Skip to main content

Detection of Plant Viruses in Seeds

  • Chapter
  • First Online:
Seed-borne plant virus diseases
  • 2043 Accesses

Abstract

The methods for detecting seed-transmitted virus infection should be rapid, reliable and sensitive besides being simple to achieve results. This has been a challenge since the advent of the discipline of plant virology over 100 years ago, and a great variety of methods have been developed since that time.

Based on biological, serological and molecular tests, the virus and viroid diseases are diagnosed. In biological tests, a close and careful observation on the seed morphology in certain cases gives a tentative indication of the presence of virus (es). Grow-out test also helps in seed-borne virus diagnosis. Among serological tests Ouchterlony, ELISA and its variants, dot-immunobinding assay, TBIA, and Immunosorbent electron microscopy are widely used for virus detection. Among antibody-based detections, and Polymerase chain reaction (PCR) and its variants, (real-time PCR, RT-PCR, IC-PCR, IC-RT-PCR, multiplex PCR), are extensively practice. Protocols have been implemented in the field using portable real-time PCR machines for same-day, on-site results; cDNA probes which are labelled with radioactive markers or nonradioactive markers are used for diagnosis of seed-borne virus and viroid diseases. Array technology has revolutionised the world of viral diagnosis because of its efficiency in screening a large volume of infected seed samples in a single array plate or reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi I, Ikotin T, Winter S, Thottappilly G, Atiri GI (2001) Investigation on seed transmission of cucumber mosaic virus in cowpea. Afr Crop Sci J 9:677–684

    Google Scholar 

  • Abu Samah N, Randles RW (1983) A comparison of Australian bean yellow mosaic virus isolates using molecular hybridization analysis. Ann Appl Biol 103:97–107

    Google Scholar 

  • Adams DB, Kuhn CW (1977) Seed transmission of peanut mottle virus. Phytopathology 67:1126–1129

    Google Scholar 

  • Afanasiev MM (1956) Occurrence of barley stripe mosaic in Montana. Plant Dis Rep 40:142

    Google Scholar 

  • Agarwal VK, Nene YL, Beniwal SPS, Verma HS (1979) Transmission of bean common mosaic virus through urdbean (Phaseolus mungo L.) seeds. Seed Sci Technol 7:103–108

    Google Scholar 

  • Agindotan B, Perry KL (2008) Macroarray detection of eleven potato-infecting viruses and Potato spindle tuber viroid. Plant Dis 92:730–740

    CAS  Google Scholar 

  • Agindoton B, Perry KL (2007) Macroarray detection of plant RNA viruses using randomly primed and amplified complementary DNAs from infected plants. Phytopathology 97:119–127

    Google Scholar 

  • Ahlawat YS (2010) Diagnosis of plant viruses and allied pathogens. Studium Press (India) Pvt Ltd, New Delhi, p 224

    Google Scholar 

  • Akinjogunla OJ, Taiwo MA, Kareem KT (2008) Immunological and molecular diagnostic methods for detection of viruses infecting cowpea (Vigna unguiculata). Afr J Biotechnol 7(13):2099–2103

    CAS  Google Scholar 

  • Albrechtsen SE (2006) Testing methods for seed transmitted viruses: principles and protocols. CABI Publishing, Wallingford, pp 1–268

    Google Scholar 

  • Alconero R, Hoch JG (1989) Incidence of pea seed borne mosaic virus pathotypes in the US national Pisum germplasm collection. Ann Appl Biol 114:311–315

    Google Scholar 

  • Ali A, Kobayashi M (2010) Seed transmission of cucumber mosaic virus in pepper. J Virol Methods 163:234–237

    PubMed  CAS  Google Scholar 

  • Ali A, Randles JW (1997) Early season survey of pea viruses in Pakistan and the detection of two new pathotypes of Pea seed-borne mosaic potyvirus. Plant Dis 81:343–347

    Google Scholar 

  • Allen RN, Dale JL (1981) Application of rapid biochemical methods for detecting avocado sunblotch disease. Ann Appl Biol 98:451–461

    Google Scholar 

  • Allen RN, Palukaitis P, Symons RH (1981) Purified avocado sunblotch viroid causes disease in avocado seedlings. Aust Plant Pathol 10:3–32

    Google Scholar 

  • Almeida AMR (1981) Influence of different percentages of seed coat mottling on the performance of the soybean crop. Pesquisa Agropecuaria Brasileira 16:241–244

    Google Scholar 

  • Alvarez M, Campbell RN (1978) Transmission and distribution of squash mosaic virus in seeds of cantaloupe. Phytopathology 68:257–263

    Google Scholar 

  • Andayani WR, Sumardiyono YB, Hartono S, Yudono P (2011) Incidence of soybean mosaic disease in East Java Province. Agrivita 33(1):15–21

    Google Scholar 

  • Andres GA, Hsu KC, Seegal BC (1978) Immunologic techniques for the identification of antigens and antibodies by electron microscopy. In: Weir DM (ed) Handbook of experimental immunology, 3rd edn. Blackwell Scientific Publications, Oxford, pp 27.1–37.44

    Google Scholar 

  • Anonymous (1983) First Inter-African symposium on rodents and grain-eating birds in agriculture in silviculture and in the domain of public health; Report and Recommendations, Inter-African Phytosanitary Council, Yaounde

    Google Scholar 

  • Anonymous (1984) Diseases of grain legumes. In Rothamsted experimental station report for 1983. Harpenden, Herts, UK, pp 125–126

    Google Scholar 

  • Avegelis A, Barba M (1986) Application of ELISA for indexing melon necrotic spot virus in melon seeds. Ann spermgitale Pathologia Vegerale Rome 11:107–111

    Google Scholar 

  • Avegelis A, Katis N (1989a) Identification of alfalfa mosaic virus in Greek alfalfa crops. J Phytopathol 125:231–237

    Google Scholar 

  • Avegelis AD, Katis N (1989b) Occurrence of squash mosaic virus in melons in Greece. Plant Pathol 38:111–113

    Google Scholar 

  • Baier H, Shepherd RJ (1978) Serologically specific electron microscopy in the quantitative measurement of two isometric viruses. Phytopathology 68:533–538

    Google Scholar 

  • Ball EM (1973) Solid phase radioimmuno-assay for plant viruses. Virology 55:516–520

    PubMed  CAS  Google Scholar 

  • Ball EM (1974) Serological tests for the identification of plant viruses. Ann Phytopathol Soc Monogr 31:1–7

    Google Scholar 

  • Ball EM, Brakke MK (1968) Leaf-dip serology for electron microscopic identification of plant viruses. Virology 36:152–155

    Google Scholar 

  • Bantarri EE, Franc GD (1982) Enzyme-linked immunosorbent assay with single or combined antisera for viruses S and X in potato tubers and plants. Am J Potato Res 52:375–387

    Google Scholar 

  • Banttari EE, Goodwin PH (1985) Detection of potato viruses S, X and Y by enzyme-linked immunosorbent assay on nitrocellulose membranes (Dot-ELISA). Plant Dis 69:202–205

    Google Scholar 

  • Barba M (1986) Detection of Apple mosaic and Prunus necrotic ring spot viruses in almond by ELISA. Archiev fur Phytopathol Pflanzenschutz 22:279–282

    Google Scholar 

  • Barba M, Hadidi A (2008) DNA microarrays: technology, applications and potential applications for the detection of plant viruses and virus – like pathogens. In: Rao GP, Valverde RA, Dovas CI (eds) Techniques in diagnosis of plant viruses. Studium LLC Press, Houston, pp 227–247

    Google Scholar 

  • Barbara DJ, Clark MF (1982) A simple indirect ELISA using F (ab’)2 fragments of immunoglobulins. J Gen Virol 58:315–322

    PubMed  CAS  Google Scholar 

  • Bariana HS, Shannon AL, Chu PWG, Waterhouse PM (1994) Detection of five seed-borne legume viruses in one sensitive multiplex polymerase chain reaction test. Phytopathology 84:1201–1205

    CAS  Google Scholar 

  • Bar-Joseph M, Salomon R (1980) Heterologous reactivity of tobacco mosaic virus strains in enzyme linked immunosorbent assays. J Gen Virol 47:509–512

    Google Scholar 

  • Bar-Joseph MJ, Garnsey SM, Gonsalves D, Moscovitz M, Purcifull DE, Clark MF, Loebenstein G (1979) The use of enzyme linked immunosorbent assay for detection of citrus tristeza virus. Phytopathology 69:190–194

    Google Scholar 

  • Bar-Joseph M, Rosner A, Moscovitz M, Hull R (1983) A simple procedure for the extraction of double-stranded RNA from viral infected plants. J Virol Methods 6:1–8

    PubMed  CAS  Google Scholar 

  • Bashir M, Hampton RO (1993) Natural occurrence of five seed borne cowpea viruses in Pakistan. Plant Dis 77:948–951

    Google Scholar 

  • Bashir M, Hampton HO (1996) Serological and biological comparisons of Blackeye cowpea mosaic and potyvirus isolates seed – borne in Vigna unguiculata (L.) Wasp. J Phytopathol 144:257–263

    Google Scholar 

  • Bashir M, Hassan S (1998) Diagnostic methods in plant viruses. Pakistan Agricultural Research Council, Islamabad, 292 pp

    Google Scholar 

  • Baulcombe DC, Boulton RE, Flavell RB, Jellis GJ (1984) Recombinant DNA probes for detection of viruses in plants. British Crop Protect Conf – Pests Dis 3B–2:207–213

    Google Scholar 

  • Bazwa MA, Pacumbaba RP (1996) Location of soybean mosaic virus in seed-parts of individual dormant and germinating mottled and non-mottled soybean seeds. J Phytopathol 144:151–155

    Google Scholar 

  • Behl MK, Bhardwaj SV, Chowfla SV (1995) Detection of seed borne viruses in horticulture crops by DAC –ELISA variant. In: Gupta VK, Sharma RC (eds) Proceedings of symposium on integrated disease management and plant health. Scientific Publishers, Jodhpur, pp 243–246

    Google Scholar 

  • Beier H, Shepherd RJ (1978) Serologically specific electron microscopy in the quantitative measurement of two isometric viruses. Phytopathology 68:533–538

    Google Scholar 

  • Bellardi MG, Bertaccini A (1991) Parsley seeds infected by strawberry latent ring spot virus (SLRV). Phytopathol Mediterr 30:198–199

    Google Scholar 

  • Beniwal SPS, Chaubey SN, Bharatan N (1984) Detection of Urd bean leaf crinkle virus in urdbean seeds. Seed Res 12(1):101–104

    Google Scholar 

  • Benner HI, Hill JH, Durand DP (1990) Detection of soybean mosaic virus by enzyme-linked fluorescent assay (ELFA). Seed Sci Technol 18:23–31

    Google Scholar 

  • Berger PH, Thornbury DW, Pirone TP (1984) Highly sensitive serological detection of potato virus Y. Phytopathology 84:847

    Google Scholar 

  • Bernardy MG, Jacoli GG, Rajetli HWJ (1987) Rapid detection of potato spindle tuber viroid (PSTVd) by dot blot hybridization. Phytopathol Z 118:171–180

    Google Scholar 

  • Bharathan N, Reddy DVR, Rajeswari R, Murthy VK, Rao VR (1984) Screening of peanut germplasm lines by enzyme linked immunosorbent assay for seed transmission of peanut mottle virus. Plant Dis 68:757–758

    Google Scholar 

  • Bijaisoradat M, Kuhn CW (1988) Detection of two viruses in peanut seeds by complementary DNA hybridization tests. Plant Dis 72:956–959

    Google Scholar 

  • Blaszczak W (1963) Seed transmission of narrowleavedness of yellow lupin (NYL). Genet Pol 4:65–77

    Google Scholar 

  • Boben J, Kramberger P, Petrovic N, Cankar K, Peterka M, Strancar A, Ravnikar M (2007) Detection and quantification of Tomato mosaic virus in irrigation waters. Eur J Plant Pathol 118:59–71

    CAS  Google Scholar 

  • Boccardo G, Beaver RG, Randles JW, Imperial JS (1981) Tinangaja and bristle top, coconut disease of uncertain etiology in Guam and their relationship to cadang cadang disease of coconut in Philippines. Phytopathology 71:1104–1107

    CAS  Google Scholar 

  • Boccardo G, Lisa V, Milne RG (1983) Cryptic virus in plants. In: Company RW, Bishop DHL (eds) Double-stranded RNA ‘viruses’. Elsevier, Amsterdam, pp 425–430

    Google Scholar 

  • Boccardo G, Lisa V, Luisoni E, Milne RG (1987) Cryptic plant viruses. Adv Virus Res 32:171–214

    PubMed  CAS  Google Scholar 

  • Bode L, Beutin L, Kohler H (1984) Nitrocellulose – enzyme-linked immunosorbent assay (NC-ELISA) – a sensitive technique for the rapid visual detection of both viral antigens and antibodies. J Virol Methods 8:111–121

    PubMed  CAS  Google Scholar 

  • Boonham N, Tomlinson J, Mumford R (2007) Microarrays for rapid identification of plant viruses. Ann Rev Phytopathol 45:307–328

    CAS  Google Scholar 

  • Borkhardt B, Vongsasitorn D, Albrechtsen SE (1994) Chemiluminescent detection of potato spindle tuber viroid in true potato seed using a digoxigenin labeled DNA probe. Potato Res 37:249–255

    Google Scholar 

  • Bos L (1976) Problems and prospects in plant virus identification. EPPO Bull 6:63–90

    Google Scholar 

  • Bos L (1999) Serology and electron microscopy. In: Plant viruses, unique and intriguing pathogens. A text book of plant virology. Backhuys Publisher, Leiden

    Google Scholar 

  • Bos L, van der Want JPH (1962) Early browning of pea, a disease caused by a soil and seed-borne virus. Tijdschr PIZiekt 68:368–390

    Google Scholar 

  • Bossennec JM, Maury Y (1978) Use of the ELISA technique for the detection of soybean mosaic virus in soybean seeds. Ann de Phytopathol 10:263–268

    Google Scholar 

  • Boswell K, Gibbs A (1986) The VIDE data bank for plant viruses. In: Jones RAC, Torrance L (eds) Developments and applications in virus testing. Association of Application Biologists, Wellesbourne, pp 283–287

    Google Scholar 

  • Boulton MI, Markham PG (1986) The use of squash blotting to detect plant pathogens in insect vectors. In: Jones RAC, Torrance L (eds) Developments and applications in virus testing. Association of Application Biologists, Wellesbourne

    Google Scholar 

  • Bowers GR Jr, Goodman RM (1979) Soybean mosaic virus: infection of soybean seed parts and seed transmission. Phytopathology 69:569–572

    Google Scholar 

  • Brlansky RH, Derrick KS (1979) Detection of seed borne plant viruses using serologically specific electron microscopy. Phytopathology 69:96–100

    Google Scholar 

  • Broadbent L (1965) The epidemiology of tomato mosaic. XI. Seed-transmission of TMV. Ann Appl Biol 56:177–205

    CAS  Google Scholar 

  • Broadbent L, Tinsley TW, Buddin W, Roberts ET (1951) The spread of lettuce mosaic in the field. Ann Appl Biol 38:689–706

    Google Scholar 

  • Bryant GR, Hill JH, Bailey TB, Tachibana H, Durand DP, Bennet HI (1982) Detection of soybean mosaic virus in seed by solid-phase radio-immunoassay. Plant Dis 66:693–695

    Google Scholar 

  • Bryant GR, Durand DP, Hill JH (1983) Development of a solid radio immunoassay for the detection of soybean mosaic virus. Phytopathology 73:623–629

    CAS  Google Scholar 

  • Bystricka D, Lenz O, Mraz I, Pilterova L, Kmoch S, Sip M (2005) Oligonucleotide – based microarray. A new improvement in microarray detection of plant viruses. J Virol Methods 128:176–182

    PubMed  CAS  Google Scholar 

  • Cai ZN, Xu ZY, Wang D, Yu SL (1986) Studies on the detection of peanut seed-borne viruses of enzyme linked immunosorbent assay (ELISA). Acts Phytopathol Sinica 16:23–28

    Google Scholar 

  • Candresse T, Hammond RW, Hadidi A (1998) Detection and identification of plant viruses and viroids using polymerase chain reaction (PCR). In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 399–416, pp 684

    Google Scholar 

  • Carroll TW (1979) Methods of detecting seedborne plant viruses. J Seed Technol 4(2):82–95

    Google Scholar 

  • Carroll TW, Gossel PL, Batchelor DL (1979a) Use of sodium dodecyl sulfate in serodiagnosis of barley stripe mosaic virus in embryos and leaves. Phytopathology 69:12–14

    Google Scholar 

  • Carroll TW, Gossel PL, Hockett EA (1979b) Inheritance of resistance to seed transmission of barley stripe mosaic virus in barley. Phytopathology 69:431–433

    Google Scholar 

  • Castellano MA, De Stradis A, Minafra A, Boscia D, Martelli GP (2009) Seed transmission of Fig latent virus 1. J Plant Pathol 91:697–700

    Google Scholar 

  • Chalam VC, Khetarpal RK, Mishra A, Jain A, Gupta GK (2004) Seed transmission of soybean mosaic potyvirus in soybean cultivars. Indian J Mycol Plant Pathol 34:86–87

    Google Scholar 

  • Chalam VC, Khetarpal RK, Parakh DB, Maurya AK, Jain A, Singh S (2005) Interception of seed transmitted viruses in French bean germplasm imported during 2002–2003. Indian J Plant Protect 33(1):134–138

    Google Scholar 

  • Chalam VC, Khetarpal RK, Parakh DB, Maurya AK, Jain A (2007) Methodology involved in detection of exotic viruses in seed material imported into India. In: Proceedings of the 2nd Asian congress of mycology and plant pathology, Hyderabad (India) 19–22 December 2007, p 401 (Abstr)

    Google Scholar 

  • Chalam VC, Khetarpal RK, Prakash DB, Deepti S, Promil K, Maurya AK (2009a) Detection and management of risk of introducing seed-transmitted viruses associated with legume germplasm imported into India. Plant Dis Res 24:98–99

    Google Scholar 

  • Chalam VC, Parakh DB, Khetarpal RK, Maurya AK, Pal D (2009b) Interception of seed transmitted viruses in broad bean germplasm imported into India during 1996–2006. Indian J Virol 20(2):83–87

    Google Scholar 

  • Chand D, Chalam VC, Pant RP, Khetrapal RK (2004) Detection and symptomatology of seed-transmitted black gram mottle virus in Vigna mungo. J Mycol Plant Pathol 34:202–204

    Google Scholar 

  • Chen L, Duan DP, Hill JH (1982) Detection of soybean mosaic virus pathogenic strains by enzyme-linked immunosorbent assay using polystyrene plates and beads as the solid phase. Phytopathology 72:117–118

    Google Scholar 

  • Chen J, Torrance L, Cowan GH, MacFalbane SA, Stubbs G, Wilson TMA (1997) Monoclonal antibodies detect a single amino acid difference between the coat proteins of soil-borne wheat mosaic virus isolates; implications for virus structure. Phytopathology 87:295–301

    PubMed  CAS  Google Scholar 

  • Chester IB, Hill SA, Wright DM (1983) Serological detection of ryegrass mosaic virus and ryegrass seed-borne virus. Ann Appl Biol 102:325–329

    Google Scholar 

  • Childress AM, Ramsdell DC (1986) Direction of blueberry leaf mottle virus in highbush blueberry pollen and seed. Phytopathology 76:1333–1337

    Google Scholar 

  • Chitra TR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (1999) Infection of tomato and bell pepper of ToMV and TMV at different growth stages and establishment of virus in seeds. J Plant Pathol 81:123–126

    Google Scholar 

  • Chitra TR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (2002) Indexing of leaf and seed samples of tomato and bell pepper for tobamoviruses. Indian Phytopathol 55:84–86

    Google Scholar 

  • Choi HS, Kim MK, Park JW, Lee SH, Kim KH, Kim JS, Were HK, Choi JK, Takanami Y (2006) First report of the Peanut stripe strain of Bean common mosaic virus (BCMV – PSt.) infecting mungbean in Korea. Plant Pathol J 22(1):46–50

    Google Scholar 

  • Chowdhury AK, Nath PS (1983) A rapid method of inoculation of ULCV using germinated seed. Indian J Exp Biol 21:158

    Google Scholar 

  • Christie RG, Edwardson JR (1977) Light and electron microscopy of plant virus inclusions. Fla Agric Exp Stn Bull 9, 155 pp

    Google Scholar 

  • Christie RG, Edwardson JR (1986) Light microscopic techniques for detection of plant virus inclusions. Plant Dis 70:273–279

    Google Scholar 

  • Chu PWG, Francki RIB, Randles JW (1983) Detection, isolation and characterization of high molecular weight double stranded RNAs in plants infected with velvet tobacco mottle virus. Virology 126:480–492

    PubMed  CAS  Google Scholar 

  • Chung BN, Pak HS (2008) Seed transmission of chrysanthemum stunt viroid in chrysanthemum. Plant Pathol J 24(1):31–35

    CAS  Google Scholar 

  • Cicek Y, Yorganci U (1991) Studies on the incidence of tobacco mosaic virus on certified seed of tomato, pepper and eggplant in Aegean region. J Turkish Phytopathol 20:57–68

    Google Scholar 

  • Clark MF (1981) Immunosorbent assays in plant pathology. Annu Rev Phytopathol 19:83–106

    CAS  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    PubMed  CAS  Google Scholar 

  • Clark MF, Bar-Joseph M (1984) Enzyme immunosorbent assay in plant virology. In: Maramorosch K, Koprowski H (eds) Methods in virology, vol 7. Academic, New York, pp 51–85

    Google Scholar 

  • Clark MF, Lister RM, Bar-Joseph M (1986) ELISA techniques. Methods Enzymol 118:742–766

    CAS  Google Scholar 

  • Cockbain AJ, Bowen R, Vorra-urai S (1976) Seed transmission of broad bean stain virus and Echtes Ackerbohnenmosaik-Virus in field bean (Vicia faba). Ann Appl Biol 84:321–332

    Google Scholar 

  • Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  • Cooper JI, Massalski PR, Edwards ML (1984) Cherry leaf roll virus in the female gametophyte and seed of birch and its relevance to vertical virus transmission. Ann Appl Biol 105:55–64

    Google Scholar 

  • Cooper JI, Edwards ML, Bradley J (1986) Protein a-alkaline phosphate in ELISA detection of cherry leaf roll and prune dwarf viruses in cherry seeds. Acta Hort 193:305–306

    Google Scholar 

  • Cordoba-Selles MC, Garcia-Randez A, Alfaro-Fernandez A, Jorda-Gutierrez C (2007) Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis 91:1250–1254

    Google Scholar 

  • Coutts BA, Prince RT, Jones RAC (2008) Further studies on Pea seed – borne mosaic virus in cool – season crop legumes: responses to infection and seed quality defects. Aust J Agric Res 59:1130–1145

    Google Scholar 

  • Coutts BA, Prince RT, Jones RAC (2009) Quantifying effects of seedborne inoculum on virus spread, yield losses and seed infection in the Pea seed – borne mosaic virus - field pea pathosystem. Phytopathology 99:1156–1167

    PubMed  CAS  Google Scholar 

  • Crowe FJ, Pappu HR (2005) Outbreak of Iris yellow spot virus in onion seed crops in Central Oregon. Plant Dis 89:105

    Google Scholar 

  • Crowley NC (1957) Studies on the seed transmission of plant virus diseases. Aust J Biol Sci 10:449–464

    Google Scholar 

  • Culver JN, Sherwood JL (1988) Detection of peanut stripe virus in peanut seed by an indirect enzyme-linked immunosorbent assay using monoclonal antibody. Plant Dis 72:676–679

    Google Scholar 

  • Culver JN, Sherwood JL, Sanborn MR (1989) Use of monoclonal antibodies in detection and serological classification of peanut stripe virus. Peanut Sci 16:63–66

    Google Scholar 

  • Davis RF, Hampton RO (1986) Cucumber mosaic virus isolates seed-borne in Phaseolus vulgaris: serology, host pathogen relationships and seed transmission. Phytopathology 76:999–1004

    Google Scholar 

  • Davis RF, Weber Z, Pospieszny H, Silbernagel M, Hampton RO (1981) Seedborne cucumber mosaic virus in selected Phaseolus vulgaris germplasm and breeder lines in Idaho, Washington and Oregon. Plant Dis 65:492–494

    Google Scholar 

  • De Assis Filho FM, Sherwood JL (2000) Evaluation of seed transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology 90:1233–1238

    PubMed  Google Scholar 

  • Delecolle B, Lot H, Michel MJ (1985) Application of ELISA for detecting onion yellow dwarf virus in garlic and shallot seeds and plants. Phytoparasitica 13:266–267

    Google Scholar 

  • Delfosse P, Reddy AS, Legreve A, Devi PS, Devi KT, Maraite H, Reddy DVR (1999) Indian peanut clump virus (IPCV) infection on wheat and barley: symptoms, yield loss and transmission through seed. Plant Pathol 48:278–282

    Google Scholar 

  • Demski JW, Warwick D (1986) Testing peanut seeds for peanut stripe virus. Peanut Sci 13:38–40

    Google Scholar 

  • Demski JW, Alexander AT, Stefani MA, Kuhn CW (1983) Natural infection, disease reaction and epidemiological implications of peanut mottle virus in cowpea. Plant Dis 67:267–269

    Google Scholar 

  • Derrick KS (1973) Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56:562–563

    Google Scholar 

  • Derrick KS (1978) Double-stranded RNA is present in extracts of tobacco plants infected with tobacco mosaic virus. Science 199:538–539

    PubMed  CAS  Google Scholar 

  • Diaco R, Hill JH, Hill IK, Tachibana H, Durand DP (1985) Monoclonal antibody-based biotin-avidin ELISA for the detection of soybean mosaic virus in soybean seeds. J Gen Virol 66:2089–2094

    CAS  Google Scholar 

  • Dieryck B, Otto G, Doucet D, Legreve A, Delfosse P, Bragard C (2009) Seed, soil and vegetative transmission contribute to the spread of pecluviruses in Western Africa and the Indian Sub-continent. Virus Res 141:184–189

    PubMed  CAS  Google Scholar 

  • Dietzen RG (2001) Application of PCR in plant virology. Chapter 21. In: Khan JA, Dijkstra J (eds) Plant viruses as molecular pathogens. Haworth Press Inc., New York

    Google Scholar 

  • Dietzgen RG, Callaghan B, Higgins CM, Birch RG, Chen K, Xu Z (2001) Differentiation of Peanut seed-borne potyviruses and cucumoviruses by RT-PCR. Plant Dis 85:989–992

    CAS  Google Scholar 

  • Dijkstra J, de Jager CP (1998) Practical plant virology: protocols and exercises. Springer, New York, 459

    Google Scholar 

  • Dodds JA (1986) The potential for using double stranded RNAS as diagnostic probes for plant viruses. In: Jones RAC, Torrance I (eds) Developments and applications in virus testing. Association of Application Biologists, Wellsbourne, pp 71–86

    Google Scholar 

  • Dodds JA (1993) dsRNA in diagnosis. In: Matthews REF (ed) Diagnosis of plant virus diseases. CRC Press, Boca Raton, pp 273–294

    Google Scholar 

  • Dodds JA, Bar-Joseph M (1983) Double-stranded RNA from plants infected with closteroviruses. Phytopathology 73:419–423

    CAS  Google Scholar 

  • Dodds JA, Morris TJ, Jordan RL (1984) Plant viral double stranded RNA Annu. Rev Phytopathol 22:151–168

    CAS  Google Scholar 

  • Dolores-Talens AC, Hills JH, Durand DP (1989) Application of enzyme-linked fluorescent assay (ELFA) to detection of lettuce mosaic virus in lettuce seeds. J Phytopathol 124:149–154

    Google Scholar 

  • Domier LL, Steinlage TA, Hobbs HA, Wang Y, Herrera Rodriguez G, Haudenshield J, McCoppin NK, Hartman GL (2007) Similarities in seed and aphid transmission among soybean virus isolates. Plant Dis 91:546–550

    CAS  Google Scholar 

  • Dovas CI, Katis NI (2003) A spot nested RT–PCR method for the simultaneous detection of members of the vitivirus and Fovea virus genera in grape vine. J Virol Methods 107:99–106

    PubMed  CAS  Google Scholar 

  • Duncan JM, Torrance L (1992) Techniques for rapid detection of plant viruses. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Dusi AN, Carvalho MG, Zambolim EM (1988) Use of ELISA and single radial diffusion to detect bean common mosaic virus on bean seeds. Fitopatol Bras 13:282–283

    Google Scholar 

  • Edmunds LK, Niblett CL (1973) Occurrence of panicle necrosis and small seeds as manifestations of maize dwarf mosaic virus infection in otherwise symptomless grain sorghum plants. Phytopathology 63:388–392

    Google Scholar 

  • Edwards ML, Cooper JI (1985) Plant virus detection using a new form of indirect ELISA. J Virol Methods 11:309–319

    PubMed  CAS  Google Scholar 

  • Edwardson JR (1974) Host range of viruses in the PVY-group. Fla Agric Exp Sta Monog 5:225

    Google Scholar 

  • Edwardson JR, Christie RG (1986) Viruses infecting forage legumes. Fla Agric Exp Stn Mongr 14:742

    Google Scholar 

  • El-Dougdoug KA, Taha RM, Mousa AA (1999) Studies on some faba bean seed-borne viruses. J Agric Sci 7:381–390

    Google Scholar 

  • El-Kewey SA, Sidaros SA, Hayam S, Abdelkader S, Emeran AA, Sharkaway EL (2007) Molecular detection of Broad bean stain Comovirus (BBSV) and Cowpea aphid borne mosaic Potyvirus (CABMV) in Faba Bean Cowpea plants. J Appl Sci Res 3(12):2013–2025

    CAS  Google Scholar 

  • Eppler A, Kheder MA (1988) Seed-borne viruses in locally produced Vicia faba seeds from the A.R. of Egypt. Med Fac Landbouww Rijksuniv Gent 53/2a:461–471

    Google Scholar 

  • Ertunc F (1992) Direction of cucumber mosaic virus in seeds of some cucumbits by ELISA assays. Ankara Universities Ziraat Facultesi YaYinlazi 1251, 13 pp

    Google Scholar 

  • Etienne L, Clauzel JM, Fuchs M (1991) Simultaneous detection of several nepoviruses infecting grapevine in a single DAS-ELISA test using mixed antisera. J Phytopathol 131:89–100

    CAS  Google Scholar 

  • Evans L, Arsenakis M, Sheppard M, May JT (1983) An ELISA technique to detect IgG antibody to the early herpes simplex virus type 2 (HSV-2) antigen AG-4 and HSV-2 patients. J Virol Methods 6:245–254

    PubMed  CAS  Google Scholar 

  • Falk BW, Guzman VL (1984) Differential detection of seedborne lettuce mosaic virus (LMV) in LMV susceptible and resistant lettuce breeding lines. Proc Florida State Hort Soc 97:179–181

    Google Scholar 

  • Falk BW, Purcifull DE (1983) Development and application of an enzyme linked immunosorbent assay (ELISA) test to index lettuce seeds for lettuce mosaic virus in Florida. Plant Dis 67:413–416

    Google Scholar 

  • Fateanu A (1978) Labelled antibodies in biology and medicine. McGraw-Hill, New York

    Google Scholar 

  • Fenner F (1976a) Classification and nomenclature of viruses. Intervirology 7:1–116

    PubMed  CAS  Google Scholar 

  • Fenner F (1976b) The classification and nomenclature of viruses. Summary of the results of the meeting of the international committee of taxonomy of virus. In Madrid, 1975. J Gen Virol 31:463

    PubMed  CAS  Google Scholar 

  • Flegg CL, Clark MF (1979) The detection of apple chlorotic leafspot virus by a modified procedure of enzyme-linked immunosorbent assay (ELISA). Ann Appl Biol 91:61–65

    Google Scholar 

  • Foster GD, Taylor SC (1998) Plant virology protocols: from virus isolation to transgenic resistance. Methods Mol Biol 81:1–571

    Google Scholar 

  • Francki RIB (1980) Limited value of thermal inactivation point, longevity in vitro and dilution end point as criteria for characterization, identification and classification of plant viruses. Intervirology 13:91–98

    PubMed  CAS  Google Scholar 

  • Francki RIB, Fanquet CM, Knudson DL, Brown F (1991) Classification and nomenclature of viruses. 5th Rep Inst Comm Taxon Viruses Arch Virol Suppl 2:450 pp

    Google Scholar 

  • Franken AAJ, Maat DZ, Kamminga GC (1990) Detection of squash mosaic virus in seeds of melon (cucumis melo) by enzyme linked immunosorbent assay (ELISA). Neth J Plant Pathol 96:91–102

    Google Scholar 

  • Frosheiser FI (1964) Alfalfa mosaic virus transmitted through alfalfa seed. Phytopathology 54:893

    Google Scholar 

  • Frosheiser FI (1970) Virus-infected seeds in alfalfa seed lots. Plant Dis Rep 54:591–594

    Google Scholar 

  • Frosheiser FI (1974) Alfalfa mosaic virus transmission to seed through alfalfa gametes and longevity in alfalfa seed. Phytopathology 64:102–105

    Google Scholar 

  • Froster RL, Seifers DL, Strausbaugh CA, Jensen SG, Ball EM, Harvey TL (2001) Seed transmission of the high plains virus in sweet corn. Plant Dis 85:696–699

    Google Scholar 

  • Fugro PA (1980) Effect of virus infection on root nodulation of mung (Vigna radiata (L) Wilczek) and Berseem (Trifolium alexandrinum). M.Sc. thesis, Division of Mycology and Plant Pathology, IARI, New Delhi

    Google Scholar 

  • Fukuta S, Ohishi K, Yoshida K, Ishida A, Kanbe M (2004) Development of immuno capture reverse transcription loop – mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J Virol Methods 121:49–55

    PubMed  CAS  Google Scholar 

  • Garbaczewska G, Wieczorek M, Jezewska M (1997) Cytological localization of soil-borne wheat mosaic virus/SBWMV/particles in the tissue of three-day-old rye seedlings. Phytopathol Pol 13:59–62

    Google Scholar 

  • Ghabrial SA, Shepherd RJ (1980) A sensitive radio immunosorbent assay for the detection of plant viruses. J Gen Virol 48:311–317

    Google Scholar 

  • Ghabrial SA, Li D, Shepherd RJ (1982) Radio-immunosorbent assay for detection of lettuce mosaic virus in lettuce seed. Plant Dis 66:1037–1040

    Google Scholar 

  • Gillaspie AG Jr, Pittman RN, Pinnow DL, Cassidy BG (1994) Testing peanut seed lots for peanut stripe and peanut mottle potyvirus-infection by IC-RT-PCR. Phytopathology 84:54

    Google Scholar 

  • Gillaspie AG Jr, Hajimorad MR, Ghabrial SA (1998a) Characterization of a severe strain of cucumber mosaic cucumovirus seed borne in cowpea. Plant Dis 82:419–422

    Google Scholar 

  • Gillaspie AG Jr, Pappu HR, Jain RK, Rey MEC, Hopkins MS, Pinnow DL, Morris JB (1998b) Characteristics of a latent poty seed-borne in guar and of Guar green – sterile virus. Plant Dis 82:765–770

    Google Scholar 

  • Gillaspie AG, Mitchell SE, Stuart GW, Bozarth RF (1999) RT-PCR method for detecting cowpea mottle carmovirus germplasm. Plant Dis 83:639–643

    CAS  Google Scholar 

  • Gillaspie AG Jr, Pittman RN, Pinnow DL, Cassidy BG (2000) Sensitive method for testing peanut seed lots for Peanut stripe and Peanut mottle viruses by immunocapture – reverse transcription – polymerase chain reaction. Plant Dis 84:559–561

    CAS  Google Scholar 

  • Gillaspie AG Jr, Pio-Ribeiro G, Andrade GP, Pappu HR (2001) RT-PCR detection of seed-borne cowpea aphid-borne mosaic virus in peanut. Plant Dis 85:1181–1182

    CAS  Google Scholar 

  • Gilmer RM, Wilks JM (1967) Seed transmission of tobacco mosaic virus in apple and pear. Phytopathology 57:214–217

    Google Scholar 

  • Gold AH, Suneson CA, Houston BR, Oswald JW (1954) Electron microscopy and seed and pollen transmission of rod-shaped particles associated with the false stripe disease of barley. Phytopathology 44:115–117

    Google Scholar 

  • Goldbach R, de Haan P, Berduin BJM (1992) Gene sequences in viruses, viroids and prokaryotes, and the development of diagnostic tools. In: Moss JP (ed) Biotechnology and crop improvement in Asia. ICRISAT, Hyderabad, pp 265–279

    Google Scholar 

  • Golnaraghi AR, Shahraeen N, Pourrahim R, Farzadfar S, Ghasemi A (2004) Occurrence and relative incidence of viruses infecting soybeans in Iran. Plant Dis 88:1069–1074

    Google Scholar 

  • Gould AR, Symons RH (1983) A molecular biological approach to relationships among viruses. Ann Rev Phytopathol 21:79–199

    Google Scholar 

  • Greathead A (1966) An effective program for controlling lettuce mosaic. Mimeo. California Univ Agric Exp Ser, 4 pp

    Google Scholar 

  • Green SK (1991) Guidelines for diagnostic work in plant virology. Technical bulletin no 15, pp 1–61, AVRDC, Taipei

    Google Scholar 

  • Green SK, Kim JS (1991) Characteristics and control of viruses infecting peppers: a literature review. Asian vegetable research and development centre. Technical bulletin no 18, Taipei, Taiwan

    Google Scholar 

  • Green SK, Hwang LL, Kuo YJ (1987) Epidemiology of tomato mosaic virus in Taiwan and identification of strains. Zeischrift fiir Pflanzenkrankheiten and Pfanzenschutz 94(4):386–397

    Google Scholar 

  • Gribnau TCJ, Roeles F, Van De Biezen J, Leuverling J, Schuurs A (1982) The application of colloidal dye particles as label immunoassays: disperse dye immunoassay. (DIA). In: Gribnam TCJ, Visser J, Nivard RJF (eds) Affinity chromatography and related techniques. Elsevier, Amsterdam, pp 411–424

    Google Scholar 

  • Gribnau T, van Sommeren A, van Dinther F (1983) DIA – disperse dye immunoassay. In: Chaiken I, Wilchek M, Parikh I (eds) Affinity chromatography and biological recognition. Academic, New York, pp 375–380

    Google Scholar 

  • Grimault V, Koenraadt HMS, Politikou A (2012) Detection of tobamoviruses on Lycopersicon esculentum seed by local lesion assay on Nicotiana tabacum plants. Seed Test Int 143:39–43

    Google Scholar 

  • Grimm F, Daniel G (1984) Zum Einsatz von Mischseren im ELISA Verfahren: ein Ergebnisvergleich mit Einfachantiseren bei Untersuchungen an Kartoffelblattern (on the use of mixed sera with ELISA: a comparison of results with single antisera in studies with potato leaves). Potato Res 27:13–23

    Google Scholar 

  • Grogan RG (1980) Control of lettuce mosaic virus with virus-free seed. Plant Dis 64:446–449

    Google Scholar 

  • Gumpf DJ, Kositratana W, Zheng GY (1984) Dot-immunobinding assay for virus detection. Phytopathology 74:847

    Google Scholar 

  • Gusenleitner J (1985) Seed testing for lettuce mosaic virus. Pflanzenschutz, No. 8, 9 (RPP 482, 1986)

    Google Scholar 

  • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93(13):6264–6268

    PubMed  CAS  Google Scholar 

  • Haack I (1990) Detection of seed transmissible viruses in seeds of faba beans and peas by means of ELISA. Arch Phytopathol Phytopathol Schurtz 26:337–342

    CAS  Google Scholar 

  • Hadidi A, Hansen AJ, Parish CL, Yang X (1991) Scar skin and dapple apple viroids are seed borne and persistent in infected apple trees. Res Virol 142:289–296

    PubMed  CAS  Google Scholar 

  • Hadidi A, Flores R, Randles J, Semancik J (2003) Viroids: properties, detection, diseases and their control. CSIRO Publishing, Melbourne, 392 p

    Google Scholar 

  • Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids and phytoplasmas. J Plant Pathol 86:97–104

    CAS  Google Scholar 

  • Hagita T, Tamada T (1984) Detection of bean common mosaic virus in French bean seeds by immuno electron microscopy). Bull Hokkaido Prefectural Agric Exp Stations 51:83–93

    Google Scholar 

  • Halk EL, De Boer SH (1985) Monoclonal antibodies in plant disease research. Annu Rev Phytopathol 23:321–350

    Google Scholar 

  • Halk EL, Hsu HT, Aebig J (1982) Properties of virus specific monoclonal antibodies to Prunus necrotic ringspot (NRSV), apple mosaic (ApMV), tobacco streak (TSV) and alfalfa mosaic (AMV) viruses. Phytopathology 72:953 (Abstr)

    Google Scholar 

  • Halk EL, Hsu HT, Aebig J, Franke J (1984) Production of monoclonal antibodies against three ilar viruses and Alfalfa mosaic virus and their uses in serotyping. Phytopathology 74:367–372

    Google Scholar 

  • Hamdi A, Rizkallah LR (1997) Variation of lentil germplasm for reaction to natural viral infection in Egypt. Lens Newsl 24:25–28

    Google Scholar 

  • Hamilton RI (1964) Serodiagnosis of barley stripe mosaic facilitated by detergent. Phytopathology 54:1290–1291

    Google Scholar 

  • Hamilton RI (1965) An embryo test for detecting seed-borne barley stripe mosaic virus in barley. Phytopathology 55:798–799

    Google Scholar 

  • Hamilton RI, Nichols C (1978) Serological methods for detection of pea seed-borne mosaic virus in leaves and seeds of Pisum sativum. Phytopathology 68:539–543

    Google Scholar 

  • Hamilton RI, Edwardson JR, Francki RIB, Hsu HT, Hull R, Koenig R, Milne RG (1981) Guidelines for identification and characterization of plant viruses. J Gen Virol 54:223–241

    CAS  Google Scholar 

  • Hampton RO (1962) Latent viruses seed transmitted in field beans. Phytopathology 52:734–735 (Abstr)

    Google Scholar 

  • Hampton RO (1963) Seed transmission of white clover mosaic and clover yellow mosaic viruses in red clover. Phytopathology 53:1139

    Google Scholar 

  • Hampton RO (1967) Seed transmission of viruses in red clover. Phytopathology 57:98

    Google Scholar 

  • Hampton RO (1972) Dynamics of symptom development of the seed-borne pea fizzletop virus. Phytopathology 62:268–272

    Google Scholar 

  • Hampton RO, Braverman SW (1979) Occurrence of pea seed borne mosaic virus in North American pea breeding lines, and new virus-immune germplasm in the Plant Introduction collection of Pisum sativum. Plant Dis Rep 79:631–633

    Google Scholar 

  • Hampton RO, Francki RIB (1992) RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 82:127–130

    CAS  Google Scholar 

  • Hampton RO, Hanson EW (1968) Seed transmission of viruses in red clover: evidence and methodology of detection. Phytopathology 58:914–920

    PubMed  CAS  Google Scholar 

  • Hampton RO, Mink GI (1975) Pea seed-borne mosaic virus. CMI/AAB, Descriptions of plant viruses. Kew, Surrey

    Google Scholar 

  • Hampton RE, Sill WH Jr, Hansing ED (1957) Barley stripe mosaic virus in Kansas and its control by greenhouse seed-lot testing technique. Plant Dis Rep 41:735–740

    Google Scholar 

  • Hampton RO, Mink GI, Hamilton RI, Kraft JR, Muehlbauer FJ (1976) Occurrence of pea seed-borne mosaic virus in North American pea breeding lines and procedures for its elimination. Plant Dis Reptr 60:455–459

    Google Scholar 

  • Hampton R, Beczner L, Hagedorn D, Bos L, Inouye T, Barnett O, Musil M, Meiners J (1978) Host reactions of mechanically transmissible legume viruses on the Northern Temperate Zone. Phytopathology 65:1342–1346

    Google Scholar 

  • Hampton RO, Mink GI, Bos L, Inouye T, Musil M, Hagedorn DJ (1981) Host differentiation and serological homology of Pea seed-borne mosaic virus isolates. Neth J Plant Pathol 87:1–10

    Google Scholar 

  • Hampton RO, Waterworth HE, Goodman RM, Lee RF (1982) Seed-borne viruses in crop germplasm. Plant Dis 66:977–978

    Google Scholar 

  • Hampton R, Ball E, De Boer S (1990) Serological methods for detection and identification of viral and bacterial plant pathogens. APS Press, St. Paul, 389 pp

    Google Scholar 

  • Hampton RO, Albrechtsen SE, Mathur SB (1992) Seed health (viruses) of vigna unguiculata selections from developing countries. Seed Sci Technol 20:23–38

    Google Scholar 

  • Hao NB, Albrechtsen SE, Nicolaisen M (2003) Detection and identification of the blackeye cowpea mosaic strain of bean common mosaic virus in seeds of Vigna unguiculata sspp from North Vietnam. Aust Plant Pathol 32:505–509

    Google Scholar 

  • Hardie JL (1970) Potato Growers’ guide to clonal selection. Edinburgh, Department of Agriculture for Scotland

    Google Scholar 

  • Hareesh PS, Bhat AI (2010) Seed transmission of Piper yellow mottle virus in black pepper (Piper nigrum L.). J Plant Crops 38:62–65

    Google Scholar 

  • Harrison BD, Robinson DJ (1978) The tobraviruses. Adv Virus Res 23:25–77

    PubMed  CAS  Google Scholar 

  • Harrison BD, Finch JT, Gibbs AJ, Hollings M, Shepherd RJ, Valenta V, Wetter C (1971) Sixteen groups of plant viruses. Virology 45:356–363

    PubMed  CAS  Google Scholar 

  • Harrison BD, Robinson DJ, Mowat WP, Duncan GH (1983) Comparison of nucleic acid hybridization and other tests for detecting tobacco rattle virus in narcissus plants and potato tubers. Ann Appl Biol 102:331–338

    Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147

    PubMed  CAS  Google Scholar 

  • Hayes AJ, Ma G, Buss GR, Saghai Maroof MA (2000) Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of Soybean mosaic virus. Crop Sci 40:1434–1437

    CAS  Google Scholar 

  • Hibi T, Saito Y (1985) A dot-immunobinding assay for the detection of tobacco mosaic virus in infected tissues. J Gen Virol 66:1191–1194

    Google Scholar 

  • Hicks RGT, Smith TJ, Edwards RP (1986) Effects of strawberry latent ring spot virus on the development of seeds and seedlings of Chenopodium quinoa and Pastinaca sativa (Parsnip). Seed Sci Technol 14:409–417

    Google Scholar 

  • Hill JH (1981) Importance and detection of soybean mosaic virus in seed. Iowa Seed Sci 3:8–10

    Google Scholar 

  • Hill JH, Durand DP (1986) Soybean mosaic virus. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods in enzyme analysis antigens and antibodies, vol II, 3rd edn. Verlags gessellschaft mbll, Wemheim, pp 455–475

    Google Scholar 

  • Hill JH, Martinson CA, Russell WA (1974) Seed transmission of maize dwarf mosaic and wheat streak mosaic viruses in maize and response to inbred lines. Crop Sci 14:232–235

    Google Scholar 

  • Hill EK, Hill JH, Durand DP (1984) Production of monoclonal antibodies to viruses in the potyvirus group. J Gen Virol 65:525–532

    PubMed  Google Scholar 

  • Hirai T, Wildman SG (1963) Cytological and cytochemical observations on the early stage of infection of tomato hair cells by tobacco mosaic virus. Plant Cell Physiol (Tokyo) 4:265–275

    CAS  Google Scholar 

  • Hobbs HA, Reddy DVR, Rajeswari R, Reddy AS (1987) Use of direct antigen coating and protein A coating of ELISA Procedures for detection of three peanut viruses. Plant Dis 71:747–749

    Google Scholar 

  • Hobbs HA, Hartman GL, Wang Y, Hill CB, Bernard RL, Pedersen WL (2003) Occurrence of seed coat mottling in soybean plants inoculated with Bean pod mottle virus and soybean mosaic virus. Plant Dis 87:1333–1336

    Google Scholar 

  • Hongyun C, Wenjun Z, Oinsheng G, Oing C, Shiming L, Shuifang Z (2008) Real time Taqman RT-PCR assay for the detection of cucumber green mottle mosaic virus. J Virol Methods 149:326–329

    PubMed  Google Scholar 

  • Horn NM, Saleh N, Baladi Y (1991) Cowpea mild mottle virus could not be detected by ELISA in soybean and groundnut seeds in Indonesia. Neth J Plant Pathol 91:125–127

    Google Scholar 

  • Hsu HT, Lawson RH (1991) Direct tissue blotting for detection of tomato spotted wilt virus in Impatiens. Plant Dis 75:292–295

    CAS  Google Scholar 

  • Hsu YH, Annamalai P, Lin CS, Chen YY, Chang WC, Lin NS (2000) A sensitive method for detecting bamboo mosaic virus (BaMV) and establishment of BaMV-free meristem tip cultures. Plant Pathol 49:101–107

    CAS  Google Scholar 

  • Huguenot C, Furneaux MT, Clare JA, Hamilton RI (1996) Improved diagnosis of aphid-borne mosaic virus in Africa: significance for cowpea seed indexing, breeding programmes and potyvirus taxonomy. Arch Virol 141:137–145

    PubMed  CAS  Google Scholar 

  • Hull R (1993) Nucleic acid hybridization procedures. In: Matthews REF (ed) Diagnosis of plant virus diseases. CRC Press, Boca Raton, pp 253–272

    Google Scholar 

  • Hull R (2002) In: Hull R (ed) Mathews plant virology, 4th edn. Academic, London

    Google Scholar 

  • Hull R (2004) Methods for assay, detection and diagnosis. In: Matthew’s plant virology, 4th edn. Academic, San Diego, pp 627–674

    Google Scholar 

  • Hurtt SS, Podleckis EV (1995) Apple scar skin viroid is not seed transmitted or transmitted at a low rate in oriental pear. Acta Hort 386:544–547

    Google Scholar 

  • Huth W (1988) Use of ELISA for detection of barley stripe mosaic virus in barley seeds. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 40(8–9):128–132

    Google Scholar 

  • Hwang T, Moon J, Yu S, Yang K, Mohankumar S, Yu Y, Lee Y, Kim H, Kim H, Maroof M (2006) Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49:380–388

    PubMed  CAS  Google Scholar 

  • Inouye T (1962) Studies on barley stripe mosaic in Japan. Ber Ohara Inst Landw Biol 11:413–496

    Google Scholar 

  • Ismaeil F, Haj Kasem AA, Al-Chaabi S (2011) Distribution and seed transmission of Tomato mosaic virus on tomato and pepper crops in Syria. Arab J Plant Protect 29:21–28

    Google Scholar 

  • Iwai H, Ito T, Sato K, Wakimoto S (1985) Distribution pattern of soybean mosaic virus strains B and D in soybean seeds at different growth stages. Ann Phytopathol Soc Jpn 51:475–481

    Google Scholar 

  • Iwaki M (1986) Soybean crinkle leaf and cowpea mild mottle viruses. TARC, No 19. Japan, pp 92–100, 238 pp

    Google Scholar 

  • Jafarpour B, Shepherd RJ, Gorgan RG (1979) Serological detection of bean common mosaic and lettuce mosaic viruses in seed. Phytopathology 69:1125–1129

    Google Scholar 

  • Jagadish Chandra K, Summanwar AS (1971) Quick methods for detection of cowpea mosaic virus in cowpea seeds. In: Proceedings of the IInd international symposium of plant pathology, New Delhi, pp 52–53 (Abstr)

    Google Scholar 

  • Jalkanen R, Buttner C, Bargen S (2007) Cherry leaf roll virus abundant on Betula pubescens in Finland. Silva Fennica 41(4):755–762

    Google Scholar 

  • Jensen SG, Wysong DS, Ball EM, Highley PM (1991) Seed transmission of maize chlorotic mottle virus. Plant Dis 75:497–498

    Google Scholar 

  • Jensen SG, Lane LC, Seifers DL (1996) A new disease of maize and wheat in the high plains. Plant Dis 80:1387–1390

    Google Scholar 

  • Jeong SC, Saghai Maroof MA (2004) Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breed 123:305–310

    CAS  Google Scholar 

  • Jeong SC, Kristipati S, Hayes AJ, Maughan PJ, Noffsinger SL, Gunduz I (2002) Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Sci 42:265–270

    PubMed  CAS  Google Scholar 

  • Jeyanandarajah P (1992) Seed-borne viruses infecting three important leguminous crops in Sri Lanka. Seed Sci Technol 20:629–641

    Google Scholar 

  • Johnson GD, Holborow EJ, Dorling J (1978) Immunofluorescence and immuno enzyme techniques. In: Weir DM (ed) Hand book of experimental immunology, 3rd edn. Blackwell Scientific Publications, Oxford, pp 15.1–15.30

    Google Scholar 

  • Jones RAC, McKirdy SJ (1990) Seed-borne cucumber mosaic virus infection of Subterranean clover in Western Australia. Ann Appl Biol 115:263–277

    Google Scholar 

  • Jones RAC, Pathipanawat W (1989) Seed-borne Alfalfa mosaic virus infecting annual medics (Medicago spp) in Western Australia. Ann Appl Biol 115:263–277

    Google Scholar 

  • Jones RAC, Coutts BA, Mackie AE, Dwyer GI (2005) Seed transmission of wheat streak mosaic virus shown unequivocally in wheat. Plant Dis 89:1048–1050

    Google Scholar 

  • Jordan RI, Dodds JA (1983) Hybridization of 5′-end-labelled RNA to plant viral RNA in agarose and acrylamide gels. Plant Mol Biol Rep 1:33–37

    Google Scholar 

  • Jordan RI, Dodds JA, Ohr HD (1983) Evidence for virus-like agents in avocado. Phytopathology 73:1130–1135

    CAS  Google Scholar 

  • Joshi S, Albrechtsen SE (1992) Use of mixed and individual antisera in ELISA detection of viruses infecting cowpea and soybean. J Inst Agric Animal Sci (Nepal) 13:83–87

    Google Scholar 

  • Joshi UM, Raghavan V, Zemre G, Sheth AR, Borkar PS, Ramachandran S (1978) In: Pal SB (ed) Enzyme-labelled immuno assay of hormones and drugs. Walter de Gruyter, Berlin, pp 233–245

    Google Scholar 

  • Kaiser WJ (1973) Biology of bean yellow mosaic and pea leaf roll viruses affecting Vicia faba in Iran. Phytopathol Z 78:253–263

    Google Scholar 

  • Kartha KK, Gamborg DL (1978) Meristem culture techniques in the production of disease free plants and freeze preservation of germplasm of tropical tuber crops and grain legumes. In: Maraite H, Mayers J (eds). Diseases of tropical food crops, pp 267–283

    Google Scholar 

  • Kawai A, Kimura S, Nishio T, Nagao N (1985) Detection for cucumber green mottle mosaic virus in cucumber seeds using enzyme-linked immunosorbent assay. Res Bull Plant Protect Service Jpn 21:47–53

    Google Scholar 

  • Kelley RD, Cameron HR (1986) Location of prune dwarf and Prunus necrotic ringspot viruses associated with sweet cherry pollen and seed. Phytopathology 76:317–322

    Google Scholar 

  • Kendall C, Ionescu-Matun, Dreesman GR (1983) Utilization of the biotin-avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA). J Immunol Methods 56:329–339

    PubMed  CAS  Google Scholar 

  • Kennedy BW, Cooper RL (1967) Association of virus infection with mottling of soybean seed coats. Phytopathology 57:35–37

    Google Scholar 

  • Kerlan C, Mille B, Dunez J (1981) Immunosorbent electron microscopy for detecting apple chlorotic leaf spot and plum pox viruses. Phytopathology 71:400–404

    Google Scholar 

  • Khan MA, Slack SA (1978) Studies of the sensitivity of a latex agglutination test for the serological detection of potato virus S and Potato virus X in Wisconsin. Am Potato J 55:627–637

    Google Scholar 

  • Khan MA, Slack SA (1980) Detection of Potato virus S and X in dormant potato tubers by the latex agglutination test. Am Potato J 57:213–218

    Google Scholar 

  • Khatab Eman AH, Zein Salwa N, Amal A (2012) Purification, serology and prevalence of Broad bean true mosaic comovirus (BBTMV). Int J Virol 8:224–233

    Google Scholar 

  • Kheder MA, Eppler A (1988) Seed borne viruses in locally produced pea seeds from the A.R of Egypt. Med Fac Land bouw Rijksuniv 53/2a:449–459

    Google Scholar 

  • Khetarpal RK, Maury Y (1990) Seed transmission of pea seed-borne mosaic virus in peas: early and late expression of the virus in the progeny. J Phytopathol 129:265–270

    Google Scholar 

  • Khetarpal RK, Prakash DB, Singh S, Nath R (1992) ELISA detection of Soybean mosaic virus in testas, embryos and seedlings from mottled and unmottled seeds of imported soybean germplasm. Indian J Virol 8:106–110

    Google Scholar 

  • Khetarpal RK, Prakash DB, Singh S, Ramnath JRK, Varma A (1994) Bean common mosaic virus detection by DAC-indirect ELISA in exotic Phaseolus vulgaris L. Indian J Virol 10:13–16

    Google Scholar 

  • Khetarpal RK, Singh S, Prakash DB, Mourya AK, Chalam VC (2001) Viruses intercepted in exotic germplasm during 1991–2000 in quarantine. Indian Jo Plant Gen Res New Delhi 14:127–129

    Google Scholar 

  • Khetarpal RK, Chalam VC, Prasada Rao RDVJ, Varaprasad KS (2006) Transboundary movement of plant viruses and their potential threat by native vectors: implications under WTO region. International symposium on management of vector-borne viruses, February 7–10th 2006 ICRISAT, Patancheru, India, pp 31–32

    Google Scholar 

  • Khetarpal RK, Lal A, Varaprasad KS, Agarwal PC, Bhalla S, Chalam VC, Gupta K (2006b) Quarantine for safe exchange of plant genetic resources. In: Singh AK, Srinivasan K, Saxena S, Dhillon BS (eds) Hundred years of plant genetic resources management in India. National Bureau of Plant Genetic Resources, New Delhi, pp 83–108

    Google Scholar 

  • Kimble KA, Grogan RG, Greathead AS, Paulus AO, House JK (1975) Development, application and comparison of methods for indexing lettuce seed for mosaic virus in California. Plant Dis Rep 59:461–464

    Google Scholar 

  • Klein RE, Wyatt SD, Kaiser WJ (1988) Incidence of bean common mosaic in USDA Phaseolus germplasm collection. Plant Dis 72:301–302

    Google Scholar 

  • Klein RE, Wyatt SD, Kaiser WJ, Ivfink GI (1992) Comparative immunoassays of bean common mosaic virus in individual bean (Phaseolus vulgaris) seed and bulked bean seed sample. Plant Dis 76:57–59

    Google Scholar 

  • Klem L, Lund OS (2006) Detection of seed-borne virus by Print Capture PCR. In: 1st international symposium on seed health in agricultural development, Tanzania, p 39

    Google Scholar 

  • Koenig R (1981) Indirect ELISA methods for the broad specificity direction of plant viruses. J Gen Virol 55:53–62

    Google Scholar 

  • Koenig R, Paul HL (1982) Variants of ELISA in plant virus diagnosis. J Virol Methods 5:113–125

    PubMed  CAS  Google Scholar 

  • Koenig R, Fribourg CE, Jones RAC (1979) Symptomatological, serological and electrophoretic diversity of isolates of Andean potato latent virus from different regions of Andes. Phytopathology 69:748–752

    Google Scholar 

  • Koenig R, Lesemann D-E, Adam G, Winter S (2010) Diagnostic techniques: plant viruses. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of plant and fungal virology. Academic, Oxford, pp 18–30

    Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495

    PubMed  CAS  Google Scholar 

  • Kohnen PD, Dougherty WG, Hampton RO (1991) Pea seed borne mosaic virus (PV & MV) detection using the polymerase chain reaction. Phytopathology 81:1155

    Google Scholar 

  • Kohnen PD, Dougherty WG, Hampton RO (1992) Detection of Pea seed borne mosaic poty virus by sequence specific enzymatic amplification. J Virol Methods 37:253–258

    PubMed  CAS  Google Scholar 

  • Kohnen PD, Johansen IE, Hampton RO (1995) Characterization and molecular detection of the P4 pathotype of seed borne mosaic potyvirus. Phytopathology 85:789–793

    CAS  Google Scholar 

  • Kolber M, Nemeth M, Szentivanyi P (1982) Routine testing of English Walnut mother trees and group testing of seeds by ELISA for direction of Cherry leaf roll virus infection. Acta Hort 130:161–169

    Google Scholar 

  • Konate G, Neya BJ (1996) Rapid detection of cowpea aphid-borne mosaic virus in cowpea seeds. Ann Appl Biol 129:261–266

    Google Scholar 

  • Konijn AM, Levy R, Link G, Hershko JC (1982) A rapid and sensitive ELISA for serum ferritin employing a fluorogenic substrate. J Immunol Methods 54:297–307

    PubMed  CAS  Google Scholar 

  • Koning G, Tekrony DM, Ghabrial SA (2003) Soybean seed coat mottling: association with soybean mosaic virus and Phomopsis spp. seed infection. Plant Dis 87:413–417

    Google Scholar 

  • Koshimizu Y, Iizuka N (1963) Studies on soybean virus diseases in Japan. Bull Tohoku Nat Agric Expt Sta 27:1–103

    Google Scholar 

  • Kositratana W, Weathers LG, Gumpi DJ (1986) Comparative sensitivity of three serological methods for plant virus detection. In: Thongcharoen P, Krustak E (eds) Proceedings of first international conference on the impact of viral diseases on the development of Asian Countries, pp 472–474

    Google Scholar 

  • Krell RK, Pedigo LP, Hill JH, Rice ME (2003) Potential primary inoculum sources of Bean pod mottle virus in Iowa. Plant Dis 87:1416–1422

    Google Scholar 

  • Krishna Reddy M, Varma A (1994) Immuno diagnosis of Black gram mottle virus and Blackgram mild mottle virus from blackgram (Vigna mungo L. Hepp). In: Rishi N, Ahuja KL, Singh BP (eds) Virology in the tropics. Malhotra Publishing House, New Delhi, pp 601–614, 769 p

    Google Scholar 

  • Krishnareddy M (1989) Studies on yellow mosaic and leaf crinkle diseases of blackgram. PhD thesis submitted to the P.G. School. IARI, New Delhi, India, 263 pp

    Google Scholar 

  • Kuhn CW (1965) Symptomatology, host range and effect on yield of seed-transmitted peanut virus. Phytopathology 55:880–884

    Google Scholar 

  • Kumar CA, Singh S, Parakh DB (1991) Detection of pea seed-borne mosaic virus (P5bMV) during quarantine processing of pea germ plasm. Indian Phytopathol 44:366–369

    Google Scholar 

  • La YJ, Bak WC, Oh JH (1983) Immunochemical detection of soybean mosaic virus infections in the seeds of soybean cultivars in Korea. Korean J Plant Protect 22:26–29

    Google Scholar 

  • Laguna IG, Truol GAM, Nome F (1987) Relation between “Saddle spotted” soyabean seed and seed transmission of soybean mosaic virus. Relacion entreel manchado “Tip Montura” de la semilla de soja y la transmission del virus del mossaico de la soja (soybean mosaic virus) por semila. Fitopatologia 22(2):71–76

    Google Scholar 

  • Lange L, Heide M (1986) Dot immuno binding (DIB) for detection of virus in seed. Can J Plant Pathol 8:373–379

    Google Scholar 

  • Lange L, Tien P, Begtrup J (1983) The potential of ELISA and ISEM in seed health testing. J Seed Sci Technol 11:477–490

    Google Scholar 

  • Lange L, Jomantor A, Heide M (1989) Testing seeds for viruses dot immuno binding (BIB) directly on plain paper. Tidsskrift Planteavl 93:93–96

    Google Scholar 

  • Lee BY, Lim HR, Choi JY, Ryu KH (2004) Development of molecular detection of three species of seed – transmissible viruses useful for plant quarantine. Plant Pathol J 20(4):312–317

    Google Scholar 

  • Lesemann DE, Paul HL (1980) Conditions for the use of protein-A in combination with the Derrick method of immuno-electron microscopy. Acta Hort 110:119–128

    Google Scholar 

  • Li L, Wang X, Zhou G (2007) Analysis of maize embryo invasion by sugarcane mosaic virus. Plant Sci 172:131–138

    CAS  Google Scholar 

  • Ligat JS, Cartwright D, Randles JW (1991) Comparison of some Pea seed borne mosaic isolates and their detection of dot – immuno binding assay. Aust J Agric Res 42:441–451

    CAS  Google Scholar 

  • Lima JAA, Purcifull DE (1980) Immunochemical and microscopical techniques for detecting blackeye cowpea mosaic and soybean mosaic viruses in hypocotyls of germinated seeds. Phytopathology 70:142–147

    Google Scholar 

  • Lin NS, Hsu YH, Hsu HT (1990) Immunological detection of plant viruses and a mycoplasma-like organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80:824–828

    CAS  Google Scholar 

  • Ling KS (2007) Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes 34:1–8

    PubMed  CAS  Google Scholar 

  • Lister RM (1960) Transmission of soil-borne viruses through seed. Virology 10:547–549

    PubMed  CAS  Google Scholar 

  • Lister RM (1978) Application of enzyme-linked immunosorbent assay for detecting viruses in soybean seed and plants. Phytopathology 68:1393–1400

    Google Scholar 

  • Lister RM, Murant AF (1967) Seed-transmission of nematode-borne viruses. Ann Appl Biol 59:49–62

    Google Scholar 

  • Lister RM, Carroll TW, Zaske SK (1981) Sensitive serologic detection of barley stripe mosaic virus in barley seed. Plant Dis 65:809–814

    Google Scholar 

  • Lizarraga C, Fernandez-Northcote EN (1989) Detection of potato viruses X and Y in sap extracts by a modified indirect enzyme-linked immunosorbent assay on nitrocellulose membranes (NCM-ELISA). Plant Dis 73:11–14

    Google Scholar 

  • Lukacs N (1994) Detection of virus infection in plant and differentiation between co-existing viruses by monoclonal antibodies to double-stranded RNA. J Virol Methods 47:255–272

    PubMed  CAS  Google Scholar 

  • Lundsgaard T (1976) Routine seed health testing for barley stripe mosaic virus in barley seeds using the latex-test. Z Pfl Krankh Pfl Schutz 83:278–283

    Google Scholar 

  • Lundsgaard T (1983) Immunosorbent electron microscopy in testing bean seed for bean common mosaic virus. Seed Sci Technol 11:515–521

    Google Scholar 

  • Lundsgaard T (1985) Indexing of a barley germplasm collection for presence of barley stripe mosaic virus. Z Pfl Krankh Pfl Schutz 92:320–321

    Google Scholar 

  • Ma H, Shieh K-J, Chen X G, Qiao T, Chuang M-Y (2006) Application of real-time polymerase chain reaction (RT-PCR). J Am Sci 2(3):1–15

    Google Scholar 

  • Mac Withey HS Jr, Mills IK, Afnasiev MM (1957) Incidence of barley stripe mosaic in Montana for two years as indicated by seed assays. Plant Dis Rep 41:514–516

    Google Scholar 

  • Mahgoub HA, Wipf Scheibel C, Delecolle B, Pitrat M, Dafalla G, Lecoq H (1997) Melon rugose mosaic virus: characterization of an isolate from Sudan and seed transmission in melon. Plant Dis 81:656–660

    Google Scholar 

  • Makkouk K, Attar N (2003) Seed transmission of cucumber mosaic virus in Lentil seeds in Syria. Eighth Arab Congress of plant protection, El-Beida, Libya (Abstract)

    Google Scholar 

  • Makkouk KM, Azzam OI (1986) Detection of broad bean stain virus in lentil seed group. LENS Newsl 13(2):37–38

    Google Scholar 

  • Makkouk KM, Kumari SG (1996) Detection of ten viruses by the tissue-blot immunoassay (TBIA). Arab J Plant Protect 14:3–9

    Google Scholar 

  • Makkouk KM, Azzam OI, Katul L, Rizkallah A, Koumari S (1986) Seed transmission of broad bean strain virus in wild legume vicia palaestina Boiss. FABIS Newsl 16:40–41

    Google Scholar 

  • Makkouk KM, Bos L, Azzam OI, Katul L, Rizkallah A (1987) Broad bean strain virus: identification, detectability with ELISA in faba bean leaves and seeds. Occurrence in East Asia and North Africa and possible wild hosts. Neth J Plant Pathol 93:97–106

    Google Scholar 

  • Makkouk KM, Kumari SG, Al-Daoud R (1992) Survey of virus affecting lentil (Lens culinaris Med) in Syria. Phytopathol Meditt 31:188–190

    Google Scholar 

  • Makkouk KM, Erskine W, Attar N (1997) Detection of seed-borne viruses in lentil mother plants as compared to harvested seeds. Lens Newsl 24:49–51

    Google Scholar 

  • Marcelli E (1955) Osservazioni su di una nuova virosi del tabacco transmissibile per sema. Tobacco Roma 59:404–409

    Google Scholar 

  • Marrou J, Messiaen CM, Migliori A (1967) Method for testing the health condition of lettuce seed. Ann Epiphytol 18(Hors Ser):227–248

    Google Scholar 

  • Martelli GP, Russo M (1977) Plant virus inclusion bodies. Adv Virus Res 21:175–266

    PubMed  CAS  Google Scholar 

  • Martin RR (1985) Recent advances in virus detection. Hort Sci 20:837–845

    CAS  Google Scholar 

  • Martin RR (1987) The use of monoclonal antibodies for virus detection. Can J Plant Pathol 9:177–181

    Google Scholar 

  • Martin RR, James D, Levesque CA (2000) Impacts of molecular diagnostic technologies on plant disease management. Ann Rev Phytopathol 38:207–239

    CAS  Google Scholar 

  • Martyn EB (1968a) Plant virus names. An annotated list of names and synonyms of plant viruses and diseases. Commonwealth Mycological Institute, Kew, Surrey, 204 pp

    Google Scholar 

  • Martyn EB (1968) Plant virus names. Supplement no 1. Additions and corrections to phytopathological paper no 9 (Martyn, 1968) and newly recorded plant viruses. Commonwealth Mycological Institute, Kew, Surrey, 41 pp

    Google Scholar 

  • Matsumoto JI, Ohki ST, Inouye T (1991) Incidence of peanut stripe virus in seeds and field plants of peanut in Japan. Ann Phytopathol Soc Jpn 57:587–590

    Google Scholar 

  • Matthews REF (1970) Plant virology. Academic, New York, 778 p

    Google Scholar 

  • Matthews REF (1982) Classification and nomenclature of viruses. Fourth report of the International Committee on the Taxonomy of Viruses. Intervirology 17:1–199

    Google Scholar 

  • Maule AJ, Ull R, Donson J (1983) The application of spot hybridization to the detection of DNA and RNA viruses in plant tissues. J Virol Methods 6:215–224

    PubMed  CAS  Google Scholar 

  • Maury Y, Khetarpal RK (1989) Testing seeds for viruses using ELISA. In: Agnihotri VP, Singh N, Chaube HS, Singh US, Dwivedi TS (eds) Perspectives in phytopathology. Today and Tomorrows Printers and Publishers, New Delhi, pp 31–49

    Google Scholar 

  • Maury Y, Bossennec JM, Boudazin G, Duby C (1983) The potential of ELISA in testing soybean seed for soybean mosaic viruses. Seed Sci Technol 11:491–503

    Google Scholar 

  • Maury Y, Duby C, Bossenec JM, Boudazin G (1985) Group analysis using ELISA: determination of the level of transmission of soybean mosaic virus in soybean seed. Agronomie 5:405–415

    Google Scholar 

  • Maury Y, Bossennec JM, Boudazin G (1987a) Virus transmis par les granis de legumineuses methods d’evaluation rapide du taux de transmission d’un lot de graines. Bull OEPP/EPPO Bull 17:149–155

    Google Scholar 

  • Maury Y, Bossennec JM, Boudazin G, Hampton RO, Pietersen G, Maguire JD (1987b) Factors influencing ELISA evaluation of transmission of pea seed-borne mosaic virus in infected pea seed: seed-group size and seed decortication. Agronomie 7:225–230

    Google Scholar 

  • Mayee CD, Ganguly B (1974) Fluorescent microscopy in relation to wheat mosaic streak virus disease. Indian Phytopathol 27:608–609

    Google Scholar 

  • McKinney HH (1954) Culture methods for detecting seed-borne virus in glacier barley seedlings. Plant Dis Rep 38:152–162

    Google Scholar 

  • Mestre PF, Asins MJ, Pina JA, Carbonell EA, Navarro L (2007) Molecular markers flanking Citrus tristeza virus resistance gene from Poncirus trifoliata (L.) Raf. Theor Appl Genet 94:458–464

    Google Scholar 

  • Middleton JT (1944) Seed transmission of squash-mosaic virus. Phytopathology 34:405–410

    Google Scholar 

  • Mikel MA, D’Arcy CJ, Ford RE (1984) Seed transmission of maize dwarf mosaic virus in sweet corn. Phytopathol Z 110(3):185–191

    Google Scholar 

  • Milicic D, Stefanac Z (1971) Cell inclusions of the cucumber green mottle mosaic virus and the Odontoglosum ring spot virus. Acta Bot Croat 30:33–40

    Google Scholar 

  • Milicic D, Stefanac Z, Juretic N, Wrischer M (1968) Cell inclusions of Holmes’ ribgrass virus. Virology 35:356–362

    PubMed  CAS  Google Scholar 

  • Miller RV, Carroll TW, Sands DC (1986) Effect of chemical seed treatments on symptoms caused by seed-borne barley stripe mosaic virus in Vantage barley. Can J Microbiol 32(2):189–192

    CAS  Google Scholar 

  • Milne RG, Lesemann DE (1984) Immunosorbent electron microscopy in plant virus studies. Methods Virol 8:85–101

    Google Scholar 

  • Milne RG, Luisoni E (1975) Rapid high-resolution immune electron microscopy of plant viruses. Virology 68:270–274

    PubMed  CAS  Google Scholar 

  • Milne RG, Luisoni E (1977) Rapid immune electron microscopy of virus preparations. In: Maramorosch K, Kaprowski H (eds) Methods in virology, vol VI. Academic, New York, pp 265–281

    Google Scholar 

  • Mink GI (1984) Detection of Prunus necrotic ringspot and prune dwarf viruses in Prunus seed and seedlings by enzyme-linked immunosorbent assays. Plant Dis 68:378–381

    Google Scholar 

  • Mink GI, Aichele MD (1984) Detection of Prunus necrotic ring spot and Prune dwarf viruses in Prunus seed and seedlings by enzyme-linked immunosorbent assay. Plant Dis 68:378–381

    Google Scholar 

  • Mishra MD, Ramachandran P (1986) Embryo culture – a tool for studying seed-borne viruses. In: Varma A, Verma JP (eds) Vistas in plant pathology. Malhotra Publishing House, New Delhi, pp 539–548

    Google Scholar 

  • Mishra MD, Raychoudhuri SP, Jagadish Chandra K (1967) Detecting virus infections in seeds through embryo culture. Proc Int Seed Test Assoc 32:617–624

    Google Scholar 

  • Morris TJ, Dodds JA (1979) Isolation and analysis of double-stranded RNA from virus infected plant and fungal tissue. Phytopathology 69:854–858

    CAS  Google Scholar 

  • Morris TJ, Dodds JA, Hillman B, Jordan RL, Lommel SA, Tamaki SJ (1983) Viral specific Ds RNA: diagnostic value for plant virus disease identification. Plant Mol Biol Rep 1:27–30

    CAS  Google Scholar 

  • Morris J, Clover GRG, Harju VA, Hugo SA, Henry CM (2001) Development of a highly sensitive nested RT-PCR method for Beet necrotic yellow vein virus detection. J Virol Methods 95:163–169

    PubMed  CAS  Google Scholar 

  • Morrison RH (1999) Sampling in seed health. Phytopathology 89:1084–1087

    PubMed  CAS  Google Scholar 

  • Mowat WP, Dawson S (1987) Detection and identification of plant viruses by ELISA using crude sap extracts and unfractionated antisera. J Virol Methods 15:233–237

    PubMed  CAS  Google Scholar 

  • Mukhayyish SF, Makkouk KM (1983) Detection of four seed-borne plant viruses by the enzyme-linked immunosorbent assay (ELISA). Phytopathol Z 106:108–114

    Google Scholar 

  • Mumford RA, Walsh K, Barker I, Boonham N (2000a) Detection of Potato mop top virus and Tobacco mottle virus using a multiplex real time fluorescent reverse – transcription polymerase chain reaction assay. Phytopathology 90:448–453

    PubMed  CAS  Google Scholar 

  • Mumford RA, Walsh K, Boonham N (2000b) A comparison of molecular methods for the routine detection of viroids. EPPO Bull 30:431–435

    Google Scholar 

  • Murant AF (1981a) Nepoviruses. In: Kurstak E (ed) Hand book of plant virus infections and comparative diagnosis. Elsevier/North Holland, Amsterdam, pp 197–238

    Google Scholar 

  • Murant AF (1981b) The role of wild plants in the ecology of nematode-borne viruses. In: Thresh JM (ed) Pests, pathogens and vegetation. Pritman, London, pp 237–248

    Google Scholar 

  • Nagaraj AN, Black LM (1961) Localization of wound-tumor virus antigen in plant tumors by the use of fluorescent antibodies. Virology 15:289–294

    PubMed  CAS  Google Scholar 

  • Naidu RA, Hughes JDA (2003) Methods for the detection of plant viral diseases in plant virology in Sub-Saharan Africa. In: Hughes JDA, Odu B (eds) Proceedings of plant virology. I.I.T.A, Ibadan, pp 233–260

    Google Scholar 

  • Naim Z, Hampton RO (1979) Pisum sativum seed characteristics and assay methodology as factors affecting detection of pea seed-borne mosaic virus. Allahabad Farmer 50(1):25–28

    Google Scholar 

  • Nalini MS, Prakash HS, Shylaja MD, Setty HS (2004) Indexing French bean (Phaseolus vulgaris L) for Bean common mosaic virus infection. Seed Res 32:200–206

    Google Scholar 

  • Nalini MS, Prakash HS, Shetty HS, Prabhakar M (2006) Reaction of French bean accessions and varieties to Bean common mosaic potyvirus and seed transmission of the virus. Legume Res 29:126–129

    Google Scholar 

  • Nayudu MV (2008) Plant viruses. Tata McGraw-Hill Publishing Company Limited, New Delhi, p 1249

    Google Scholar 

  • Ndiaye M, Bashir M, Keller KE, Hampton RO (1993) Cowpea viruses in Senegal, West Africa: identification, distribution, seed transmission and sources of genetic resistance. Plant Dis 77:999–1003

    Google Scholar 

  • Neergaard P (1977a) Quarantine policy for seed in transfer of genetic resources. In: Hewitt WB, Chiarappa L (eds) Plant health and quarantine in international transfer of genetic resources. CRC Press Inc, Cleveland, pp 309–314, 346 pp

    Google Scholar 

  • Neergaard P (1977b) Seed pathology, vol I. Macmillan Press, London/Madras, 839 pp

    Google Scholar 

  • Neurath AR, Strick N (1981) Enzyme-linked fluorescent immunoassays using B-galactosidase and antibodies covalently bound to polystyrene plates. J Virol Methods 3:155–165

    PubMed  CAS  Google Scholar 

  • Nicolaieff A, Van Regenmortel MHV (1980) Detection of rota virus by serological trapping on antibody-coated electron microscopic grids. J Clin Microbiol 12:101–104

    PubMed  CAS  Google Scholar 

  • Njau PJR, Lyimo HFJ (2000) Incidence of Bean common mosaic virus and Bean common mosaic necrosis virus in bean (Phaseolus vulgaris L.) and wild legume seed lots in Tanzania. Seed Sci Technol 28:85–92

    Google Scholar 

  • Njeru R, Ferris DG, Jones RAC, Jones MGK (1997) Studies on seed transmission of subterranean clover mottle virus and its detection in clover seed by ELISA and RT-PCR. Aust J Agric Res 48:343–350

    CAS  Google Scholar 

  • Nolan PA, Campbell RN (1984) Squash mosaic virus detection in individual seeds and seed lots of cucurbits by enzyme-linked immunosorbent assay. Plant Dis 68:971–975

    Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    PubMed  CAS  Google Scholar 

  • O’Donnell IJ, Shukla DD, Gough KH (1982) Electro-bolt radio immuno assay of virus infected plant sap – a powerful new technique for detecting plant viruses. J Virol Methods 4:19–26

    PubMed  Google Scholar 

  • O’Keefe DC, Berryman DI, Coutts BA, Jones RAC (2007) Lack of seed coat contamination with cucumber mosaic virus in lupin permits reliable large scale detection of seed transmission in seed samples. Plant Dis 91:504–508

    Google Scholar 

  • Ojuederie OB, Odu BO, Ilori CO (2009) Serological detection of seed borne viruses in cowpea regenerated germplasm using protein A sandwich enzyme linked immunosorbent assay. Afr Crop Sci J 17:125–132

    Google Scholar 

  • Ouchterlony O (1968) Hand book of immunodiffusion and immuno electrophoresis. Arbor Science Publishers. Inc., Ann Harbor, 215p

    Google Scholar 

  • Oudin J (1952) Specific precipitation in gels and its application to immunochemical analysis. Methods Med Res 5:335–378

    PubMed  CAS  Google Scholar 

  • Ouizbouben A, Fortass M (1997) Survey of chickpea for viruses in Morocco. Bulletin – OEPP 27:249–254

    Google Scholar 

  • Owens RA, Diener TO (1981) Sensitive and rapid diagnosis of potato spindle tuber viroid by nucleic acid spot hybridization. Science 213:67–672

    Google Scholar 

  • Owens RA, Diener TO (1984) Sensitive and rapid diagnosis of potato spindle tuber viroid disease by nucleic acid hybridization. Science 213:670–672

    Google Scholar 

  • Oxford J (1982) The use of monoclonal antibodies in virology. J Hyg Camb 88:361–368

    PubMed  CAS  Google Scholar 

  • Pacumbaba RP (1995) Seed transmission of soybean mosaic virus in mottled and nonmottled soybean seeds. Plant Dis 79:193–195

    Google Scholar 

  • Padma R, Chenulu VV (1985a) Evaluation of techniques for post entry quarantine of seed borne viruses. Indian J Virol 1:311–318

    Google Scholar 

  • Padma R, Chenulu VV (1985b) Seed health testing for seed-borne viruses – an urgent need. Indian J Plant Phytopathol 3(1):33–37

    Google Scholar 

  • Paguio OR, Kuhn CW (1974) Incidence and source of inoculum of peanut mottle virus and its effect on peanut. Phytopathology 64:60–64

    Google Scholar 

  • Pahalawatta V, Druffel K, Pappu HR (2007) Seed transmission of Dahlia mosaic virus in Dahlia pinnata. Plant Dis 91:88–91

    CAS  Google Scholar 

  • Paliwal YC (1977) Rapid diagnosis of barley yellow dwarf virus in plants using serologically specific electron-microscopy. Phytopathol Z 89:25–36

    Google Scholar 

  • Palukaitis P, Symons RH (1978) Synthesis and characterization of a complementary DNA probe for chrysanthemum stunt viroid. FEBS Lett 92:268–272

    CAS  Google Scholar 

  • Palukaitis P, Symons RH (1979) Hybridization analysis of chrysanthemum stunt viroid with complementary DNA and quantitation of viroid RNA sequences in extracts of infected plants. Virology 98:238–245

    PubMed  CAS  Google Scholar 

  • Palukaitis P, Rakowski AG, Alexander DME, Symons RH (1981) Rapid indexing of the sunblotch disease of avocados using a complimentary DNA probe to avocado sunblotch viroid. Ann Appl Biol 98:439–449

    Google Scholar 

  • Parakh DB, Khetarpal RK, Singh S, Nath R (1994) Post entry quarantine detection of soybean mosaic virus by ELISA in soybean germplasm. Indian J Virol 10:17–21

    Google Scholar 

  • Parakh DB, Chalam VC, Khetarpal RK, Maurya AK, Jain A, Singh S (2005) Interception of seed transmitted viruses in soybean germplasm imported during 2003 and 2004. Indian J Plant Protect 33:119–124

    Google Scholar 

  • Parakh DB, Chalam VC, Maurya AK, Khetarpal RK, Singh S, Kaur A (2006) Interception of Pea seed-borne mosaic virus in pea germplasm imported during 2003. Indian J Virol 17:35–38

    Google Scholar 

  • Parakh DB, Khetarpal RK, Chalam VC (2008) Risk of seed transmitted viruses associated with exchange of soybean germplasm and the South Asian scenario. Indian J Virol 19:47–49

    Google Scholar 

  • Parent J-G, Belanger F, Desjardins S, Brisson JD (1985) Dot-immunobinding for detection of tomato mosaic and potato virus X infecting greenhouse tomatoes. Phytoprotection 66:53–57

    Google Scholar 

  • Pares RD, Whitecross MI (1982) Gold-labelled antibody decoration (GLAD) in the diagnosis of plant virus by immuno-electron microscopy. J Immunol Methods 51:23–28

    PubMed  CAS  Google Scholar 

  • Pasquini G, Barba M (2006) The question of seed transmission of plum pox virus. EPPO/OEPP Bull 36:287–292

    Google Scholar 

  • Pedersen P, Grau C, Cullen E, Koval N, Hill JH (2007) Potential for integrated management of soybean virus disease. Plant Dis 91:1255–1259

    CAS  Google Scholar 

  • Pelet F (1965) Dosage du virus de la Mosaique de la Laitue par indexage de la graine sur Chenopodium quinoa wild. Revue Hort Suissc 38:7–10

    Google Scholar 

  • Pena ZM, Trujillo YG (2006) Extraction methodologies of seed-borne viruses in beans (Phaseolus vulgaris L.) and Cowpea (Vigna unguiculata (L.) walp.). Rev Fac Agron (LUZ) 23:283–391

    Google Scholar 

  • Pesic Z, Hiruki C (1986) Difference in the incidence of alfalfa mosaic virus in seed coat and embryo of alfalfa seed. Can J Plant Pathol 8(1):39–42

    Google Scholar 

  • Peypelut M, Krause-Sakate R, Guiraud T, Pavan MA, Candresse T, Zerbini FM, Le Gall O (2004) Specific detection of Lettuce mosaic virus isolates belonging to the “Most” type. J Virol Methods 121:119–124

    PubMed  CAS  Google Scholar 

  • Phan TTH, Khetarpal RK, Le TAH, Maury Y (1997) Comparison of immuno capture PCR and ELISA in quality control of pea seed for Pea seed borne mosaic potyvirus. In: Hutchins JD, Reeves JC (eds) Seed health testing. CAB International, Wallingford, pp 193–199

    Google Scholar 

  • Phatak HC (1974) Seed-borne plant viruses-identification and diagnosis in seed health testing. Seed Sci Technol 2:3–155

    Google Scholar 

  • Phatak HC, Summanwar AS (1967) Detection of plant viruses in seeds and seed stock. Proc Int Seed Test Assoc 32:625–631

    Google Scholar 

  • Pinnow DL, Chalkey JH, Demski JW (1990) A practical method for the detection of peanut stripe virus in peanut seed. Georjia Agric Exp Stn Res Rep 584:1–12

    Google Scholar 

  • Porto MD, Hagedorn DJ (1975) Seed transmission of a Brazilian isolate of soybean mosaic virus. Phytopathology 65:713–716

    Google Scholar 

  • Powell CA (1984) Comparison of enzyme-linked immunosorbent assay procedures for detection of tomato ringspot virus in woody and herbaceous hosts. Plant Dis 68:908–909

    Google Scholar 

  • Prasada Rao RDVJ, Reddy AS, Chakravarthy SK, Snitha K (2004) Interception of seed transmitted viruses in peanut germplasm imported into India during 1986–2003. Indian J Plant Protect 32:102–104

    Google Scholar 

  • Puttaraju HR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (1999) Detection of Bean common mosaic potyvirus in French bean seed samples from Karnataka. Indian J Virol 15:27–29

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2001) Detection of peanut mottle poty virus in leaf and seed of peanut and its effect on yield. Indian Phytopathol 54:479–480

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2002) Contribution of seed borne Black eye cowpea mosaic potyvirus to disease dynamics and loss of yield. Trop Sci 42:147–152

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2003) Detection of Black eye cowpea mosaic potyvirus (BCLMV) in leaves and seeds of Cowpea. Indian J Microbiol 43:45–48

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2004a) Seed infection by Black eye cowpea mosaic potyvirus and yield loss in different cowpea varieties. J Mycol Plant Pathol 34:41–46

    Google Scholar 

  • Puttaraju HR, Shylaja H, Dharmesh M, Prakash HS, Shetty HS (2004b) Black eye cowpea mosaic potyvirus – polyclonal antibody production and its application in seed health testing. J Mycol Plant Pathol 14:810–815

    Google Scholar 

  • Qiu B, Xie H, Rei M (1982) On the barley stripe mosaic virus from China. I. Enzyme linked immunosorbent assay to detect barley stripe mosaic virus in seeds of wheat and barley. Acta Phytopathol Sin 12(3):29–32

    Google Scholar 

  • Quainoo AK, Wetten AC, Allainguillaume J (2008) Transmission of Cocoa swollen shoot virus by seeds. J Virol Methods 150:45–49

    PubMed  CAS  Google Scholar 

  • Quantz L (1957) Eine schalentest zum schnellennachweis des gewohnlichen Bohnen mosaikvirus (Phaseolus virus – 1). Nechr Bl dt Pflschutz dienst 9:71–74

    Google Scholar 

  • Quantz L (1962a) Ein Schalentest zum schnellnachweis des Gewohnlichen Bohenmosaikvirus (Phaseolus virus 1). Nachrichtenblatt des Deutschen pflanzenschutzdienstes 9:71–74

    Google Scholar 

  • Quantz L (1962b) Zum Nachweis des gewohnlichen Bohnenmosaik virus im Bohnensamen mit Hilfe des Schalentests. Nachr Bl dt PflSchDeinst Stuttgart 14:49–54

    Google Scholar 

  • Raizada RK, Albrechtsen SE, Lange L (1990) Detection of bean common mosaic virus in dissected portions of individual bean seeds using immunosorbent electron microscopy. Seed Sci Technol 18:559–565

    Google Scholar 

  • Raizada RK, Aslam M, Singh BP (1991) Immunological detection of bean yellow mosaic virus in seeds of faba bean (Vicia faba L.). Indian J Virol 7:179–183

    Google Scholar 

  • Ramachandran P, Mishra MD (1987) A procedure for detection of seed-borne lettuce mosaic virus infection. Indian J Plant Pathol 5(2):133–138

    Google Scholar 

  • Randles JW, Palukaitis P (1979) In vitro synthesis and characterization of DNA complementary to cadang-cadang associated RNA. J Gen Virol 43:649–662

    CAS  Google Scholar 

  • Randles JW, Boccardo G, Imperial JS (1980) Detection of the cadang cadang associated RNA in African oil palm and buri palm. Phytopathology 70:185–189

    CAS  Google Scholar 

  • Rao GP, Singh M (2008) Techniques in diagnosis of plant viruses. In: Rao GP, Varverde RA, Dovas CI (eds) Techniques in diagnosis of plant viruses. Studium Press LLC, Houston, pp 1–47

    Google Scholar 

  • Reddy DVR, Black LM (1972) Increase of wound tumor virus in leafhoppers as assayed on vector cell monolayers. Virology 50:412–421

    PubMed  CAS  Google Scholar 

  • Reddy DVR, Bharatan N, Rajeswari R, Demski JW (1984) Detection of peanut mottle virus in peanut seed by enzyme linked immunosorbent assay. Phytopathology 74:627

    Google Scholar 

  • Reddy DVR, Nolt BL, Hobbs HA, Reddy AS, Rajeswari R, Rao AS, Reddy DDR, McDonald D (1988) Clump virus in India: isolates host range, transmission and management. Developments in Applied Biology 2:239–246

    Google Scholar 

  • Reddy AS, Hobbs HA, Delfosse P, Murthy AK, Reddy DVR (1998a) Seed transmission of Indian peanut cleanup virus (IPCV) in peanut and millets. Plant Dis 82:343–346

    Google Scholar 

  • Reddy AS, Hobbs HA, Murthy AK, Reddy DVR (1998b) Seed transmission of Indian Peanut clump virus (IPCV) in peanut and millets. Plant Dis 82:343–346

    Google Scholar 

  • Revers F, van der Vlugt RAA, Souche S, Lanneau M, Lot H, Candresse T, Le Gall O (1999) Nucleotide sequence of the 3′ terminal region of the genome of four Lettuce mosaic virus isolates from Greece and Yemen. Arch Virol 144:1619–1626

    PubMed  CAS  Google Scholar 

  • Rishi N, Dhawan P (1994) Production and applications of monoclonal antibodies in studies of plant viruses. In: Rao GP, Gillaspie AG Jr, Upadhyaya PP, Bergamin A, Agnihotri VP, Chen CT (eds) Current trends in sugarcane pathology. International Books & Periodicals Supply Service, Pitampura, New Delhi

    Google Scholar 

  • Roberts IM (1976) Electron microscope serology. Report of the Scottish Horticultural Research Institute for 1975, p 80

    Google Scholar 

  • Roberts IM, Harrison BD (1979) Detection of potato leafroll and potato mop-top viruses by immunosorbent electron microscopy. Ann Appl Biol 93:289–297

    Google Scholar 

  • Roberts IM, Milne RG, VanRegenmortel MHV (1982) Suggested terminology for virus/antibody interactions observed by electron microscopy. Intervirology 18:147–149

    PubMed  CAS  Google Scholar 

  • Robertson NL, Coyne CJ (2009) Evaluation of USDA Lupinus sp. Collection for seed-borne poty viruses. Plant Gen Res 7:227–229

    Google Scholar 

  • Rohloff I (1962) Entwicklung ciner Laboratoriumsmethodezur kurzfristigen Untersuchung von Salatsamen (Lactua sativa L.) auf Befall mit Salatmosaik Virus (SMV). Gartenhauwissenschaft 27:413–436

    Google Scholar 

  • Rohloff I (1967) The controlled environment room test of lettuce seed for identification of lettuce mosaic virus. Int Seed Test Assoc Proc 32:59–64

    Google Scholar 

  • Rosner A, Bar-Joseph M, Moscovitz M, Mevarech M (1983) Diagnosis of specific viral RNA sequences in plant extracts by the hybridization with a polynucleotide kinase-mediated 32 P-labelled, double stranded RNA probe. Phytopathology 73:699–702

    CAS  Google Scholar 

  • Rosner A, Maslemin L, Spiegel S (1999) Double-stranded confirmation polymorphism of heterologous RNA transcripts and its use for virus strain differentiation. Plant Pathol 48:235–239

    CAS  Google Scholar 

  • Ross JP (1963) Interaction of the soybean mosaic and bean pod mottle viruses infecting soybeans. Phytopathology 53:887

    Google Scholar 

  • Roy A, Fayad A, Barthe G, Brlansky RH (2005) A Multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees. J Virol Methods 129:47–55

    PubMed  CAS  Google Scholar 

  • Rubies-Autonell C, Turina M (1997) Seed transmission of Hibiscus latent ring spot virus (HLRSV). Plant Dis 81:1082–1084

    Google Scholar 

  • Russo M, Vovlas C (1981) Violente infezioni del virus del mosaico commune del fagilo nelle marche. Informatore Fitopatologica 6:23–25

    CAS  Google Scholar 

  • Rybicki EP, Von Wechmar MB (1981) The serology of the bromoviruses. I. Serological interrelationships of the bromo viruses. Virology 109:391–402

    PubMed  CAS  Google Scholar 

  • Rybicki EP, Von Wechmar MB (1982) Enzyme-associated immune detection of plant virus proteins electroblotted onto nitrocellulose paper. J Virol Methods 5:267–278

    PubMed  CAS  Google Scholar 

  • Ryder EJ, Johnson AS (1974) A method for indexing lettuce seeds for seed-borne lettuce mosaic virus by air stream separation of light from heavy seeds. Plant Dis Rep 58:1037–1039

    Google Scholar 

  • Ryu KH, Park MH, Lee MY, Lee JS (2006) Characterization and seed transmission of Hosta virus X isolated from hosta plants. Acta Hort 722:91–93

    CAS  Google Scholar 

  • Sagemann W, Lesemann D-E, Paul HL, Adomako D, Owusu GK (1985) Detection and comparison of some Ghanaian isolates of cacao swollen shoot virus (CSSV) by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy (IEM) using an antiserum to CSSV strain 1A. Phytopathol Z 114:79–89

    Google Scholar 

  • Saiz M, Castro S, De Blas C, Romero J (1994) Serotype-specific detection of Bean common mosaic potyvirus in bean leaf and seed tissue by enzyme amplification. J Virol Methods 50:145–154

    PubMed  CAS  Google Scholar 

  • Salazar LF, Owens RA, Smith DR, Diener TO (1983) Detection of potato spindle tuber viroid by nucleic acid spot hybridization. Evaluation with tuber sprouts and true potato seed. Am Potato 60:587–597

    Google Scholar 

  • Saleh N, Honda Y, Iwaki M, Jantera DM (1986) Occurrence of blackgram mottle virus on mungbean in Indonesia and seed transmission of the virus, pp 203–211. Tech Bull No 21, Tropical Agricultural Research Center Japan, p 238

    Google Scholar 

  • Salem NM, Ehlers JD, Roberts PA, Ng JCK (2010) Biological and molecular diagnosis of seed-borne viruses in cowpea germplasm of geographically diverse Sub-Saharan origins. Plant Pathol 59:773–784

    Google Scholar 

  • Sambade A, Martin S, Olmos A, Garcia ML, Cambra M, Grau O, Guerri Z, Moreno P (2000) A first one-step reverse transcription polymerase chain reaction (RT-PCR) amplification procedure providing highly specific complementary DNA from plant virus RNA. J Virol Methods 87:25–28

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2002) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saponari M, Savino V, Martelli GP (2002) Seed transmission in olive of two olive infecting viruses. J Plant Pathol 84(3):167–168

    Google Scholar 

  • Schumacher J, Meyer N, Riesner D, Weidemann HL (1986) Diagnostic procedure for detection of viroids and viruses with circular RNAS by “Return” gel electrophoresis. J Phytopathol 115:332–343

    Google Scholar 

  • Seaby DA, Caughey C (1977) Mechanization of the slide agglutination test. Potato Res 20:343–344

    Google Scholar 

  • Seddas A, Haidar MM, Greif C, Jacquet C, Cloquemin G, Walter B (2000) Establishment of a relationship between grapevine leaf roll closteroviruses 1 and 3 by use of monoclonal antibodies. Plant Pathol 49:80–85

    CAS  Google Scholar 

  • Sevik MA, Tohumcu EK (2011) The ELISA analysis results in tomato (Lycopersicon esculentum Mill.) seed health testing for Tobacco mosaic virus. Zemdirbyste Agric 98:301–306

    Google Scholar 

  • Shalev A, Greenberg AH, McAlpine PJ (1980) Detection of attograms of antigen by a high sensitivity enzyme-linked immunosorbent assay (H.S.-ELISA) using fluorogenic substrate. J Immunol Methods 38:125–139

    PubMed  CAS  Google Scholar 

  • Shamloul AM, Hadidi A, Zhu SF, Singh RP, Sagredo B (1997) Sensitive detection of potato spindle tuber viroid using RT-PCR and Pepino plants. Can J Plant Pathol 19:89–98

    Google Scholar 

  • Shang H, Xie Y, Zhou X, Qian Y, Wu J (2011) Monoclonal antibody based serological methods for detection of cucumber green mottle mosaic virus. Virol J 8:228–232

    PubMed  CAS  Google Scholar 

  • Shepard JF, Secor GA (1969) Detection of potato virus x in infected plant tissue by radial and double-diffusion tests in agar. Phytopathology 57:1136–1137

    Google Scholar 

  • Shepherd RJ (1972) Transmission of viruses through seed and pollen. In: Kado CI, Agrawal HO (eds) Principles and techniques in plant virology. Van Nostrand-Reinhold Co., New York, pp 267–292, 688 p

    Google Scholar 

  • Shepherd RJ, Holdeman QL (1965) Seed transmission of the johnson grass strain of the sugarcane mosaic virus in corn. Plant Dis Rep 49:468–469

    Google Scholar 

  • Sheppard J (1999) Importance of seed health within seed testing. International Seed Testing Association – ISTA, Basserdorf, CH, pp 1–8

    Google Scholar 

  • Sheppard J, Wesseling H (1997) Joint ISTA/ISHI guide lines for comparative testing of methods for detection of seed-borne pathogens, p 17

    Google Scholar 

  • Sherwood JL, Sanborn MR, Keyser GC (1987) Production of monoclonal antibodies to peanut mottle virus and their use in enzyme-linked immunosorbent assay and dot immuno binding assay. Phytopathology 77:1158–1161

    Google Scholar 

  • Shi A, Chen P, Li DX, Zheng C, Hou A, Zhang B (2008) Genetic confirmation of 2 independent genes for resistance to Soybean mosaic virus in J05 soybean using SSR markers. J Hered 99:598–603

    PubMed  CAS  Google Scholar 

  • Shmyglya VA, Makaev SSH, Aktaa S (1984) Characteristics of the diagnosis of tobacco mosaic virus transmitted by tomato and tobacco seeds. Sel skokhozyaistvennaya Biologiya 11:60–62

    Google Scholar 

  • Shrestha SM (1984) Project report from Danish Government institute of seed pathology for developing countries, 24 pp

    Google Scholar 

  • Shukla DD, Gough KH (1979) The use of protein A, from Staphylococcus aureus, in immune electron microscopy for detecting plant virus particles. J Gen Virol 45:533–536

    Google Scholar 

  • Shukla DD, Gough KH (1984) Serological relationships among four Australian strains of sugarcane mosaic virus as determined by immune electron microscopy. Plant Dis C8:204–206

    Google Scholar 

  • Shukla DD, O’Donnell IJ, Gough KH (1983) Characteristics of electro-blot radio immuno assay (EBRIA) in relation to the identification of plant viruses. Acta Phytopathol Acad Sci Hwngaricae 18:79–84

    CAS  Google Scholar 

  • Shukla DD, Frankel HJ, Ward CW (1991) Structure and function of the potyvirus genome with special reference to the coat protein coding region. Can J Plant Pathol 13:178–191

    CAS  Google Scholar 

  • Simmons HE, Holmes EC, Gildow FE, Bothe – Goralzyk MA, Stephenson AG (2011) Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Dis 95:751–754

    Google Scholar 

  • Singh RP (1984) Solanum berthaultii, a sensitive host for indexing potato spindle tuber viroid from dormant tubers. Potato Res 27:163–172

    Google Scholar 

  • Singh RP (1989) Molecular hybridization with complimentary DNA for plant viruses and viroids detection. In: Agnihotri VP (ed) Perspectives in phytopathology. Today & Tomorrows Printers & Publishers, New Delhi, pp 51–60

    Google Scholar 

  • Singh SJ (1992) Management of viral diseases of horticultural crops by use of oils. In: Sokhi SS, Chandel SS, Singh PP (eds) Progress in plant pathological research, pp 223–240

    Google Scholar 

  • Singh SJ (1992b) Present status and future strategies for the management of diseases of horticultural crops in India. J Andaman Sci Assoc 7:1–112

    Google Scholar 

  • Singh RP, Boucher A (1987) Electrophoretic separation of a severe from mild strains of potato spindle tuber viroid. Phytopathology 77:1588–1591

    Google Scholar 

  • Singh RP, Dhar AK (1998) Detection and management of plant viroids. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St Paul, pp 428–447

    Google Scholar 

  • Singh RP, Boucher A, Seabrook JEA (1988) Detection of the mild strains of potato spindle tuber viroid from single true potato seed by return electrophoresis. Phytopathology 78:663–667

    Google Scholar 

  • Singh RP, Boucher A, Singh A (1991a) High incidence of transmission and occurrence of a viroid in commercial seeds of coleus in Canada. Plant Dis 75:184–187

    Google Scholar 

  • Singh RP, Boucher A, Wang RG (1991b) Detection, distribution and long-term persistence of potato spindle tuber viroid in true potato seed from Heilongjiang, China. Am Potato J 68:65–74

    CAS  Google Scholar 

  • Singh RP, Boucher A, Somerville TH (1992) Detection of potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis 76:951–953

    Google Scholar 

  • Singh RP, Boucher A, Somerville TH (1993) Interactions between a mild and severe strain of potato spindle tuber viroid in doubly infected potato plants. Am Potato J 70:85–92

    Google Scholar 

  • Sinha RC, Black LM (1962) Studies of the smear technique for detecting virus antigens in an insect vector by the use of fluorescent antibodies. Virology 17:582–587

    PubMed  CAS  Google Scholar 

  • Slack SA, Shepherd RJ (1975) Serological detection of seed-borne barley stripe mosaic virus by a simplified radial-diffusion technique. Phytopathology 65:948–955

    Google Scholar 

  • Smith DF, Banttari EE (1984) Dot ELISA on nitrocellulose membranes for detection of tomato leaf roll virus. Phytopathology 74:847

    Google Scholar 

  • Smykal P, Safarova D, Navratil M, Dostalova R (2010) Marker assisted pea breeding: e1F4E allele specific markers to Pea seed borne mosaic virus (PSbMV) resistance. Mol Breed 26:425–438

    Google Scholar 

  • Sol HH, Seinhorst JW (1961) The transmission of mottle virus by Trichodorus pachydermus. Tijdschr Pl Ziekt 67:307–311

    Google Scholar 

  • Spak J, Kubelkova D, Hnilicka E (1993) Seed transmission of turnip yellow mosaic virus in winter turnip and winter oil seed rapes. Ann Appl Biol 123:33–35

    Google Scholar 

  • Stace-Smith R, Hamilton RI (1988) Inoculum thresh holds of seedborne pathogens: viruses. Phytopathology 78:875–880

    Google Scholar 

  • Stevenson WR, Hagedorn DJ (1969) A new seed-borne virus of peas. Phytopathology 59:1051

    Google Scholar 

  • Stevenson WR, Hagedorn DJ (1970) Effect of seed size and condition on transmission of the pea seed-borne mosaic virus. Phytopathology 60:1148–1149

    Google Scholar 

  • Stobbs LU, Baker D (1985) Rapid sample analysis with a simplified ELISA. Phytopathology 75:492–495

    Google Scholar 

  • Strauss SH, Bonsquet J, Hopkins VD, Hang YP (1992) Biochemical and molecular genetic markers in biosystematic studies of forest trees. New Forests 6:125–158

    Google Scholar 

  • Sudarshana MR, Reddy DVR (1989) Penicillinase-based enzyme-linked immunosorbent assay for the detection of plant viruses. J Virol Methods 26:45–52

    PubMed  CAS  Google Scholar 

  • Sukorndhaman M (1987) Nucleic acid hybridization, serology and host reactions to study classification and detection of peanut mottle viruses. PhD Dissertation, University of Georgia, Athens, 92 pp

    Google Scholar 

  • Svoboda J, Cervena G, Rodova J, Jokes M (2006) First report of Pepper mild mottle virus in pepper seeds produced in the Czech Republic. Plant Protect Sci 42:34–37

    Google Scholar 

  • Symons RH (1984) Diagnostic approaches for the rapid and specific detection of plant viruses and viroids, pp 93–124

    Google Scholar 

  • Taiwo MA, Gonsalves D, Provvidenti R, Thurston HD (1982) Partial characterization and grouping of isolates of blackeye cowpea mosaic and cowpea aphidborne mosaic viruses. Phytopathology 72:590–596

    CAS  Google Scholar 

  • Takeuchi S, Hikichi Y, Kawada Y, Okuno T (1999) Direct immunostaining assay, a new simplified technique for detection of tobamoviruses from seeds of green pepper (Capsicum annuum L.). Ann Phytopathol Soc Jpn 65:189–191

    Google Scholar 

  • Taraku N, Tolin SA, Juretic N (1987) Identification and classification of soybean mosaic virus isolates found in Kosovo (Yugoslavia). Acta Bot Croat 46:15–21

    Google Scholar 

  • Thomas BJ (1980) The detection by serological method of viruses infecting the rose. Ann Appl Biol 94:91–101

    Google Scholar 

  • Thomidis T, Karajiannis I (2003) Using ELISA and PCR to test the potential for spread of plum pox virus by seeds of different stone fruits cultivars. NZ JCrop Hort Sci 31:69–72

    CAS  Google Scholar 

  • Thornley WR, Mumford DL (1979) Intracellular location of beet curly top virus antigen as revealed by fluorescent antibody staining. Phytopathology 69:738–740

    Google Scholar 

  • Timmerman GM, Frew TJ, Miller AL, Weeden NF, Jermyn WA (1993) Linkage mapping of sbm-1, a gene conferring resistance to pea seed born mosaic virus using molecular markers in Pisum sativum. Theor Appl Genet 85:609–615

    CAS  Google Scholar 

  • Tobias I, Szabo B, Salanki K, Sari L, Kuhlmann H, Palkovics L (2008) Seed borne transmission of Zucchini yellow mosaic virus and Cucumber mosaic virus in Styrian Hulless group of Cucurbita pepo. In: Pitrat M (ed) Proc. IXth EUCARPA meeting of genetics and plant breeding of cucurbitaceae. INRA, Avignon, pp 189–197

    Google Scholar 

  • Tomlinson J, Mumford R (2007) Microarrays for rapid identification of plant viruses. Ann Rev Phytopathol 45:307–328

    Google Scholar 

  • Torrance L (1980a) Use of protein A to improve sensitisation of latex particles with antibodies to plant viruses. Ann Appl Biol 96:45–50

    Google Scholar 

  • Torrance L (1980b) Use of bovine clq to detect plant viruses in an enzyme linked immunosorbent type assay. J Gen Virol 51:229–232

    Google Scholar 

  • Torrance L, Jones RAC (1981) Recent developments in serological methods suited for use in routine testing for plant viruses. Plant Pathol 30:1–24

    Google Scholar 

  • Torrance L, Jones RAC (1982) Increased sensitivity of detection of plant viruses by using fluorogenic substrate in enzyme linked immunosorbent assay. Ann Appl Biol 101:501–509

    Google Scholar 

  • Tosic M, Pesic Z (1975) Investigation of alfalfa mosaic virus transmission through alfalfa seed. Phytopathol Z 83:320–327

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Proc Appl Proc Natl Acad Sci USA 76:4350–4354

    CAS  Google Scholar 

  • Troll HJ (1957) Zur Frage der Braunevirus-Ubertragung durch das Saatgut bei Lupinus luteus. NachBl dt Pflschutzdienst Berlin 11:218–222

    Google Scholar 

  • Tsuchizaki T, Saraki A, Saito Y (1978) Purification of citrus tristeza virus from diseased citrus fruits and the detection of the virus by in citrus tissues by fluorescent antibody techniques. Phytopathology 68:139–142

    Google Scholar 

  • Tsuda S, Kameya-Iwaki M, Hanada K, Kouda Y, Hikata M, Tomaru K (1992) A novel detection and identification technique for plant viruses. Rapid immunofilter paper assay RIPA). Plant Dis 76:466–469

    CAS  Google Scholar 

  • Udayashankar AC, Nayaka CS, Kumar BH, Shetty HS, Prakash HS (2009) Detection and identification of the Black eye cowpea mosaic strain of Bean common mosaic virus in seeds of cowpea from Southern India. Phytoparasitica 37:283–293

    Google Scholar 

  • Udayashankar AC, Nayaka CS, Kumar BH, Mortensen CN, Shetty HS, Prakash HS (2010) Establishing inoculum threshold levels for Bean common mosaic virus strain Black eye cowpea mosaic infection in cowpea seed. Afr J Biotechnol 9(53):8958–8969

    Google Scholar 

  • Valverde RA (2008) dsRNA as a detection and diagnostic tool for plant viruses. In: Govind PR, Rodrings AV, Dovas CI (eds) Techniques in diagnosis of plant viruses. Stadium Press LLC, Houston, pp 49–60

    Google Scholar 

  • Valverde RA, Dodds JA (1986) Evidence for a satellite RNA associated naturally with the U5 strain and experimentally with the U1 strain of tobacco mosaic virus. J Gen Virol 67:1875–1884

    CAS  Google Scholar 

  • Valverde RA, Dodds JA, Heicks JA (1986) Double-stranded ribonucleic acid from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76:459–465

    CAS  Google Scholar 

  • Valverde RA, Nameth ST, Jordan RI (1990) Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis 74:255–258

    Google Scholar 

  • van Ettekoven K (2002) Seed health testing methods reference manual. ISHIVEG, International Seed Health Initiative for Vegetable Seeds

    Google Scholar 

  • Van Hoof HA (1962) Trichodorus pachydermus and T. teres vectors of early browning virus of peas. Tijdschr Pl Ziekt 68:391–396

    Google Scholar 

  • Van Niekerk BP, Lombard M (1967) Soybean mosaic and mottled seed. Fmg South Africa 43(9):7–9

    Google Scholar 

  • Van Regenmortel MHV (1982) Serology and immunochemistry of plant viruses. Academic, New York, 268

    Google Scholar 

  • Van Regenmortel MHV (1984) Monoclonal antibodies in plant virology. Microbiol Sci 1:73

    PubMed  Google Scholar 

  • Van Regenmortel MHV (1986) The potential for using monoclonal antibodies in the detection of plant viruses. In: Jones LAC, Terrance L (eds) Developments in applied biology-1. Developments and applications in virus testing. Association of Application Biologists, Wellesbourne, pp 89–101, 312 pp

    Google Scholar 

  • Van Regenmortel MHV, Burckard J (1980) Detection of a wide spectrum of tobacco mosaic virus strains by indirect enzyme immunosorbent assays (ELISA). Virology 106:327–334

    PubMed  Google Scholar 

  • Van Regenmortel MHV, Nicolaieff A, Burckard J (1980) Detection of a wide spectrum of virus strains by indirect ELISA and serological trapping electron microscopy (STREM). Acta Hort 110:107–115

    Google Scholar 

  • Van Slogteren E, Van Slogteren DHM (1957) Serological identification of plant viruses and serological diagnosis of virus diseases of plants. Ann Rev Microbiol 11:149–164

    Google Scholar 

  • Van Vuurde JWL, Maat DZ (1983) Routine application of ELISA for the detection of lettuce mosaic virus in lettuce seeds. Seed Sci Technol 11:505–514

    Google Scholar 

  • Van Vuurde JWL, Maat DZ (1985) Enzyme-linked immunosorbent assay (ELISA) and disperse-dye immuno assay (DIA): comparison of simultaneous and separate incubation of sample and conjugate for the routine detection of lettuce mosaic virus and pea early-blowing virus in seeds. Neth J Plant Pathol 91:3–13

    Google Scholar 

  • Varma A, Khetarpal RK, Viswanath SM, Kumar D, Maury Y, Sharma B, Tyagi MC (1991) Detection of pea seed-borne mosaic virus in commercial seeds of pea, and germ plasm of pea and lentil. Indian Phytopathol 44:107–111

    Google Scholar 

  • Varma A, Krishna Reddy M, Malathi VG (1992) Influence of the amount of the blackgram mottle virus in different tissues on transmission through the seeds of Vigna mungo. Plant Pathol 41:274–281

    Google Scholar 

  • Varveri C (2000) Potato Y Potyvirus detection by immunological and molecular techniques in plants and aphids. Phytoparasitica 28:141–148

    CAS  Google Scholar 

  • Verhoeven JKJ, Jansen CCC, Roenhorst JW, Flores R, de la Pena M (2009) Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Res 144:209–214

    PubMed  CAS  Google Scholar 

  • Voller A, Bartlett A, Bidwell DE, Clark MF, Adams AN (1976) The detection of viruses by enzyme-linked immunosorbent assay (ELISA). J Gen Virol 33:165–167

    PubMed  CAS  Google Scholar 

  • Von Wechmar MB, Kaufmann A, Rybicki RP (1983) Serological detection of cucumber mosaic virus in Southern African cereal crops: seed borne CMV in barley In barley yellow dwarf, a proceedings of workshop, 6–8 Dec 1983

    Google Scholar 

  • Von Wechmar MB, Kaufmann A, Desmarais F, Rybicki EP (1984a) Detection of seed-transmitted brome mosaic virus by ELISA, radial immunodiffusion and immunoelectroblotting tests. Phytopathol Z 109:341–352

    Google Scholar 

  • Walkey DGA, Webb MJW (1970) Tabular inclusion bodies in plants infected with viruses of the NEPO type. J Gen Virol 7:159–166

    PubMed  CAS  Google Scholar 

  • Walsh K, North J, Barker I, Boonham N (2001) Detection of different strains of Potato virus Y and their mixed infections using competitive fluorescent RT-PCR. J Virol Methods 91:167–173

    PubMed  CAS  Google Scholar 

  • Walter MH, Kaiser WJ, Klein RE, Wyatt SD (1992) Association between tobacco streak Ilarvirus seed transmission and anther tissue infection in bean. Phytopathology 82:412–415

    Google Scholar 

  • Wang WY, Mink GI, Silbernagel KJ (1982) Comparison of direct and indirect enzyme-linked immunosorbent assay (ELISA) in the detection of bean common mosaic virus. Phytopathology 72:954 (Abstract)

    Google Scholar 

  • Wang WY, Mink GI, Silbernagel MJ, Davis WC (1984) Production of hybridoma lines secreting specific antibodies to bean common mosaic virus (BCMV) strains. Phytopathology 74:1142 (Abstract)

    Google Scholar 

  • Wang WY, Mink GI, Silbernagel KJ (1985) The use of enzyme-linked immunosorbent assay (EIBA) to detect bean common mosaic virus in individual bean seed. Phytopathology 75:1352 (Abstract)

    Google Scholar 

  • Wang D, Guicheng H, Fugui W, Yonggang L, Daxi R (2008) Drawback of Loop mediated Isothermal Amplification. Afr J Food Sci 2:83–86

    Google Scholar 

  • Warmke HE (1968) Fine structure of inclusions formed by the aucuba strain of tobacco mosaic virus. Virology 34:149–157

    PubMed  CAS  Google Scholar 

  • Warmke HE, Edwardson JR (1966) Electron microscopy of crystalline inclusions of tobacco mosaic virus in leaf tissue. Virology 30:45–47

    PubMed  CAS  Google Scholar 

  • Warwick D, Demski JW (1988) Susceptibility and resistance of soybeans to peanut stripe virus. Plant Dis 72:19–21

    Google Scholar 

  • Watson JD, Tooze J, Kurtz DT (1983) Recombinant DNA. Scientific American Books, W.H. Freeman and Company, New York, 260 pp

    Google Scholar 

  • Webster CG, Wylie SJ, Jones MGK (2004) Diagnosis of plant viral pathogens. Curr Sci 86(12):1604–1607

    CAS  Google Scholar 

  • Weissensteiner T, Griffin HG, Griffin AM (2004) PCR technology: current innovations, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Williams LE, Findley WR, Dollinger EJ, Ritter RM (1968) Seed transmission studies of maize dwarf mosaic virus in corn. Plant Dis Rep 52:863–864

    Google Scholar 

  • Wylie S, Wilson CR, Jones RAC, Jones MGK (1993) A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. Aust J Agric Res 44:41–51

    CAS  Google Scholar 

  • Xu Z, Chen K, Zhang Z, Chen J (1991) Seed transmission of peanut stripe virus in peanut. Plant Dis 75:723–726

    Google Scholar 

  • Yang TC, Hooker WJ (1977) Albinism of potato spindle tuber viroid infected Rutgers tomato in continuous light. Am Potato J 54:519

    Google Scholar 

  • Yang Y, Kim KS, Anderson EJ (1997) Seed transmission of cucumber mosaic virus in spinach. Phytopathology 87:924–931

    PubMed  CAS  Google Scholar 

  • Yilmaz MA, Ozaslan D (1989) Detection of cowpea aphid-borne mosaic virus by enzyme linked immunosorbent assay on cowpea and bean seeds. Doga Turk Tarum ve Ormancilik Deggisi 13:870–873

    Google Scholar 

  • Yolken RH, Leister FJ (1982) Comparison of fluorescent and colorigenic substrates for enzyme immuno assays. J Clin Microbiol 15:757–760

    PubMed  CAS  Google Scholar 

  • Yolken RH, Stopa PJ (1979) Enzyme-linked fluorescence assay. Ultrasensitive sold-phase assay for detection of human rota virus. J Clin Microbiol 10:317–321

    PubMed  CAS  Google Scholar 

  • Yolken RH, Wee SB, Van Regenmortel MV (1984) The use of beta-lactamase in enzyme immunoassays for detection of microbial antigens. J Immuno Methods 73:109–123

    CAS  Google Scholar 

  • Yu Y, Maroof M, Buss G, Maughan P, Tolin S (1994) RFLP and microsatellite mapping of a gene for Soybean mosaic virus resistance. Phytopathology 84:60–64

    CAS  Google Scholar 

  • Zhu FC, Chen YT, Zhang HF, Tsai JH (1982) Identification, transmission, host range and epidemiology of Maize dwarf mosaic virus in North Western China. In: Nault LR (ed) Proceedings of international maize virus disease colloquium and workshop, Wooster, Ohio, August 2–6, 1982

    Google Scholar 

  • Zink FW, Grogan RG, Welch JE (1956) The effect of the percentage of seed transmission upon subsequent spread of lettuce mosaic virus. Phytopathology 46:662–664

    Google Scholar 

  • Zrien M, Burckand J, Van Regenmortel MV (1986) Use of the Biotin Avidin system for detecting a broad range of serologically related viruses by ELISA. J Virol Methods 13:121–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sastry, K.S. (2013). Detection of Plant Viruses in Seeds. In: Seed-borne plant virus diseases. Springer, India. https://doi.org/10.1007/978-81-322-0813-6_6

Download citation

Publish with us

Policies and ethics