Skip to main content

Melatonin in Parkinson’s Disease and Its Therapeutic Potential

  • Chapter
  • First Online:
Melatonin and Melatonergic Drugs in Clinical Practice

Abstract

Although the etiology of Parkinson’s disease (PD) is not known, most patients with PD experience sleep-related problems like difficulty in initiating and maintaining sleep, excessive daytime sleepiness, sleep fragmentation, and reductions in non-REM or REM sleep. Since melatonin and its analogues have sleep-promoting and sleep-wake rhythm-regulating actions, interest has been focused on the role of melatonin in PD. Interestingly use of melatonin in animal models of PD has shown that melatonin has been useful in improving the neurotoxic effects of administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, or maneb and paraquat. Being an antioxidant melatonin counteracted the MPTP-induced lipid per oxidation. The finding of reduced expression of MT1 and MT2 melatonin receptors in amygdale and substantia nigra of patients with PD supports the involvement of melatonergic system in the possible etiology of PD. Use of melatonin or its analogues may be beneficial in treating patients with PD for improving the sleep quality and also for enhancing the neuroprotection against oxidative stress seen in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol. 1992;32:S2–9.

    CAS  PubMed  Google Scholar 

  2. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32:804–12.

    CAS  PubMed  Google Scholar 

  3. Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev. 2002;123:1007–19.

    CAS  PubMed  Google Scholar 

  4. Adams JD, Odunze IN. Oxygen free radicals and Parkinson’s disease. Free Radic Biol Med. 1991;10:161–9.

    CAS  PubMed  Google Scholar 

  5. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989;52:381–9.

    CAS  PubMed  Google Scholar 

  6. Lees AJ, Blackburn NA, Campell VL. The night time problems of Parkinson’s disease. Clin Neuropharmacol. 1988;11:512–9.

    CAS  PubMed  Google Scholar 

  7. Pal PK, Clane S, Samii A, Fleming JA. A review of normal sleep and its disturbances in Parkinson’s disease. Parkinsonism Relat Disord. 1999;5:1–17.

    CAS  PubMed  Google Scholar 

  8. Srinivasan V. Melatonin, oxidative stress and neurodegenerative diseases. Indian J Exp Biol. 2002;40:668–79.

    CAS  PubMed  Google Scholar 

  9. Braak H, Del Tredici K, Rub U, de Vas RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    PubMed  Google Scholar 

  10. Braak H, Sastre M, Bohl JRE, de Vos RAI, Del Tradici K. Parkinson’s disease: lesions in dorsal horn layer 1, involvement of parasympathetic and sympathetic pre and post ganglionic neurons. Acta Neuropathol. 2007;113:421–9.

    PubMed  Google Scholar 

  11. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Arizona Parkinson’s disease Consortium. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–34.

    PubMed Central  PubMed  Google Scholar 

  12. Savica R, Rocca WA, Ahlskog E. When does Parkinson disease start? Arch Neurol. 2010;67:798–801.

    PubMed  Google Scholar 

  13. Willis GL, Armstrong SM. A therapeutic role for melatonin antagonism in experimental models of Parkinson’s disease. Physiol Behav. 1999;66:785–95.

    CAS  PubMed  Google Scholar 

  14. Shiba M, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, et al. Anxiety disorders and depression disorders preceding Parkinson’s disease: a case controlled study. Mov Disord. 2000;159:669–77.

    Google Scholar 

  15. Weisskopf MG, Chen H, Schwarzschild MA, Kawachi I, Ascherio A. Prospective study of phobic anxiety and risk of Parkinson’s disease. Mov Disord. 2003;18:646–51.

    PubMed  Google Scholar 

  16. Naismith SL, Rogers NL, Mackenzie J, Hickie IB, Lewis SJ. The relationship between actigraphically defined sleep disturbance and REM sleep behaviour disorder in Parkinson’s disease. Clin Neurol Neurosurg. 2010;112:420–3.

    PubMed  Google Scholar 

  17. Willis GL. Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci. 2008;19:245–316.

    CAS  PubMed  Google Scholar 

  18. Bruguerolle B, Simon N. Biologic rhythms and Parkinson’s disease: a chrono-pharmacologic approach to considering fluctuations in function. Clin Neuropharmacol. 2002;25:194–201.

    PubMed  Google Scholar 

  19. Liu S, Cai Y, Sothern RB, Guan Y, Chan P. Chronobiological analysis of circadian patterns in transcription of seven clock genes in six peripheral tissues in mice. Chronobiol Int. 2007;24:793–820.

    CAS  PubMed  Google Scholar 

  20. Cermakian N, Monaco L, Pando MP, Dierich A, Sasone-Corsi P. Altered behavioural rhythms and clock gene expression in mice with a targeted mutation in the period 1 gene. EMBO J. 2001;20:3967–74.

    CAS  PubMed  Google Scholar 

  21. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early age related pathologies in mice deficient in BMAL1, the core components of the circadian clock. Genes Dev. 2006;20:1868–73.

    CAS  PubMed  Google Scholar 

  22. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102:4143–5.

    CAS  PubMed  Google Scholar 

  23. Fukuya H, Emoto N, Nonaka H, Yagita K, Okamura H, Yokoyama M. Circadian expression of clock genes in human peripheral leukocytes. Biochem Biophys Res Commun. 2007;354:924–8.

    CAS  PubMed  Google Scholar 

  24. Cai Y, Liu S, Sothern RB, Xu S, Chan P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol. 2010;17:550–4.

    CAS  PubMed  Google Scholar 

  25. Srinivasan V. The pineal gland: its physiological and pharmacological role. Indian J Physiol Pharmacol. 1989;33:263–72.

    CAS  PubMed  Google Scholar 

  26. Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13:1177–85.

    CAS  PubMed  Google Scholar 

  27. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Melib melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S. Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit. 2010;16:BR61–7.

    CAS  PubMed  Google Scholar 

  29. Takeda Y, Jothi R, Jetter AM. ROR γ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res. 2012;40(17):8519–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kumar S, Bhatia M, Behari M. Sleep disorders in Parkinson’s disease. Mov Disord. 2002;17:775–81.

    PubMed  Google Scholar 

  31. Brotini S, Gigli GL. Epidemiology and clinical features of sleep disorders in extra-pyramidal disease. Sleep Med. 2004;5:169–79.

    PubMed  Google Scholar 

  32. Garcia-Borreguero D, Larrosa O, Bravo M. Parkinson’s disease and sleep. Sleep Med Rev. 2003;7:115–29.

    PubMed  Google Scholar 

  33. Friedman JH, Chou KL. Sleep and fatigue in Parkinson’s disease. Parkinsonism Relat Disord. 2004;10:S27–35.

    PubMed  Google Scholar 

  34. Vendette M, Gagnon JF, Decary A, Massicotte-Marquez J, Postuma RB, Doyan J, et al. REM sleep behaviour disorder predicts cognitive impairment in Parkinson’s disease without dementia. Neurology. 2007;69:1843–9.

    CAS  PubMed  Google Scholar 

  35. Marion MH, Qurashi M, Marshall G, Foster O. Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson’s disease? J Neurol. 2008;255:192–6.

    PubMed  Google Scholar 

  36. Olson EJ, Boeve BF, Silber MH. Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain. 2000;123:331–9.

    PubMed  Google Scholar 

  37. Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a Parkinsonian disorder in 38 % of 29 older women initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology. 1996;46:388–93.

    CAS  PubMed  Google Scholar 

  38. Silber MH, Ahlskog JE. REM sleep behaviour disorder in Parkinsonian syndromes. Sleep Res (abstract). 1992;21:313.

    Google Scholar 

  39. Boeve B, Silber M, Ferman T. REM sleep behaviour disorder in Parkinsonn’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol. 2004;17:146–57.

    PubMed  Google Scholar 

  40. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain. 2007;130:2770–88.

    CAS  PubMed  Google Scholar 

  41. Fantini ML, Corona A, Clerisi S, Ferini-Strambi L. Aggressive dream content without daytime aggressiveness in REM sleep behaviour disorder. Neurology. 2005;65:1010–5.

    CAS  PubMed  Google Scholar 

  42. Jahan I, Hauser RA, Sullivan KL, Miller A, Zesiewicz TA. Sleep disorders in Parkinson’s disease. Neuropsychiatr Dis Treat. 2009;5:535–40.

    PubMed Central  PubMed  Google Scholar 

  43. Thannickal TC, Lai YY, Siegel JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain. 2007;130:1586–95.

    PubMed  Google Scholar 

  44. Compta Y, Santamaria J, Ratti L, Tolosa E, Iranzo A, Munoz E, et al. Cerebrospinal hypocretin, daytime sleepiness and sleep architecture in Parkinson’s disease dementia. Brain. 2009;132:3308–17.

    PubMed  Google Scholar 

  45. Tandberg E, Larsen JP, Karlsen NK. Excessive daytime sleepiness and sleep benefit in Parkinson’s disease. A community based study. Mov Disord. 1999;14:922–7.

    CAS  PubMed  Google Scholar 

  46. Arnulf I, Konofal E, Merino-Andreu M, Houeto JL, Mesnage V, Welter ML, et al. Parkinson’s disease and sleepiness: an integral part of PD. Neurology. 2002;58:1019–24.

    CAS  PubMed  Google Scholar 

  47. Brodsky MA, Godbold J, Roth T, Olanow CW. Sleepiness in Parkinson’s disease: a controlled study. Mov Disord. 2003;18:668–72.

    PubMed  Google Scholar 

  48. Mehta SH, Morgan JC, Sethi KD. Sleep disorders associated with Parkinson’s disease: role of dopamine, epidemiology, and clinical scales of assessment. CNS Spectr. 2008;13:6–11.

    PubMed  Google Scholar 

  49. Dobkin RD, Menza M, Bienfait KL, Gara M, Marin H, Mark MH, et al. Depression in Parkinson’s disease: symptom improvement and residual symptoms after acute pharmacologic management. Am J Geriatr Psychiatry. 2010;19:222–9.

    Google Scholar 

  50. Weintraub D, Mavandadi S, Mamikonyan E, Siderowf AD, Duda JE, Hurtig HI, et al. Atomoxetine for depression and other neuropsychiatric symptoms in Parkinson’s disease. Neurology. 2010;75:448–55.

    CAS  PubMed  Google Scholar 

  51. Dubocovich ML, Cardinali DP, Delagrange P, Krause DN, Strosberg D, Sugden D, et al. Melatonin receptors. In: The IUPHAR compendium of receptor characterization and classification. 2nd ed. London: IUPHAR Media; 2000. p. 271–7.

    Google Scholar 

  52. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptor in mammals. Endocrine. 2005;27:101–10.

    CAS  PubMed  Google Scholar 

  53. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, et al. Molecular dissection two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19:91–102.

    CAS  PubMed  Google Scholar 

  54. Al Ghoul WM, Herman MD, Dubocovich ML. Melatonin receptor subtype expression in human cerebellum. Neuroreport. 1998;9:4063–8.

    CAS  PubMed  Google Scholar 

  55. Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, et al. Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res. 2002;32:59–62.

    PubMed  Google Scholar 

  56. Uz T, Arsian AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, et al. The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res. 2005;136:45–53.

    CAS  PubMed  Google Scholar 

  57. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, et al. Identification of the melatonin binding site MT3 as the quinine reductase2. J Biol Chem. 2000;275:31311–7.

    CAS  PubMed  Google Scholar 

  58. Benitez-King G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res. 2006;49:1–9.

    Google Scholar 

  59. Macias M, Escames G, Leon J, Coto-Montes A, Sbihi Y, Osuna A, et al. Calreticulin-melatonin: an unexpected relationship. Eur J Biochem. 2003;270:832–40.

    CAS  PubMed  Google Scholar 

  60. Wiesenberg I, Missbach M, Kahlen JP, Schrader M, Carlberg C. Transcriptional activation of the nuclear RZR α by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res. 1995;23:327–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980;1:109–31.

    CAS  PubMed  Google Scholar 

  62. Srinivasan V, Spence DW, Pandi-Perumal SR, Zakaria R, Bhatnagar KP, Brzezinski A. Melatonin and human reproduction. Gynecol Endocrinol. 2009;25:779–85.

    CAS  PubMed  Google Scholar 

  63. Wurtman RJ, Zhdanova I. Improvement of sleep quality by melatonin. Lancet. 1995;346:1491.

    CAS  PubMed  Google Scholar 

  64. Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem. 2002;2:167–79.

    CAS  PubMed  Google Scholar 

  65. Srinivasan V, Maestroni GJM, Cardinali DP, Esquifino AI, Pandi-Perumal SR, Miller SC. Melatonin, immune function and aging. Immun Ageing. 2005;2:17.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Srinivasan V, Spence DW, Trakt I, Pandi-Perumal SR, Cardinali DP, Maestroni GJ. Immunomodulation by melatonin: its significance for seasonally occurring diseases. Neuroimmunomodulation. 2008;15:93–101.

    CAS  PubMed  Google Scholar 

  67. Armstrong SM. Melatonin: the internal zeitgeber of mammals? Pineal Res Rev. 1989;7:157–202.

    CAS  Google Scholar 

  68. Deacon S, Arendt J. Melatonin-induced temperature suppression and its acute phase shifting effects correlate in a dose dependent manner in humans. Brain Res. 1995;688:77–85.

    CAS  PubMed  Google Scholar 

  69. Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev. 2005;9:25–39.

    PubMed  Google Scholar 

  70. Rajaratnam SM, Middleton B, Stone BM, Arendt J, Dijk DJ. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol. 2004;561:339–51.

    CAS  PubMed  Google Scholar 

  71. Blask DE, Sauer LA, Dauchey RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian based cancer therapy. Curr Top Med Chem. 2002;2:113–32.

    CAS  PubMed  Google Scholar 

  72. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, et al. Melatonin, environmental light and breast cancer. Breast Cancer Res Treat. 2008;108:339–50.

    CAS  PubMed  Google Scholar 

  73. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP. Therapeutic actions of melatonin in cancer: possible mechanisms. Integr Cancer Ther. 2008;7:189–203.

    CAS  PubMed  Google Scholar 

  74. Srinivasan V, Pandi-Perumal SR, Spence DW, Moscovitch A, Trakht I, Brown GM, et al. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Res Bull. 2010;81:362–71.

    CAS  PubMed  Google Scholar 

  75. Chieuh CC, Burns RS, Markey DM, Jacobowitz DM, Kopin IJ. Primate model of parkinsonism: selective lesion of nigrostriatal neurons by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sci. 1985;36:213–8.

    Google Scholar 

  76. Terzioglu M, Galter D. Parkinson’s disease: genetic versus toxic induced rodent models. FEBS J. 2008;275:1384–91.

    CAS  PubMed  Google Scholar 

  77. Acuña-Castroviejo D, Coto-Montes A, Gaia MM, Ortiz GG, Reiter RJ. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci. 1997;60:L23–9.

    Google Scholar 

  78. Khaldy H, Leon J, Escames G, Bikjdaouene L, Acuña-Castroviejo D. Synergistic effects f melatonin and deprenyl protect against MPTP-induced mitochondrial damage and DA depletion. Neurobiol Aging. 2003;24:491–500.

    CAS  PubMed  Google Scholar 

  79. Antolin I, Mayo JC, Sainz RM, del Brio ML, Herrera F, Martin V, et al. Protective effect of melatonin in chronic experimental model of Parkinson’s disease. Brain Res. 2002;943:163–73.

    CAS  PubMed  Google Scholar 

  80. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis. 2000;7:240–50.

    CAS  PubMed  Google Scholar 

  81. Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabo C. Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res. 1997;23:106–16.

    CAS  PubMed  Google Scholar 

  82. Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res. 2005;7:293–318.

    CAS  PubMed  Google Scholar 

  83. Entrena A, Camacho ME, Carrion MD, Lopez-Cara LC, Velasco G, Leon J, et al. Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem. 2005;48:8174–81.

    CAS  PubMed  Google Scholar 

  84. Tapias V, Escames G, Lopez LC, Entrena A, Camacho E, Espinosa A, et al. Melatonin and its brain metabolite N1-acetyl-5-methoxy-kynuramine prevent mitochondrial nitric oxide synthase induction in Parkinsonian mice. J Neurosci Res. 2009;87:3002–10.

    CAS  PubMed  Google Scholar 

  85. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J. 2001;15:164–70.

    CAS  PubMed  Google Scholar 

  86. Thomas B, Mohankumar KP. Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6- tetra hydropyridine in the mouse nigrostriatum. J Pineal Res. 2004;36:25–32.

    CAS  PubMed  Google Scholar 

  87. Saravanan KS, Sindhu KM, Mohankumar KP. Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res. 2005;1049:147–55.

    CAS  PubMed  Google Scholar 

  88. Sindhu KM, Saravanan KS, Mohankumar KP. Behavioural differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res. 2005;1051:25–34.

    CAS  PubMed  Google Scholar 

  89. Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP. L-Deprenyl protects against rotenone-induced oxidative stress mediated dopaminergic neurodegeneration in rats. Neurochem Int. 2006;49:28–40.

    CAS  PubMed  Google Scholar 

  90. Saravanan KS, Sindhu KM, Mohankumar KP. Melatonin protects against rotenone-induced oxidative-stress in a hemiparkinsonian model. J Pineal Res. 2007;42:247–53.

    CAS  PubMed  Google Scholar 

  91. Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. L-DOPA administration enhances 6-hydroxydopamine generation. Brain Res. 2005;1063:180–6.

    CAS  PubMed  Google Scholar 

  92. Borah A, Mohankumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J Pineal Res. 2009;47:293–300.

    CAS  PubMed  Google Scholar 

  93. Przedborski S, Tieu K, Perier C, Vila M. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr. 2004;36:375–9.

    CAS  PubMed  Google Scholar 

  94. Greenmyre JT, Sherer TB, Betarbet R, Panov AV. Complex 1 and Parkinson’s disease. IUBMB Life. 2001;52:135–41.

    Google Scholar 

  95. Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res. 2003;28:1563–74.

    CAS  PubMed  Google Scholar 

  96. Tretter L, Sipos I, Adam-Vizi V. Inhibition of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem Res. 2004;29:569–77.

    CAS  PubMed  Google Scholar 

  97. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Nat Med. 1999;5:1403–9.

    CAS  PubMed  Google Scholar 

  98. Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol. 2003;27:325–55.

    CAS  PubMed  Google Scholar 

  99. Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite, and S-nitrosothiols. Biochim Biophys Acta. 2004;1658:44–9.

    CAS  PubMed  Google Scholar 

  100. Muravchick S, Levy RJ. Clinical implications of mitochondrial dysfunction. Anesthesiology. 2006;105:819–37.

    CAS  PubMed  Google Scholar 

  101. Zhang I, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson’s disease. Pharmacol Ther. 2006;109:33–41.

    CAS  PubMed  Google Scholar 

  102. Arushanian EB. A hormonal drug melatonin in the treatment of cognitive function disorders in parkinsonism. Eksp Klin Farmakol. 2010;73:35–9.

    CAS  PubMed  Google Scholar 

  103. Dowling GA, Mastick J, Colling E, Carter JH, Singer CM, Aminoff MJ. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med. 2005;6:459–66.

    PubMed  Google Scholar 

  104. Medeiros CA, Carvalhedo de Bruin PF, Lopes LA, Magalhaes MC, de Lourdes Seabra M, de Bruin VM. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease: a randomized, double blind, placebo–controlled study. J Neurol. 2007;254:459–64.

    CAS  PubMed  Google Scholar 

  105. Willis GL, Turner EJ. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int. 2007;24:521–37.

    PubMed  Google Scholar 

  106. Beck-Friis J, Borg G, Wetterberg L. Rebound increase of nocturnal serum melatonin levels following evening suppression of bright light exposure in healthy men. Ann N Y Acad Sci. 1985;453:371–5.

    Google Scholar 

  107. Srinivasan V. Psychoactive drugs, pineal gland and affective disorders. Prog Neuropsychopharmacol Biol Psychiatry. 1989;13:653–64.

    CAS  PubMed  Google Scholar 

  108. Turek FW, Gillette MU. Melatonin, sleep and circadian rhythms: rationale for development of specific melatonin agonists. Sleep Med. 2004;5:523–32.

    PubMed  Google Scholar 

  109. Kato K, Hirai K, Nishiyama K, Uchikawa O, Fukatsu K, Ohkawa S, et al. Neurochemical properties of ramelteon (TAK 375), a selective MT1/MT2 receptor agonist. Neuropharmacology. 2005;48:301–10.

    CAS  PubMed  Google Scholar 

  110. Srinivasan V, Zakaria R, Othman Z, Brzezinski A, Prasad A, Brown GM. Melatonergic drugs for therapeutic use in insomnia and sleep disturbances of mood disorders. CNS Neurol Disord Drug Targets. 2012;11:180–9.

    CAS  PubMed  Google Scholar 

  111. Lauterbach EC, Victoroff J, Coburn KL, Shillcutt SD, Doonan SM, Mendez MF. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data. J Neuropsychiatry Clin Neurosci. 2010;22:8–18.

    CAS  PubMed  Google Scholar 

  112. Lauterbach EC, Shillcutt SD, Victoroff J, Coburn KL, Mendez MF. Psychopharmacological neuroprotection in neurodegenerative disease: heuristic clinical applications. J Neuropsychiatry Clin Neurosci. 2010;22:130–54.

    PubMed  Google Scholar 

  113. Imbesi M, Uz T, Dzitoyeva S, Manev H. Stimulatory effects of melatonin receptor agonist, ramelteon on BDNF in mouse cerebellar granule cells. Neurosci Lett. 2008;439:34–6.

    CAS  PubMed  Google Scholar 

  114. Lauterbach EC. The neuropsychiatry of Parkinson’s disease. Minerva Med. 2005;96:155–73.

    CAS  PubMed  Google Scholar 

  115. Lauterbach EC. The neuropsychiatry of Parkinson’s disease and related disorders. Psychiatr Clin North Am. 2004;27:801–25.

    PubMed  Google Scholar 

  116. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J. Pineal Res. 2011;50:97–109.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramanujam Srinivasan MSc, PhD, MAMS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Srinivasan, V. et al. (2014). Melatonin in Parkinson’s Disease and Its Therapeutic Potential. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_17

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics