Skip to main content

Evaluation of Bryophyte Protein-Based Defense Against Selected Phytophagous Insects

  • Conference paper
  • First Online:

Abstract

Insect-resistant proteins have been one of the major successes of applying plant genetic engineering technology to agriculture. Relatively little is known about insect defense mechanisms in the lower plants. The current paradigm is that secondary metabolites and physical barriers are most important in conferring insect resistance in plants. We investigated whether protein-based resistance exists in representatives of bryophytes. We screened a total of 20 bryophytes such as Porella acutifolia, Fissidens asperifolius, Fissidens crispulus, Hypopterygium tamarisci, Brachymenium nepalense, Brachythecium buchananii, Campylopus pilifer, Marchantia linearis, Leucobryum bowringii, Plagiochila beddomei, Isopterygium albescens, Taxiphyllum taxirameum, Octoblepharum albidum, Bryum argenteum, Riccia frostii, Philonotis fontana, Racopilum cuspidigerum, Funaria hygrometrica, Pallavicinia lyellii, and Polytrichum commune for protein-based insecticidal activity against the two common lepidopteran pests: corn earworm (Helicoverpa zea) and armyworm (Spodoptera litura). Protein extracts from bryophyte species were compared with those from a lepidopteran-susceptible Glycine max cultivar (Cobb) in bioassays for insect resistance. The Octoblepharum albidum, Fissidens asperifolius, Bryum argenteum, and Marchantia linearis protein extracts caused the greatest decrease in damage in leaf-disk assays and insect larval growth. The results from dietary utilization experiments showed a reduction in efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The in vivo effects of proteins of bryophytes showed varied response toward the parameters such as larval weight, growth rate, and proportion of survivors. These bryophyte species are potential candidates for further evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asakawa Y. Recent advances in phytochemistry of bryophytes – acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry. 2001;56:297–312.

    Article  PubMed  CAS  Google Scholar 

  2. Nishiyama T, Fugita T, Shin IT, Seki M, Nishide H, Uchiyama I, Kamiya A. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implications for land plant evolution. Proc Natl Acad Sci USA. 2003;100:8007–12.

    Article  PubMed  CAS  Google Scholar 

  3. Cooper-Driver GA. Insect-fern associations. Entomol Exp Appl. 1978;24:110–6.

    Article  Google Scholar 

  4. Davidson AJ, Harborne JB, Longton RE. Identification of hydroxycinnamic and phenolic acids in Mnium hornum and Brachythecium rutabulum and their possible role in protection against herbivory. J Hattori Bot Lab. 1989;67:415–22.

    Google Scholar 

  5. Weintraub J. Lithinine moths on ferns: a phylogenetic study of insect-plant interactions. Biol J Linn Soc. 1995;55:239–50.

    Article  Google Scholar 

  6. Auerbach MJ, Hendrix SD. Insect-fern interactions: macro-lepidopteran utilization and species area association. Ecol Entomol. 1980;5:99–104.

    Article  Google Scholar 

  7. Hendrix SD, Marquis RJ. Herbivore damage to 3 tropical ferns. Biotropica. 1983;15:108–11.

    Article  Google Scholar 

  8. Asakawa Y. Biologically active substances from bryophytes. In: Chopra RN, Bhatla SC, editors. Bryophyte development: physiology and biochemistry. Boston: CRC Press; 1990. p. 259–88.

    Google Scholar 

  9. Basra A, Basra R. Mechanisms of environmental stress resistance in plants. Annu Rev Biochem. 1997;59:873–907.

    Google Scholar 

  10. Harborne JB. Introduction to ecological biochemistry. San Diego: Academic; 1993.

    Google Scholar 

  11. Cooper-Driver GA. Anti-predation strategies in pteridophytes: a biochemical approach. Proc R Soc Edinb B (Biol Sci). 1985;86B:397–402.

    Google Scholar 

  12. Lafont R, Horn DHS. Phytoecdysteroids: structure and occurrence. In: Koolman J, editor. Ecdysone: from chemistry to mode of action. Stuttgart: Thieme; 1989. p. 39–64.

    Google Scholar 

  13. Fenwick GR. Bracken Pteridium aquilinum: toxic effects and toxic constituents. J Sci Food Agric. 1988;46:147–73.

    Article  Google Scholar 

  14. Hendrix SD. The resistance of Pteridium aquilinum to insect attack by Trichoplusia ni (Hubn.). Oecologia. 1977;26:347–61.

    Article  Google Scholar 

  15. Waldbauer GP. The consumption and utilization of food by insects. Adv Insect Physiol. 1968;5:229–88.

    Article  Google Scholar 

  16. Farrar RR, Barbour JD, Kennedy KG. Quantifying food consumption and growth in insects. Ann Entomol Soc Am. 1989;82:593–8.

    Google Scholar 

  17. Terra WR, Ferreira C. Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B. 1994;109:1–62.

    Google Scholar 

  18. Broadway RM. Dietary proteinase inhibitors alter the complement of midgut proteinases. Arch Insect Biochem. 1996;41:107–16.

    Google Scholar 

  19. De Leo F, Bonade’-Bottino M, Ceci R, Gallerani R, Joaunin L. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol. 2001;31:593–602.

    Article  PubMed  Google Scholar 

  20. McManus MT, Burgess EPJ. Effects of soybean (Kunitz) trypsin inhibitor on growth and digestive proteases of larvae Spodoptera litura. J Insect Physiol. 1995;41:731–8.

    Article  CAS  Google Scholar 

  21. Gatehouse A, Norton MR, Davison E, Babbe GM, Newell SM, Gatehouse JA. Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea, effects of plant proteinase inhibitor in vitro & in vivo. J Insect Physiol. 1999;45:545–58.

    Article  PubMed  CAS  Google Scholar 

  22. Morbue A, Blackwell AJ. Azadirachtin: an update. J Insect Physiol. 1993;39:903–24.

    Article  Google Scholar 

  23. Koul O, Multani JS, Singh G, Daniewski WM, Berlozecki S. 6-β- Hydroxygedunin from Azadirachta indica. Its potentiating effects with some non-azadirachtin limonoids in neem against lepidopteran larvae. J Agric Food Chem. 2003;51:2937–42.

    Article  PubMed  CAS  Google Scholar 

  24. Wheeler DA, Isman MB. Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol Exp et Appl. 2001;98:9–16.

    Article  Google Scholar 

  25. Paulillo Cesar LMS, Adriana LR, Plinio TC, Jose PRP, Walter TR, Marcio SFC. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J Econ Entomol. 2000;93:892–6.

    Article  Google Scholar 

  26. Cloutier Jean C, Fournier M, Yelle S, Michaud D. Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on Oryzacystatin 1-transgenic potato plants by hypertrophic behavior and over production of incentive proteases. Arch Insect Biochem Physiol. 2000;44:69–81.

    Article  Google Scholar 

  27. Zhu-Salzman K, Koiwa H, Salzman RA, Shade RE, Ahn JE. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol Biol. 2003;12:135–45.

    Article  PubMed  CAS  Google Scholar 

  28. Volpicella M, Ceci LR, Cordewener J, America T, Gallerani R, Bode W, Jongsma MA, Beekwilder. Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors. Eur J Biochem. 2003;270:10–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Kerala State Council for Science, Technology and Environment for providing financial support for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remya Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India

About this paper

Cite this paper

Krishnan, R., Murugan, K. (2012). Evaluation of Bryophyte Protein-Based Defense Against Selected Phytophagous Insects. In: Sabu, A., Augustine, A. (eds) Prospects in Bioscience: Addressing the Issues. Springer, India. https://doi.org/10.1007/978-81-322-0810-5_3

Download citation

Publish with us

Policies and ethics