Skip to main content

Melatonin: An Introduction to Its Physiological and Pharmacological Effects in Humans

  • Chapter
  • First Online:

Abstract

Melatonin is a methoxyindole that, under normal environmental conditions, is synthesized and secreted principally by the pineal gland at night. The endogenous rhythm of secretion is generated by the suprachiasmatic nuclei and entrained to the light/dark cycle. Light is able to either suppress or synchronize melatonin production depending on the light schedule. The nycthemeral rhythm of this hormone can be evaluated by repeated measurement of plasma or saliva melatonin levels or urine levels of 6-sulphatoxymelatonin, the main hepatic metabolite.

Secretion of melatonin adjusts to night length, and its primary physiological function is to convey information concerning the daily cycle of light and darkness to body structures. This information is used for the organization of functions that respond to changes in the photoperiod, such as seasonal rhythms. However, in temperate areas under field conditions, there is only limited evidence for a relationship between seasonal rhythmicity of physiological functions in humans and possible alterations in the melatonin message. In addition, daily melatonin secretion, which is a very robust biochemical signal of night, can be used for the organization of circadian rhythms. Although the evidence for possible functions of this hormone in humans is mainly based on correlative observations between physiological effects and changes in melatonin secretion, there is some evidence that melatonin stabilizes and strengthens the coupling of circadian rhythms, especially of core temperature and sleep-wake rhythms. The circadian organization of other physiological functions, such as immune and antioxidant defenses, hemostasis, and glucose regulation, also depends on the melatonin signal.

The difference between the physiological and pharmacological effects of melatonin is not always clear, but is based upon the dose, and not the duration, of the hormone message. A pharmacological dose provides supraphysiological levels of melatonin, while a “physiological” dose provides plasma levels of the same order of magnitude as a nocturnal peak. However, when a low melatonin dose is given using a simple capsule, a narrow hormone signal is achieved, which does not mimic endogenous secretion. It is admitted that a “physiological” dose provides plasma melatonin levels of the same order of magnitude as a nocturnal peak. Since the regulatory system of melatonin secretion is complex, involving central and autonomic pathways, there are many pathophysiological situations in which melatonin secretion can be disturbed. The resulting change could increase predisposition to a disease, add to the severity of symptoms, or modify the course and outcome of the disorder. Since melatonin receptors are very widely distributed in the body, putative therapeutic indications of this compound are multiple. Great advances in therapeutics could be made by performing multicenter trials in large series of patients in order to establish the efficacy of melatonin and the absence of long-term toxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lerner AB, Case JD, Takakashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80:2587.

    Article  CAS  Google Scholar 

  2. Liu C, Fukuhara C, Wessel 3rd JH, et al. Localization of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell Tissue Res. 2004;315:197–201.

    Article  CAS  PubMed  Google Scholar 

  3. Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci. 2002;47:2336–48.

    Article  CAS  PubMed  Google Scholar 

  4. Slominski A, Pisarchik A, Semak I, et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002;16:896–8.

    CAS  PubMed  Google Scholar 

  5. Champier J, Claustrat B, Besancon R, et al. Evidence for tryptophan hydroxylase and hydroxy-indol-O-methyl-transferase mRNAs in human blood platelets. Life Sci. 1997;60:2191–7.

    Article  CAS  PubMed  Google Scholar 

  6. Cardinali DP, Ladizesky MG, Boggio V, et al. Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res. 2003;34:81–7.

    Article  CAS  PubMed  Google Scholar 

  7. Stefulj J, Hortner M, Ghosh M, et al. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30:243–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hardeland R. Melatonin and 5 methoxytryptamine in non-metazoans. Reprod Nutr Dev. 1999;39:399–408.

    Article  CAS  PubMed  Google Scholar 

  9. Tan DX, Manchester LC, Hardeland R, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2003;34:75–8.

    Article  CAS  PubMed  Google Scholar 

  10. Klein DC, Moore RY. Pineal N-acetyltransferase and hydroxyindole-O-methyltrans-ferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 1979;174:245–62.

    Article  CAS  PubMed  Google Scholar 

  11. Bernard M, Guerlotté J, Grève P, et al. Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod Nutr Dev. 1999;39:325–34.

    Article  CAS  PubMed  Google Scholar 

  12. Stehle JH, Foulkes NS, Molina CA, et al. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature. 1993;365:314–20.

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann RC, McDougle CJ, Schumacher M, et al. Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab. 1993;76:1160–4.

    CAS  PubMed  Google Scholar 

  14. Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B. Folate deficiency alters melatonin secretion in rats. J Nutr. 2002;132:2781–4.

    CAS  PubMed  Google Scholar 

  15. Munoz-Hoyos A, Amoros-Rodriguez I, Molina-Carballo A, et al. Pineal response after pyridoxine test in children. J Neural Transm Gen Sect. 1996;103:833–42.

    Article  CAS  Google Scholar 

  16. Luboshitzky R, Ophir U, Nave R, et al. The effect of pyridoxine administration on melatonin secretion in normal men. Neuro Endocrinol Lett. 2002;23:213–7.

    CAS  PubMed  Google Scholar 

  17. Skene DJ, Bojkowski CJ, Arendt J. Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans. Br J Clin Pharmacol. 1994;37:181–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pardridge WM, Mietus LJ. Transport of albumin-bound melatonin through the blood–brain barrier. J Neurochem. 1980;34:1761–3.

    Article  CAS  PubMed  Google Scholar 

  19. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991;12:151–80.

    Article  CAS  PubMed  Google Scholar 

  20. Geoffriau M, Claustrat B, Veldhuis J. Estimation of frequently sampled nocturnal melatonin production in humans by deconvolution analysis: evidence for episodic or ultradian secretion. J Pineal Res. 1999;27:139–44.

    Article  CAS  PubMed  Google Scholar 

  21. Grof E, Grof P, Brown GM, Arato M, Lane J. Investigations of melatonin secretion in man. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9:609–12.

    Article  CAS  PubMed  Google Scholar 

  22. Morin D, Simon N, Depres-Brummer P, et al. Melatonin high-affinity binding to alpha-1-acid glycoprotein in human serum. Pharmacology. 1997;54:271–5.

    Article  CAS  PubMed  Google Scholar 

  23. Le Bars D, Thivolle P, Vitte PA, et al. PET and plasma pharmacokinetic studies after bolus intravenous administration of 11C melatonin in humans. Nucl Med Biol. 1991;18:357–62.

    Google Scholar 

  24. Waldhauser F, Ehrhart B, Förster E. Clinical aspects of the melatonin action: impact of development, aging, and puberty, involvement of melatonin in psychiatric disease and importance of neuroimmunoendocrine interactions. Experientia. 1993;49:671–81.

    Article  CAS  PubMed  Google Scholar 

  25. Waldhauser F, Boepple PA, Schemper M, et al. Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children. J Clin Endocrinol Metab. 1991;73:793–6.

    Article  CAS  PubMed  Google Scholar 

  26. Brzezinski A, Lynch HJ, Wurtman RJ, Seibel MM. Possible contribution of melatonin to the timing of the luteinizing hormone surge. N Engl J Med. 1987;316:1550–1.

    CAS  PubMed  Google Scholar 

  27. Berga SL, Yen SSC. Circadian pattern of plasma melatonin concentrations during four phases of the human menstrual cycle. Neuroendocrinology. 1990;51:606–12.

    Article  CAS  PubMed  Google Scholar 

  28. Okatani Y, Morioka N, Wakatsuki A. Changes in nocturnal melatonin secretion in perimenopausal women: correlation with endogenous estrogen concentrations. J Pineal Res. 2000;28:111–8.

    Article  CAS  PubMed  Google Scholar 

  29. Iguchi H, Kato KI, Ibayashi H. Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab. 1982;55:27–9.

    Article  CAS  Google Scholar 

  30. Haimov I, Laudon M, Zisapel N, et al. Sleep disorders and melatonin rhythms in elderly people. Br Med J. 1994;309:167.

    Article  CAS  Google Scholar 

  31. Hirata F, Hayaishi O, Tokuyama T, Senoh S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem. 1974;249:1311–3.

    CAS  PubMed  Google Scholar 

  32. Gunes A, Dahl ML. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9:625–37. Review.

    Article  CAS  PubMed  Google Scholar 

  33. Härtter S, Korhonen T, Lundgren S, Rane A, Tolonen A, Turpeinen M, Laine K. Effect of caffeine intake 12 or 24 hours prior to melatonin intake and CYP1A2*1F polymorphism on CYP1A2 phenotyping by melatonin. Basic Clin Pharmacol Toxicol. 2006;99:300–4.

    Article  PubMed  Google Scholar 

  34. Ursing C, von Bahr C, Brismar K, Röjdmark S. Influence of cigarette smoking on melatonin levels in man. Eur J Clin Pharmacol. 2005;61:197–201.

    Article  CAS  PubMed  Google Scholar 

  35. Francis PL, Leone AM, Young IM, et al. Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine. Clin Chem. 1987;33:453–7.

    CAS  PubMed  Google Scholar 

  36. Arendt J, Bojkowski C, Franey C, et al. Immunoassay of 6-hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-hour rhythm with Atenolol. J Clin Endocrinol Metab. 1985;60:1166–73.

    Article  CAS  PubMed  Google Scholar 

  37. Iguchi H, Kato KI, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J Clin Endocrinol Metab. 1982;54:1025–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ludemann P, Zwernemann S, Lerchl A. Clearance of melatonin and 6-sulfatoxymelatonin by hemodialysis in patients with end-stage renal disease. J Pineal Res. 2001;31:222–7.

    Article  CAS  PubMed  Google Scholar 

  39. Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13:1065–79.

    CAS  PubMed  Google Scholar 

  40. Moore RY. The fourth C.U. Ariens Kappers lecture. The organization of the human circadian timing system. Prog Brain Res. 1992;93:99–115.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen RA, Albers HE. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology. 1991;41:726–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lewy AJ, Wehr TA, Goodwin FK, et al. Light suppresses melatonin secretion in humans. Science. 1980;210:1267–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bokjowski CJ, Aldhous ME, English J, et al. Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dim light in man. Horm Metab Res. 1987;19:437–40.

    Article  Google Scholar 

  44. Thapan K, Arendt J, Skene D. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535:261–7.

    Article  CAS  PubMed  Google Scholar 

  45. Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21:6405–12.

    CAS  PubMed  Google Scholar 

  46. Chellappa SL, Steiner R, Blattner P, Oelhafen P, Götz T, Cajochen C. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? Prog Brain Res. 2011;190:119–33.

    Article  PubMed  Google Scholar 

  47. Ruberg FL, Skene DJ, Hanifin JP, et al. Melatonin regulation in humans with color vision deficiencies. J Clin Endocrinol Metab. 1996;81:2980–5.

    CAS  PubMed  Google Scholar 

  48. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.

    Article  CAS  PubMed  Google Scholar 

  49. Hughes S, Hankins MW, Foster RG, Peirson SN. Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res. 2012;199:19–40.

    Article  CAS  PubMed  Google Scholar 

  50. Moore RY. The innervation of the mammalian pineal gland. In: Reiter RJ, editor. The pineal and reproduction. Basel: Karger; 1978. p. 1–29.

    Google Scholar 

  51. Moller M, Baeres FMM. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002;309:139–50.

    Article  CAS  PubMed  Google Scholar 

  52. Cagnacci A. Melatonin in relation to physiology in adult humans. J Pineal Res. 1996;21:200–13.

    Article  CAS  PubMed  Google Scholar 

  53. Monteleone P, Tortorella A, Borriello R, et al. Suppression of nocturnal plasma melatonin levels by evening administration of sodium valproate in healthy humans. Biol Psychiatry. 1997;41:336–41.

    Article  CAS  PubMed  Google Scholar 

  54. Warman GR, Tripp HM, Warman VL, Arendt J. Circadian neuroendocrine physiology and electromagnetic field studies: precautions and complexities. Radiat Prot Dosimetry. 2003;106:369–73.

    Article  CAS  PubMed  Google Scholar 

  55. Lewy AJ, Sack RL. The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int. 1989;6:93–102.

    Article  CAS  PubMed  Google Scholar 

  56. Nowak R, McMillen IC, Redman J, Short RV. The correlation between serum and salivary melatonin concentrations and urinary 6-hydroxymelatonin sulphate excretion rates: two non-invasive techniques for monitoring human circadian rhythmicity. Clin Endocrinol (Oxf). 1987;27:445–52.

    Article  CAS  Google Scholar 

  57. Deacon S, Arendt J. Posture influences melatonin concentrations in plasma and saliva in humans. Neurosci Lett. 1994;167:191–4.

    Article  CAS  PubMed  Google Scholar 

  58. Chazot G, Claustrat B, Broussolle E, Lapras C. Headache and depression: recurrent symptoms in adult pinealectomized patients. In: Nappi G et al., editors. Headache and depression: serotonin pathways as a common clue. New York: Raven; 1991. p. 299–303.

    Google Scholar 

  59. Krieg SM, Slawik H, Meyer B, Wiegand M, Stoffel M. Sleep disturbance after pinealectomy in patients with pineocytoma WHO°I. Acta Neurochir. 2012;154:1399–405.

    Article  PubMed  Google Scholar 

  60. Wurtman RJ, Axelrod J, Chu EW. Melatonin, a pineal substance: its effect on the rat ovary. Science. 1963;141:277–80.

    Article  CAS  PubMed  Google Scholar 

  61. Srinivasan V, Spence WD, Pandi-Perumal SR, Zakharia R, Bhatnagar KP, Brzezinski A. Melatonin and human reproduction: shedding light on the darkness hormone. Gynecol Endocrinol. 2009;25:779–85.

    Article  CAS  PubMed  Google Scholar 

  62. Yoneyama S, Hashimoto S, Honma K. Seasonal changes of human circadian rhythms in Antarctica. Am J Physiol. 1999;277:1091–7.

    Google Scholar 

  63. Wehr TA. The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab. 1991;73:1276–80.

    Article  CAS  PubMed  Google Scholar 

  64. Wehr TA, Aeschbach D, Ducan Jr WC. Evidence for a biological dawn and dusk in the human circadian timing system. J Physiol. 2001;535:937–51.

    Article  CAS  PubMed  Google Scholar 

  65. Wehr TA, Giesen HA, Moul DE, et al. Suppression of men’s responses to seasonal changes in day length by modern artificial lighting. Am J Physiol. 1995;269:173–8.

    Google Scholar 

  66. Kauppila A, Kivela A, Pakarinen A, Vakkuri O. Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocrinol Metab. 1987;65:823–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wehr TA. Photoperiodism in humans and other primates: evidence and implications. J Biol Rhythms. 2001;16:348–64.

    Article  CAS  PubMed  Google Scholar 

  68. Lewy AJ, Sack RL, Miller LS, Hoban TM. Antidepressant and circadian phase shifting effects of light. Science. 1987;235:352–4.

    Article  CAS  PubMed  Google Scholar 

  69. Wehr TA, Jacobsen FM, Sack DA, et al. Phototherapy of seasonal affective disorder: time of day and suppression of melatonin are not critical for antidepressant effects. Arch Gen Psychiatry. 1986;43:870–5.

    Article  CAS  PubMed  Google Scholar 

  70. Wirz-Justice A, Graw P, Krauchi K, et al. Light therapy in seasonal affective disorder is independent of time of day or circadian phase. Arch Gen Psychiatry. 1993;50:929–37.

    Article  CAS  PubMed  Google Scholar 

  71. Armstrong SM. Melatonin: the internal zeitgeber of mammals? Pineal Res Rev. 1989;7:157–202.

    CAS  Google Scholar 

  72. Cardinali DP, Pevet P. Basic aspects of melatonin action. Sleep Med Rev. 1998;2:175–90.

    Article  CAS  PubMed  Google Scholar 

  73. Strassmann RJ, Qualls CR, Lisansky EJ, Peake GT. Elevated rectal temperature produced by all-night bright light is reversed by melatonin infusion in men. J Appl Physiol. 1991;71:2178–82.

    Google Scholar 

  74. Van der Helm-van Mil AH, van Someren EJ, van den Boom R, et al. No influence of melatonin on cerebral blood flow in humans. J Clin Endocrinol Metab. 2003;4:5989–94.

    Article  Google Scholar 

  75. Torres-Farfan C, Richter HG, Rojas-Garcia P, et al. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab. 2003;88:450–8.

    Article  CAS  PubMed  Google Scholar 

  76. Akerstedt T, Froberg JE, Friberg Y, Wetterberg L. Melatonin excretion, body temperature and subjective arousal during 64 hours of sleep deprivation. Psychoneuroendocrinology. 1979;4:219–25.

    Article  CAS  PubMed  Google Scholar 

  77. Cajochen C, Zeitzer JM, Czeisler CA, Dijk DJ. Dose–response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav Brain Res. 2000;115:75–83.

    Article  CAS  PubMed  Google Scholar 

  78. Aeschbach D, Sher L, Postolache TT, et al. A longer biological night in long sleepers than in short sleepers. J Clin Endocrinol Metab. 2003;88:26–30.

    Article  CAS  PubMed  Google Scholar 

  79. Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics. 2003;112:373–81.

    Article  PubMed  Google Scholar 

  80. Lewy AJ, Ahmed S, Latham Jackson JM, Sack RL. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int. 1992;9:380–92.

    Article  CAS  PubMed  Google Scholar 

  81. Zaidan R, Geoffriau M, Brun J, et al. Melatonin in able to influence its secretion in humans: description of a phase-response curve. Neuroendocrinology. 1994;60:105–12.

    Article  CAS  PubMed  Google Scholar 

  82. Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem. 2002;2:167–79.

    Article  CAS  PubMed  Google Scholar 

  83. Withyachumnarnkul B, Nonaka KO, Santana C, et al. Interferon-gamma modulates melatonin production in rat pineal glands in organ culture. J Interferon Res. 1990;10:403–11.

    Article  CAS  PubMed  Google Scholar 

  84. Sutherland ER, Martin RJ, Ellison MC, Kraft M. Immunomodulatory effects of melatonin in asthma. Am J Respir Crit Care Med. 2002;166:1055–61.

    Article  PubMed  Google Scholar 

  85. Sulli A, Maestroni GJM, Villaggio B, et al. Melatonin serum levels in rheumatoid arthritis. Ann N Y Acad Sci. 2002;966:276–83.

    Article  CAS  PubMed  Google Scholar 

  86. Bartsch H, Bartsch C. Effect of melatonin on experimental tumors under different photoperiods and times of administration. J Neural Transm. 1981;52:269–79.

    Article  CAS  PubMed  Google Scholar 

  87. Lissoni P, Chilelli M, Villa S, et al. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res. 2003;35:12–5.

    Article  CAS  PubMed  Google Scholar 

  88. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother. 2006;60:97–108. Review.

    Article  CAS  PubMed  Google Scholar 

  89. Cardinali DP, Golombek DA, Rosenstein RE, et al. Melatonin site and mechanism of action: single or multiple? J Pineal Res. 1997;23:32–9.

    Article  CAS  PubMed  Google Scholar 

  90. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62:343–80.

    Article  CAS  PubMed  Google Scholar 

  91. Ebisawa T, Uchiyama M, Kajimura N, et al. Genetic polymorphisms of human melatonin 1b receptor gene in circadian rhythm sleep disorders and controls. Neurosci Lett. 2000;280:29–32.

    Article  CAS  PubMed  Google Scholar 

  92. Carrillo-Vico A, Garcia-Perganeda A, Naji L, et al. Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci. 2003;60:2272–8.

    Article  CAS  PubMed  Google Scholar 

  93. Tan DX, Chen LD, Poegeller B, et al. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  94. Pandi-Perumal SR, Bahammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23:267–300.

    Article  CAS  PubMed  Google Scholar 

  95. Manev H, Uz T, Kharlamov A, et al. In vivo protection against kainate-induced apoptosis by the pineal hormone melatonin: effect of exogenous melatonin and circadian rhythm. Restor Neurol Neurosci. 1996;9:251–6.

    CAS  PubMed  Google Scholar 

  96. Benot S, Goberna R, Reiter RJ, Garcia-Mauriño S, Osuna C, Guerrero JM. Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res. 1999;27:59–64.

    Article  CAS  PubMed  Google Scholar 

  97. Gitto E, Karbownik M, Reiter RJ, et al. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50:756–60.

    Article  CAS  PubMed  Google Scholar 

  98. Fulia F, Gitto E, Cuzzocrea S, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res. 2001;31:343–9.

    Article  CAS  PubMed  Google Scholar 

  99. Benes L, Claustrat B, Horriere F, Geoffriau M, Konsil J, Parrott KA, Degrande G, McQuinn RL, Ayres JW. Transmucosal, oral controlled release, and transdermal drug administration in human subjects: a cross-over study using melatonin. J Pharm Sci. 1997;86:1115–9.

    Article  CAS  PubMed  Google Scholar 

  100. Zhdanova IV, Wurtman RJ, Balcioglu A, Kartashov AI, Lynch HJ. Endogenous melatonin levels and the fate of exogenous melatonin: age effects. J Gerontol A Biol Sci Med Sci. 1998;53A:B293–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Claustrat PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Claustrat, B. (2014). Melatonin: An Introduction to Its Physiological and Pharmacological Effects in Humans. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_14

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics