role for CXCR4 in lipid and choline regulation. J Proteome Res. 2012;11(5):2996–3003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Tenori L, Oakman C, Claudino WM, Bernini P, Cappadona S, Nepi S, et al. Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol. 2012;6(4):437–44.

    Article  PubMed  CAS  Google Scholar 

  65. Ozdemir BH, Akcali Z, Haberal M. Hypercholesterolemia impairs angiogenesis in patients with breast carcinoma and, therefore, lowers the risk of metastases. Am J Clin Pathol. 2004;122(5):696–703.

    Article  PubMed  Google Scholar 

  66. Liu YL, Qian HX, Qin L, Zhou XJ, Zhang B, Chen X. Association of serum lipid profile with distant metastasis in breast cancer patients. Zhonghua Zhong Liu Za Zhi. 2012;34(2):129–31. doi:10.3760/cma.j.issn.0253-3766.2012.02.010. Chinese. PubMed PMID: 22780931.

    PubMed  CAS  Google Scholar 

  67. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831(10):1533–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Krishnan AV, Swami S, Feldman D. The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer. Steroids. 2012;77(11):1107–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D, Sierra A. The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy. PLoS One. 2012;7(10):e46456.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, López JA, Lakhani S, et al. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis. 2011;32(5):650–8. doi:10.1093/carcin/bgr028.

    Article  PubMed  CAS  Google Scholar 

  71. Allan AL, Vantyghem SA, Tuck AB, Chambers AF. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis. 2006–2007;26:87–98.

    PubMed  CAS  Google Scholar 

  72. Wu H, Li R, Hang X, Yan M, Niu F, Liu L, et al. Can CD44 +//CD24- tumor cells be used to determine the extent of breast cancer invasion following neoadjuvant chemotherapy? J Breast Cancer. 2011;14(3):175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90–4.

    Article  PubMed  CAS  Google Scholar 

  74. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51. doi:10.1016/j.biocel.2012.08.022.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010;16(12):3141–52. doi:10.1158/1078-0432.CCR-09-2823.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Badve S, Nakshatri H. Breast-cancer stem cells—beyond semantics. Lancet Oncol. 2012;13(1):e43–8. doi:10.1016/S1470-2045(11)70191-7.

    Article  PubMed  Google Scholar 

  77. Oak PS, Kopp F, Thakur C, Ellwart JW, Rapp UR, Ullrich A, et al. Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer. 2012;2819:2808–19.

    Article  Google Scholar 

  78. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  PubMed  CAS  Google Scholar 

  79. Siddique M, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance. Stem Cells. 2012;30(3):372–8.

    Article  PubMed  CAS  Google Scholar 

  80. Yoo JS, Kim HB, Won N, Bang J, Kim S, Ahn S, et al. Evidence for an additional metastatic route: in vivo imaging of cancer cells in the primo-vascular system around tumors and organs. Mol Imaging Biol. 2011;13(3):471–80.

    Article  PubMed  Google Scholar 

  81. Bentires-Alj M, Glukhova M, Hynes N, Vivanco MD. New methods in mammary gland development and cancer: proteomics, epigenetics, symmetric division and metastasis. Breast Cancer Res. 2012;14(4):314.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qin XJ, Ling BX. Proteomic studies in breast cancer (review). Oncol Lett. 2012;3(4):735–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Taniya T, Noguchi M, Tajiri K, Nakano Y, Kitabayashi K, Miyazaki I, et al. A case report of hyperlipemia with giant fatty liver during adjuvant endocrine therapy by tamoxifen. Gan No Rinsho. 1987;33(3):300–4. Japanese.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The global context of this work is the FIS-FEDER Project PI10-02149: pharmacogenetic comparative study of polymorphisms in molecular structures involved in drug resistance in cancer stem cell lines of breast, colon, and melanoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Aguilera PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Aguilera, M., Marchal, J.A. (2014). Omics of Chemoresistant and Metastatic Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_14

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics